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Abstract 

The paper studies the automatic extraction of 
diagnostic word endings for Slavonic langua-
ges aimed to determine some grammatical, 
morphological and semantic properties of the 
underlying word. In particular, ending gues-
sing rules are being learned from a large mor-
phological dictionary of Bulgarian in order to 
predict POS, gender, number, article and se-
mantics. A simple exact high accuracy algo-
rithm is developed and compared to an appro-
ximate one, which uses a scoring function pre-
viously proposed by Mikheev for POS gues-
sing. It is shown how the number of rules of 
the latter can be reduced by a factor of up to 
35, without sacrificing performance. The eva-
luation demonstrates coverage close to 100%, 
and precision of 97-99% for the approximate 
algorithm. 

1 Introduction 

An important property of the Slavonic languages 
is the rich morphology, which determines the spe-
cifics of their representation and processing in 
NLP applications. This variety is arranged not only 
linearly along the paradigmatic axe, i.e. abundance 
of wordforms for a given lemma (up to 52 forms 
for the Bulgarian verb), but also in the derivational 
tree (up to 30 members per word formation). The 
grammatical system of the Slavonic languages and 
their descriptions differentiate these two mecha-
nisms as word formation and word derivation.

The word formation building blocks define the 
so called inflectional classes, which represent se-
quential letter strings associated with word classes 
as well as with individual words, also known as i-
suffixes in Porter-like stemmers (Porter,1980). The 
derivational building blocks represent derivational 
suffixes listed in grammars (d-suffixes in Porter-
like stemmers). A considerable part of the Slavonic 
d-suffixes change not only the part of speech 
(POS) but also the semantics of the newly formed 
word. When multiple d-suffixes are concatenated, 
the word formation chain yields also a semantic 

derivation. For example, the chain (observe → ob-
server → observing → observability): 

наблюд-(авам)→
наблюд-ател →
наблюдател-ен →
наблюдателн-ост 

represents the derivation: 
verb → noun→ adjective → noun 

but also the following semantic transformation: 
action → actor → feature → abstract feature 
The combination of grammatical and semantic 

functions of the Slavonic d-suffixes, together with 
their frequent usage (at least for some of them) and 
the high productivity, make very attractive the idea 
to study the regularities and the predictive power 
of ending letter combinations in a large text set. 
We believe the results obtained over a representati-
ve collection can be used in a variety of robust 
analysis applications. Linguistically, we interpret 
the last term as operations over a large text set with 
insufficient linguistic support, typically given by a 
lexical database, grammatical rules, parsing rules 
etc. We target applications like POS tagging, text 
categorisation, information extraction, word sense 
disambiguation, question answering etc. 

Below we concentrate on the automatic extracti-
on of a set of diagnostic word endings for Bulgari-
an that can determine the POS as well as some 
grammatical, morphological and semantic properti-
es of the underlying word. This is a two-step pro-
cess including endings identification & learning 
and application & evaluation.  

The paper is organised as follows. Section 2 dis-
cusses the related work on POS guessing and gene-
ral morphology. Section 3 introduces our basic re-
source: the Large Grammatical Dictionary of Bul-
garian. Section 4 describes two algorithms for en-
ding guessing rules induction (an exact and an ap-
proximate one) and how to reduce the number of 
rules by a factor of up to 35. Section 5 contains the 
experimental setup and evaluation trying to predict 
POS, gender, number, article and semantics. Sec-
tion 6 discusses the results and Section 7 points to 
direction for future work. 



2 Related Work 

POS guessing. Kupiec (1992) uses pre-specified 
suffixes and performs statistical learning for POS 
guessing. The XEROX tagger comes with a list of 
built-in ending guessing rules (Cutting et al.,1992). 
In addition to the ending, Weischedel et al. (1993) 
exploit capitalisation. Thede and Harper (1997) 
consider contextual information, word endings, en-
tropy and open-class smoothing. A similar appro-
ach is presented in (Schmid,1995). Ruch et al. 
(2000) combine POS guessing, contextual rules 
and Markov models to build a POS tagger for bio-
medical text. A very influential is the work of Brill 
(1997), who induces more linguistically motivated 
rules exploiting both a tagged corpus and a lexi-
con. He does not look at the affixes only, but also 
checks their POS class in a lexicon. Mikheev 
(1997) proposes a similar approach, but learns the 
rules from raw as opposed to tagged text. Daciuk 
(1999) speeds up the process by means of finite 
state transducers. 

