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Abstract

Modern statistical parsers are robust and quite
fast, but their output is relatively shallow when
compared to formal grammar parsers. We sug-
gest to extend statistical approaches to a more
deep-linguistic analysis while at the same time
keeping the speed and low complexity of a sta-
tistical parser. The resulting parsing architec-
ture suggested, implemented and evaluated here
is highly robust and hybrid on a number of
levels, combining statistical and rule-based ap-
proaches, constituency and dependency gram-
mar, shallow and deep processing, full and near-
full parsing. With its parsing speed of about
300,000 words per hour and state-of-the-art per-
formance the parser is reliable for a number of
large-scale applications discussed in the article.

1 Introduction

Robustness in Computational Linguistics has
been recently recognized as a central issue for
the design of reliable, large-scale Natural Lan-
guage Processing (NLP) systems. While the
highest possible linguistic coverage is desirable,
speed and robustness are equally important in
practical applications.

Formal Grammar Parser have carefully
crafted grammars written by professional lin-
guists. In addition to expressing local relations,
i.e. relations between a mother and a direct
daughter node, a number of non-local relations,
i.e. relations involving more than two genera-
tions, are also modeled. An example of a non-
local relation is the subject control relation in
the sentence John wants to leave, where John is
not only the explicit subject of want, but equally
the implicit subject of leave. A parser that fails
to recognize control subjects misses important
information, quantitatively about 3 % of all sub-
jects.

But unrestricted real-world texts still pose a
problem to NLP systems that are based on For-
mal Grammars. Few hand-crafted, deep linguis-
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tic grammars achieve the coverage and robust-
ness needed to parse large corpora (see (Riezler
et al., 2002) for an exception, and (Burke et al.,
2004; Hockenmaier and Steedman, 2002) for ap-
proaches extracting formal grammars from the
Treebank), and speed remains a serious chal-
lenge. The typical problems can be grouped as
follows.

Grammar complexity Fully comprehensive
grammars are difficult to maintain and consid-
erably increase parsing complexity. Note that
statistical parsers can equally suffer from this
problem, see e.g. (Kaplan et al., 2004).

Parsing complexity Typical formal gram-
mar parser complexity is much higher than
the O(n?) for CFG (Eisner, 1997). The com-
plexity of some formal grammars is still un-
known. For Tree-Adjoining Grammars (TAG)
it is O(n”) or O(n®) depending on the im-
plementation (Eisner, 2000). (Sarkar et al.,
2000) state that the theoretical bound of worst
time complexity for Head-Driven Phrase Struc-
ture Grammar (HPSG) parsing is exponential.
Parsing algorithms able to treat completely un-
restricted long-distance dependencies are NP-
complete (Neuhaus and Broker, 1997).

Ranking Returning all syntactically possible
analyses for a sentence is not really what is ex-
pected of a syntactic analyzer if it should be of
practical use, since for a human there is usually
only one “correct” interpretation. A clear in-
dication of preference, by means of ranking the
analyses in a preference order is needed.

Pruning In order to keep search spaces man-
ageable it is in fact necessary to discard uncon-
vincing alternatives already during the parsing
process. In a statistical parser, the ranking of
intermediate structures occurs naturally, while
a rule-based system has to rely on ad hoc heuris-
tics. With a beam search in a parse-time prun-
ing system, which means that the total number
of alternatives kept is constant from a certain



search complexity onwards, real-world parsing
time can be reduced to near-linear. If one were
to assume a constantly full beam, or uses an
oracle (Nivre, 2004) it is linear in practice.

A number of robust statistical parsers that
offer solutions to these problems have now be-
come available (Charniak, 2000; Collins, 1999;
Henderson, 2003), but they typically produce
CFG constituency data as output, trees that do
not express long-distance dependencies.

Although grammatical function and empty
nodes annotation expressing long-distance de-
pendencies are provided in Treebanks such as
the Penn Treebank (Marcus et al., 1993), most
statistical Treebank trained parsers fully or
largely ignore them!, which entails two prob-
lems: first, the training cannot profit from valu-
able annotation data. Second, the extraction
of long-distance dependencies (LDD) and the
mapping to shallow semantic representations is
not always possible from the output of these
parsers. This limitation is aggravated by a
lack of co-indexation information and parsing
errors across an LDD. In fact, some syntac-
tic relations cannot be recovered on configura-
tional grounds only. For these reasons, (John-
son, 2002) provocatively refers to them as “half-
grammars”.

The paper is organized as follows. We first ex-
plore a deep-linguistic grammar theory for En-
glish that is inherently designed to be robust
by extending the low processing complexity and
the robustness of statistical approaches to a
more deep-linguistic level, by making careful
use of underspecification, grammar compression
techniques and using a grammar that directly
delivers simple predicate-argument structures.
This allow us to use a context