General morphology. Nakov et al. (2003) use 
ending guessing rules to predict the morphological 
class of unknown German nouns. Schone and 
Jurafsky (2000) apply latent semantic analysis for 
a knowledge-free morphology induction. DeJean 
(1998), Hafer and Weiss (1974) follow a successor 
variety approach: the word is cut, if the number of 
distinct letters after a pre-specified sequence sur-
passes a threshold. Goldsmith (2001) performs a 
minimum description length analysis of the mor-
phology of several European languages using cor-
pora. Gaussier (1999) induces derivational mor-
phology from a lexicon by means of p-similarity 
based splitting. Jacquemin (1997) focuses on the 
morphological processes. Van den Bosch and Da-
elemans (1999) propose a memory-based appro-
ach, which maps directly from letters in context to 
categories that encode morphological boundaries, 
syntactic class labels and spelling changes. Yarow-
sky and Wicentowski (2000) present a corpus-ba-
sed approach for morphological analysis of both 
regular and irregular forms based on four models 
including: relative corpus frequency, context simi-
larity, weighted string similarity and incremental 
retraining of inflectional transduction probabilities. 
Another interesting work, exploiting capitalisation 
and fixed/variable suffixes, is presented in Cucer-
zan and Yarowsky (2000).  

3 Source Data 

As the related work above shows, a large lexical 
database is often needed for the automatic identifi-
cation of good diagnostic word endings. In particu-
lar, in our experiments we used the Large Gram-
matical Dictionary of Bulgarian (Paskaleva,2003), 

created at the Linguistic Modelling Department of 
the Bulgarian Academy of Sciences (CLPP-BAS) 
and comprising approximately 995,000 wordforms 
(about 65,000 lemmas), encoded in DELAF format 
(Silberztein,1993). The following information is 
listed for each wordform: 1) lemma; 2) lemma pro-
perties (POS, additional grammatical features rela-
ted to the word formation: gender, e.g. for the no-
uns; degree, e.g. for the adjectives; transitivity, for 
verbs; kind for pronouns/numerals, etc.); and 3) 
properties of the wordform as a member of the 
lemma paradigm. The first group of properties re-
present our primary learning resource, as we focus 
on the extraction of ending rules for whole word 
classes and not for individual words. 

4 Ending Guessing Rules Extraction 

Our learning algorithms produce lists of endings 
of various length (up to 8 letters), predicting diffe-
rent kinds of linguistic information (see below for 
details): 

• POS: adjective/adverb/noun/numeral/verb  
• article: definite/indefinite/none 
• gender: feminine/masculine/neutre/none 
• number: singular/plural/none 
• semantics: human/animate/none 

We use two different algorithms, inducing exact 
and approximate ending rules, accordingly. 

4.1 Exact Rules 

A study of the ending letter sequences of the dic-
tionary entries and their properties shows the well 
known inverse correlation between the length of a 
word ending and its ambiguity: the shorter the 
string, the more likely to be ambiguous.  

This raises the idea of a simple algorithm pro-
ducing 100% correct rules1. Suppose we want to 
predict POS and let us consider all wordforms in 
the dictionary that end on “-а”. There are 203,420 
of them, distributed as follows2: V=128,162(63.00%),
A=42,262(20.78%), N=32,597(16.02%), NU=240(0.12%), 
ADV=99(0.05%), PRO=38(0.02%), INTJ=7(0.00%), 
CONJ=7(0.00%), PC=6(0.00%), PREP=2(0.00%). Let us 
now consider a sequence with an additional star-
ting letter, e.g. “-та”. There are 83,375 wordforms 
with this ending, distributed in POS as follows: 
V=42,843(51.39%), A=22,225(26.66%), N=18,092(21.70%), 
NU=157(0.19%), ADV=48(0.06%), PRO=9(0.01%), 
CONJ=1(0.00%). When a further letter is included, 

 
1 As it is 100% precise it risks over fitting and thus a 

low coverage. We will return to this issue later. 
2 We use the following abbreviations for the ten POS: 

A (adjective), ADV (adverb), CONJ (conjunction), 
INTJ (interjunction), N (noun), NU (numeral), PC (par-
ticle), PREP (preposition), PRO (pronoun) and V (verb). 



we obtain e.g. “-ата” with a total frequency of 
72,235 and a POS distribution: V=42249(58.49%),
A=21415(29.65%), N=8399(11.63%), NU=119(0.16%), 
ADV=47(0.07%), PRO=6(0.01%). Next, for “-цата” we 
have a frequency of only 799 and an even lower 
ambiguity: N=793(99.25%), A=6(0.75%). Finally, there 
is a single POS tag for “-ицата”: N=726(100.00%).
Note how the most likely tag (shown in italic for 
each ending above) and the degree of certainty 
about it change. At the beginning, the most likely 
tag was V, but later it changed to N. In addition, 
the uncertainty does not necessarily decrease mo-
notonically as the most likely tag changes from 
V(63.00%) to V(51.39%) to V(58.49%) to 
N(99.25%) and to N(100.00%). Generalizing this 
example, we obtain the following  

 
Exact Algorithm: 

1. S = ∅
E = {all possible endings of dictionary word-

forms, up to k letters long}; 

2. While E ≠∅
2.1. Take a random ending e from E of mini-

mum length.
2.2. If all wordforms in the dictionary that 

end on e have the same POS then S ⇐ e.

3. Output S.

Wordforms Number of 
Different POS count % 

1 936,409 97.37%
2 24,913 2.59%
3 356 0.03%
4 1 0.00%

Table 1: Dictionary ambiguity with respect to POS. 

While it is clear that this approach produces only 
100% correct rules (and also the shortest possible 
ones), its coverage is not guaranteed to be 100% 
due to homography, i.e. the same graphemic word-
form can be met in the dictionary multiple times 
with different annotations. For example, “отбрана”
is annotated as3:

отбрана,отбера.V+F+T:Psf 
отбрана,отбран.ADJ:sf 
отбрана,отбрана.N+F:s 

The first one denotes the inflected wordform se-
lected of the finite transitive verb select, the second 

 
3 The format used is as follows “inflected_form,

lemma . lemma_properties : wordform_properties”

one stands for the feminine adjective selected, and 
the last one, for the feminine noun defence.

In fact, the level of ambiguity is relatively low: 
97.37% of the wordforms in the dictionary are un-
ambiguous, so ignoring the ambiguity on training 
is not unreasonable. See Table 1 for a detailed dic-
tionary ambiguity distribution with respect to POS. 

4.2 Approximate Rules 

Our approximate rules are similar to the ones 
proposed by Mikheev (1997), who uses a dictiona-
ry to build POS prediction rules with four parts: 
deletion (–), addition (+), checking against the dic-
tionary (?) and POS assignment (→). Generally 
speaking, each rule operates either on the begin-
ning or the ending of the target wordform. For 
example, the following rule says that if an unkno-
wn word ends on “-ied”, this ending should be 
stripped, “-y” should be appended, a check should 
be performed of whether the newly created word is 
in the dictionary and annotated as (VB VBP) there, 
and if so, (JJ VBD VBN) for the original word 
should be predicted: 

e[–ied +y ?(VP VBP) → (JJ VBD VBN)] 

All rule elements are optional, except for the 
POS assignment. This means that a rule can just 
add and/or remove letters, without looking in the 
dictionary (although it could potentially benefit 
from doing so). When both removal and addition 
are used, one can account for mutations in the 
word stem. In fact, Mikheev uses the following 
restricted types of rules: Prefix (prefix deletion and 
dictionary lookup), Suffix0 (suffix deletion and dic-
tionary lookup), Suffix1 (suffix deletion with mu-
tation in the last letter and dictionary lookup), En-
ding (suffix deletion). There are separate ending 
guessing rules for hyphenated, capitalised and all 
other words. 

Given a dictionary, a scan through the word-
forms is performed, during which all possible rules 
are collected and scored, and those above some 
threshold are selected. Finally, rule merging is ap-
plied to rules with identical preconditions but dif-
ferent predictions: the new rule predicts the union 
of the predictions of the original rules, which re-
sults in higher ambiguity but possibly allows the 
new rule to pass above the threshold after being 
rescored. 

We do not use the full power of the Mikheev-
like rules and we limit ourselves to ending rules 
without dictionary lookup and single class predicti-
ons. Further, at present we do not treat the hyphe-
nated or capitalised wordforms in any special way.  

The intuition behind the Mikheev’s rule score is 
that a good guessing rule should be unambiguous 
(predicts a particular class without or with only 



very few exceptions), frequent (must be based on a 
large number of occurrences) and long (the longer 
the rule the lower the probability that it will hap-
pen by chance and thus the better its prediction). 
These criteria are combined in the following for-
mula: 
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where: 
 - l is the rule length; 
 - x is the number of successful rule guesses; 
 - n is the total number of training instances com-

patible with the rule; 
 - p is a smoothed version of the maximum like-
lihood estimation p̂ , which ensures that neither 
p nor (1–p) could be zero: p = (x+0.5)/(n+1); 
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nt α is a coefficient of the t-distribution with 

n–1 degrees of freedom and confidence level α.

It is important to note that Mikheev weights the 
rule frequencies with the frequencies of the word-
forms they match as estimated from raw text. We 
performed experiments both with and without such 
weighting.  

 
Cleaned Threshold Original 100% only everything

0.00 738,446 115,474 20,846
0.50 597,238 89,324 18,663
0.80 122,439 27,477 4,881
0.90 55,144 15,071 2,459
0.95 22,015 7,673 1,402

Table 2: Mikheev-like rules for POS guessing co-
unt: original and cleaned (100% correct and all). 

Column 2 of Table 2 gives an idea about the 
number of selected ending guessing rules for POS  
prediction when different thresholds are used (and 
when the training was performed on a subset of the 
dictionary, containing 894,915 wordforms, as des-
cribed below). We were unhappy with such a large 
number of rules, especially after we observed that 
they were highly redundant. For example, if the 
threshold is set to 0.95, all the rules listed in Table 
3 (and many more) are selected. In fact, all these 
are covered by the ending “-хте”, which is 100% 
correct, and they all predict that the POS should be 
verb. So, all we need is to keep “-хте”, while drop-
ping all other longer endings that have additional 

starting letters4. This reduces the number of rules 
by a factor of 3 to 7 (see column 3 of Table 2).  

Thinking again, we can see that we can reduce 
the number of rules even further. For example, the-
re is a rule “-ваха”, which is scored 0.99967073 
and was met 6,593 times as a verb and only once 
as a noun (i.e. it is 99.98% correct). There is ano-
ther one “-яваха”, which is scored 0.99943267, 
and was met 1,498 times, always as a verb. There 
are also rules like “-аваха”, “-кваха”, etc. Obvio-
usly, all they, and any other ending on “-ваха”, 
will make the same prediction, so we do not need 
to keep them. Removing the redundancies of this 
kind leads to another dramatic drop in the number 
of rules by a similar factor (see column 4 of Table 
2). In the experiments below we always applied 
this kind of cleaning.5

Ending Score Frequency 
-енявахте 0.98336703 47 
-нявахте 0.99666399 241 

-явахте 0.99944650 1,489 
-вахте 0.99987014 6,546 
-ахте 0.99992176 11,346 
-хте 0.99995697 22,074 

Table 3: Some redundant selection for “-хте”. 

5 Evaluation 

We ran two different general types of experi-
ments: using the dictionary only and using additio-
nal raw text to estimate the frequencies of the dicti-
onary words. We split the dictionary into two parts 
at random: 894,915 wordforms for training (about 
90%) and the remaining 99,624 wordforms for tes-
ting. In the dictionary-only experiments we extrac-
ted the ending guessing rules by observing the en-
dings of all wordforms from the training part of the 
dictionary6. We then applied the rules thus learned 
(each time preferring the longest one that is com-
patible with the target word) to the testing part of 
the dictionary and we measured the precision P
(what % of the cases the predicted class matched 
the hypothesised one) and the coverage C (what % 
of the cases there was at least one rule that was 
compatible with the target wordform). We also 
calculated a kind of F-measure, which is normally 

 
4 Table 3 does not list all of them and there are seve-

ral dozens additional highly scored ones, e.g. “-ехте”. 
5 It looks like Mikheev (1997) did not observe that 

kind of redundancy. 
6 For a given word, we extracted all the correspon-

ding endings up to 8 letters long. This can possibly be 
the whole word. 



defined as 2PR/(P+R), where R is the recall (pro-
portion of proposed instances out of all that have to 
be found). Precision, recall and F-measure are de-
fined in the information retrieval community in 
terms of positive and negative documents for a gi-
ven query, i.e. with respect to a single class, but 
here we have multiple of them. While we can defi-
ne both an overall and a class-specific precision, it 
makes sense to talk about recall with respect to a 
particular class, but about coverage, when this is a 
measure for all classes. So, we redefined the F-me-
asure as 2PC/(P+C). 

In the dictionary+text experiments, we use the 
same training and testing parts of the dictionary, 
and in addition, the frequencies for the correspon-
ding words in the training and testing text sets, ac-
cordingly. I.e. a wordform in the text that is not in 
the dictionary is ignored and the rest are treated as 
if they have been repeated in its training/testing 
part the same number of times as they were met in 
the training/testing raw text.  

We used a collection of 23.5 MB of various 
genres of Bulgarian texts as follows: 

• legal: 742 KB 
• poetry: 236 KB 
• prose: 1,032 KB 
• religion: 393 KB 
• newspapers: 21,118 KB 

We used 2,211 KB of the newspaper texts for 
testing (about 10% of the collection) and the rest 
for training. As we already mentioned above, the 
same graphemic wordform can be met in the dicti-
onary multiple times with different annotations. In 
such cases, we treated them as equally likely both 
on training and testing. This resulted in 1,751,963 
wordforms tokens on training and 18,832 on tes-
ting. The huge difference is due to the fact that on 
testing we have both 10 times smaller dictionary 
and 10 times smaller text set to estimate the word-
form frequencies from, which multiply and result 
in 100 fold drop. 

For all experiments, we excluded the wordforms 
from a stoplist composed of the closed class words, 
i.e. the ones with the following POS (counts in pa-
rentheses): auxiliary verbs (91), conjunctions (31), 
interjections (28), particles (41), prepositions (69) 
and pronouns (286). We have been hesitating also 
about the numerals but there were 582 of them in 
the dictionary and one can produce more, so they 
do not represent a closed class and we did not in-
clude them. A potential problem with the stop-
words removal is that many of them can also be 
non-stop ones depending on their POS, e.g.: while 
под/preposition (under), тези/pronoun (these) and 
бил/auxiliary (has been) are stop-words, под/noun 
(floor), тези/noun (theses) and Бил/person (Bill)

are not. We did not try to address this problem 
(which would have required POS tagging and pos-
sibly morphological analysis, which is unacceptab-
le, given our task) and we simply removed all ho-
mographs that matched a stoplist wordform.  

We performed several experiments trying to as-
sess the performance of the ending guessing rules 
as predictors for POS, article, gender, number and 
semantics. The details follow. 

5.1 POS 

We do a major distinction, between the follow-
ing five open POS classes: A (adjective), ADV (ad-
verb), N (noun), NU (numeral) and V (verb). Re-
member that we already excluded the auxiliary 
verbs, conjunctions, interjections, particles, prepo-
sitions and pronouns (and all their homographs). 
Some statistics are shown in Table 4 and the re-
sults of the evaluation are presented on Figure 1. 
Note the differences in the distribution of the dic-
tionary vs. text ending frequency estimations. Note 
also how the results for training and testing using 
raw text lead to consistently lower performance. 
The same observation can be made for the other 
kinds of predictions, see Figures 2-7. 

 
Class Dictionary Text 

A 129,828 17.34% 217,035 17.33%
ADV 661 0.09% 62,996 5.03%

N 84,303 11.26% 646,890 51.65%
NU 408 0.05% 12,112 0.97%
V 533,453 71.26% 313,327 25.02%

Table 4: Prior (training) distribution of POS.
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Figure 1: Results for POS.

5.2 Article 

We learn rules to distinguish between three clas-
ses of articles: definite, indefinite and none. Unlike 
English, the articles in Bulgarian7 appear augmen-
ted at the end of one of the words in a noun phrase, 
typically the first one. The feminine and neutre no-

 
7 Bulgarian and Macedonian are the only Slavonic 

languages with definite articles of this kind. 



uns, adjectives, numerals and some verb forms 
(e.g. participles) have the same form for both defi-
nite and indefinite articles (e.g. defence: отбрана 
→ отбранатa/(in)def), while for masculine these 
are distinct (e.g. man: човек → човека/indef, чо-
векът/def). We ran two experiments: with (see 
Table 5 and Figure 2) and without POS (see Table 
6 and Figure 3). Note that we certainly need the 
none class in a real system so we had to include it.  

 
Class Dictionary Text 

def 324,253 39.31% 393,658 28.01%
indef 250,345 30.35% 703,116 50.02%
none 250,345 30.35% 308,802 21.97%

Table 5: Prior (training) distribution for article 
(no POS). 

Class Dictionary Text 
A+def 73,866 10.00% 96,909 7.89%

A+indef 48,327 6.54% 116,282 9.47%
N+def 43,426 5.88% 230,506 18.78%

N+indef 40,343 5.46% 390,609 31.82%
NU+def 229 0.03% 4,927 0.40%

NU+indef 179 0.02% 7,185 0.59%
V+def 142,500 19.28% 5,635 0.46%

V+indef 137,692 18.63% 66,798 5.44%
none 252,407 34.16% 308,802 25.15%

Table 6: Prior (training) distribution of article 
(with POS). 
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Figure 2: Results for article (no POS). 
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Figure 3: Results for article (with POS). 

5.3 Gender 

There are three genders in Bulgarian: masculine,
feminine and neuter. Only some of the word clas-
ses can have gender, namely: adjectives, nouns, 
numerals and some verb forms (e.g. participles). 
The results of the gender guessing experiments are 
shown in Tables 7, 8 and Figures 4, 5. 

 
Class Dictionary Text 
Fem 112,201 13.65% 87,856 5.76%
Mas 150,426 18.30% 110,361 7.24%
Neu 121,134 14.73% 87,608 5.74%
none 438,386 53.32% 1,239,183 81.26%

Table 7: Prior (training) distribution of gender 
(no POS). 

Class Dictionary Text 
A+fem 30,465 3.96% 56,414 3.89%
A+mas 38,490 5.00% 59,306 4.09%
A+neu 25,258 3.28% 30,556 2.11%
N+neu 276 0.04% 4,592 0.32%
NU+fem 68 0.01% 2,862 0.20%
NU+mas 161 0.02% 6,582 0.45%
NU+neu 65 0.01% 1,139 0.08%
V+fem 67,385 8.76% 12,326 0.85%
V+mas 96,529 12.55% 28,660 1.97%
V+neu 72,040 9.37% 9,671 0.67%
none 438,386 57.00% 1,239,183 85.38%

Table 8: Prior (training) distribution of gender 
(with POS). 
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Figure 4: Results for gender (no POS). 
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Figure 5: Results for gender (with POS). 



5.4 Number 

There are two grammatical numbers in today’s 
Bulgarian: singular and plural8. Again, only some 
of the word classes can have number, namely: ad-
jectives, nouns, numerals and some verb forms 
(e.g. participles). Tables 9, 10 and Figures 6, 7 for 
the results of the number guessing experiments. 

Class Dictionary Text 
Plural 146,592 17.49% 299,134 20.84%

Singular 455,186 54.32% 827,131 57.62%
none 236,260 28.19% 309,276 21.54%

Table 9: Prior (training) distribution of number 
(no POS). 

 
Class Dictionary Text 
A+pl 29,281 3.92% 68,144 5.48%
A+sg 100,535 13.44% 148,845 11.97%
N+pl 31,766 4.25% 163,403 13.14%
N+sg 46,317 6.19% 468,577 37.69%
NU+pl 57 0.01% 69 0.01%
NU+sg 197 0.03% 8,218 0.66%
V+pl 67,557 9.03% 25,939 2.09%
V+sg 235,896 31.54% 50,657 4.07%
none 236,260 31.59% 309,276 24.88%

Table 10: Prior (training) distribution of number 
(with POS). 
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Figure 6: Results for number (no POS). 
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Figure 7: Results for number (with POS). 

 
8 The Old Bulgarian language used to have also a 

dual number. The only Slavonic language this gramma-
tical number has been preserved in is Slovenian. 

5.5 Semantics 

The last kind of experiments we performed was 
recognising some kind of semantics. We tried to 
guess whether a wordform is a human, animate or 
neither, as we had such information in our dictio-
nary. These are always limited to nouns (at least in 
our dictionary annotations), so we did not have se-
parate experiments with and without POS (they 
would have produced almost the same result, 
except for some potential problems caused by ho-
mographs with a non-noun POS). The results are 
shown in Table 11 and Figure 8.  

Class Dictionary Text 
Animate 1,765 0.21% 4,536 0.28%
Human 26,918 3.14% 121,299 7.39%
none 828,887 96.66% 1,516,053 92.34%

Table 11: Training (prior) distribution of 
semantics.
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Figure 8: Results for semantics: human/animate.
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Figure 9: Results for article: the exact algorithm  

for different thresholds. 
 

Figures 1-8 show that the approximate rules with 
confidence score of 0.50 perform consistently bet-
ter than the exact ones, where we keep every single 
rule, even the ones met only once. So, we are very 
likely to over fit. One way to prevent this is to 
ignore some of the least reliable rules. The simp-
lest criterion for this is the minimum frequency. 
We performed some experiments, setting it to 1, 2, 
3, 4, 5, 10 and 20. The results are shown on Figure 
9, where we can see that while gaining a little bit 



on recall, we lose a lot on precision. Thus, if we 
stick to the exact rules, we apparently cannot gain 
by removing some of the rules based on frequency. 
In fact, this is not necessarily true, as it could be 
possible when using more complex criterion that 
takes into account more than just frequency, e.g. 
rule length.  

6 Discussion 

Table 12 contains summary results for the expe-
riments with the exact and the approximate rules 
(with a threshold of 0.50, since, as Figures 1-8 
show, it had the highest F-measure). The first two 
columns describe the kind of experiment and the 
method, followed by the precision, coverage and 
F-measure. Finally, the last two columns show the 
corresponding number of rules used and the num-
ber of target classes.  

 
Experiment Method P C F # rules # class
article exact 98.61% 94.00% 96.25% 53,216 3
article mik-.50 97.02% 99.97% 98.47% 10,745 3 
article+POS exact 97.01% 83.09% 89.51% 85,061 9
article+POS mik-.50 92.33% 99.84% 95.94% 27,263 9 
gender exact 99.04% 93.88% 96.39% 39,309 4
gender mik-.50 97.43% 100.00% 98.70% 7,263 4 
gender+POS exact 98.35% 87.45% 92.58% 53,385 11 
gender+POS mik-.50 94.79% 99.81% 97.24% 12,473 11 
number exact 99.21% 95.49% 97.31% 40,856 3
number mik-.50 97.90% 100.00% 98.94% 7,493 3 
number+POS exact 97.60% 84.07% 90.33% 81,154 9
number+POS mik-.50 93.08% 99.92% 96.38% 20,144 9 
POS exact 97.70% 84.23% 90.47% 79,609 5
POS mik-.50 93.23% 100.00% 96.50% 18,663 5 
semantics exact 99.10% 97.13% 98.11% 43,902 3
semantics mik-.50 98.33% 99.99% 99.15% 9,971 3 

Table 12: Experiments summary (dictionary). 

There are several interesting observations about 
Table 12 (and Figures 1-8). First, the precision of 
the exact rules is consistently higher than that of 
the approximate ones with a threshold of 0.50. This 
is not surprising as the ending guessing rules pro-
duced by the exact method are guaranteed to be 
100% correct on the training set (but not necessari-
ly on the testing one, as we explained above). Fi-
gures 1-8 show that this observation holds for all 
other score thresholds considered, even for 0.95 
(remember that the score reflects not only the rule 
accuracy but also its length and smoothed frequen-
cy). The situation is reversed with respect to the 
coverage: the exact rules have a lower coverage, 
which more than compensates for their higher pre-
cision. As a result, the F-measure is consistently 
lower for the exact algorithm as compared to the 
approximate one with a threshold of 0.50. Figures 
1-8 show this is not the case for higher thresholds 
(especially 0.95) when the coverage becomes lo-
wer and the F-measure gets worse as compared to 
that of the exact method. 

Comparing article, gender and number to arti-
cle+POS, gender+POS and number+POS, accor-
dingly, where the number of classes is increased by 
a factor of 3, we can see that the exact algorithm 
remains robust with respect to precision: there is a 
decrease of about 1-1.5% only. The precision of 
the approximate rules is decreased by 3-4%. On 
the other hand, the coverage of the approximate ru-
les is virtually unaffected and stays very close to 
100% (decreased by less than 0.2%), while for the 
exact rules it drops significantly: by 6-9%. As a re-
sult, the approximate algorithm has a more robust 
F-measure, which drops by 1-2.5% only, while for 
the exact algorithm this is 4-7%.  

The approximate method is also more robust 
with respect to the number of rules, as it produces 
about five times less of them as compared to the 
exact one. When article, gender and number are 
combined with POS, the number of rules is increa-
sed by a factor of 2 to 3. 

Overall, the approximate rules with a threshold 
of 0.50 exhibit a very high coverage (100% or very 
close) and precision/F-measure of about 97-99%.  

Finally, the tasks are not equally hard. The easi-
est one is semantics, and the hardest one is POS.  

 
Class P R F 

A+fem 91.67% 87.58% 89.58%
A+mas 92.21% 85.83% 88.91%
A+neu 83.78% 85.44% 84.60%
N+neu 16.24% 3.82% 6.18%

NU+fem 44.44% 80.00% 57.14%
NU+mas 85.71% 81.82% 83.72%
NU+neu 85.71% 60.00% 70.59%
V+fem 93.88% 97.73% 95.77%
V+mas 93.10% 96.94% 94.98%
V+neu 88.10% 96.79% 92.24%
None 98.66% 96.49% 97.56%

Table 13: Testing performance per class for 
gender+POS approximate rules 0.50 (dictionary).  

Class P R F 
A+fem 96.79% 96.96% 96.88%
A+mas 97.04% 95.74% 96.39%
A+neu 94.83% 95.03% 94.93%
N+neu 21.74% 18.29% 19.87%

NU+fem 80.00% 100.00% 88.89%
NU+mas 94.74% 81.82% 87.80%
NU+neu 85.71% 66.67% 75.00%
V+fem 98.36% 99.12% 98.74%
V+mas 98.41% 98.49% 98.45%
V+neu 95.92% 97.42% 96.67%
None 99.27% 99.01% 99.14%

Table 14: Testing performance per class for 
gender+POS exact rules (dictionary). 



It is interesting to observe the performance of the 
different classes in a particular experiment, e.g. 
gender+POS. Note that now we can calculate a 
true recall as opposed to coverage, as we can work 
with a particular class. The results for the gen-
der+POS, dictionary trained, experiments are sho-
wn in Tables 13 and 14. We can see that the preci-
sion, the recall and the F-measure of the exact ru-
les are consistently better for each class as compa-
red to the ones obtained using approximate rules 
(with threshold of 0.50). Note however that the 
recall here is calculated only for the part for which 
there was a prediction. The exact rules covered 
84,512 out of all 96,643 wordforms (coverage: 
87.45%) and 83,120 of them were correct (precisi-
on: 98.35%). The per-class P, R and F are calcula-
ted only for those 84,512 wordforms for which a 
prediction has been made. I.e. we did not assign 
the non-covered wordforms the class none by defa-
ult, although probably we should, as it is the most 
frequent one. The approximate rules made pre-
dictions for 96,458 wordforms (coverage: 99.81%) 
91,430 of which were correct (precision: 94.79%). 

Table 15 shows the performance for the approxi-
mate rules as evaluated on the training set9. Out of 
the 867,567 wordforms, 866,786 have been cove-
red (coverage 99.91%), 835,330 of which correctly 
(precision 96.37%). We see that the class N+neu 
was hard to predict not only on testing but also on 
training.  

 
Class P R F 

A+fem 95.60% 91.35% 93.43%
A+mas 96.36% 90.64% 93.41%
A+neu 87.26% 90.41% 88.81%
N+neu 83.67% 8.50% 15.44%

NU+fem 98.53% 83.75% 90.54%
NU+mas 90.96% 89.44% 90.20%
NU+neu 98.48% 89.04% 93.53%
V+fem 95.91% 98.59% 97.23%
V+mas 94.58% 98.49% 96.50%
V+neu 89.21% 99.10% 93.90%
none 99.53% 97.29% 98.40%

Table 15: Training performance per class for 
gender+POS approximate rules 0.50 (dictionary).  

Something that Table 12 does not show, but one 
can see on Figures 1-8, is the consistently worse 
performance of training & testing on the dictionary 
vs. training & testing only on these dictionary 
words that are met in the raw text, using the corres-
ponding frequencies. The major reason for this is 

 
9 We do not show a corresponding training accu-

racy table for the exact rules as every cell there is 
replaced with 100%, i.e. there is a perfect fit. 

the insufficient amount of training text. While the 
number of word tokens is high, the number of 
word types is much less than that of the dictionary. 
So, the significantly lower variability of word-
forms more than compensates any gains of having 
real word frequencies. We believe weighting thro-
ugh real text is important and we plan to re-run 
these experiments with word frequencies estimated 
from orders of magnitude more textual data (it is 
cheap and freely available on the Web). Another, 
less attractive alternative could be to add the dic-
tionary as a text. That way we would have incor-
rect frequency estimations for some of the words, 
but also the learning algorithm would have access 
to the rich word variability of the dictionary words. 

7 Future Work 

There are several possible extensions to the work 
presented above. First, the exact algorithm can be 
extended with non-exact rules. Second, the Mikhe-
ev-like ending guessing rules construction could be 
augmented with a merging phase as originally pro-
posed. It would be interesting to consider using the 
dictionary not only during rules generation but also 
during their application: e.g. try to add/remove suf-
fixes/prefixes and check whether the newly obtai-
ned word is listed in the dictionary (e.g. we might 
have the word наблюдател/noun (observer) but 
not наблюдателен/adj (observing), generated fol-
lowing a standard derivational rule). There are pre-
fixes, mostly foreign, that can attach to any open 
class word, but the resulting words are unlikely to 
be in our dictionary: “анти-” (anti-), “ултра-” (ul-
tra-), “супер-” (super-), “контра-” (contra-). Fur-
thermore, there are some important prefixes, speci-
fic to Bulgarian, that can limit the possible POS: 
e.g. “по-” and “най-” (“-” is part of the prefix) are 
used to construct a comparative and a superlative 
form, accordingly, and can be used only with ad-
jectives, adverbs and some verb forms (e.g. partici-
ple). We believe in the potential of the combined 
evidence from both prefixes and suffixes. In additi-
on, it seems important to allow for mutations in the 
word stem as these are common in Slavonic langu-
ages. Finally, it might be beneficial to learn separa-
te rules for capitalised and dashed words (but may-
be it is not that important as their usage is less fre-
quent, especially the capitalisation). 

We would like to try other scoring and smoo-
thing approaches. We did not address the problem 
of selecting the best threshold (although it is clear 
that it should be low, maybe around 0.50). One 
way to do this is to split the training set into rules-
training and threshold-training sets. Next, it looks 
promising to try to estimate the dictionary word 
frequencies using a search engine instead of text 
corpus, as proposed by Lapata and Keller (2004). 



While the exact algorithm performed worse due 
to insufficient coverage10, we believe it has a po-
tential, e.g. if extended with some approximate ru-
les. Note that the way the exact rules were built is 
very similar to the standard algorithm for decision 
tree construction. Thus the corresponding tree cut-
ting criteria used to prevent over fitting can help 
decide when to go further and look at longer en-
dings and when to stop.  

It is interesting to see how the proposed rules 
perform for other Slavonic languages. In particular, 
we plan similar experiments for Russian as a com-
parable morphological dictionary with the same 
kind of linguistic annotations is already available.  

Finally, we would like to explore the machine 
learning potential offered by morphological dictio-
naries with application to other related tasks such 
as stemming (Nakov, 2003), lemmatisation and 
POS tagging. 
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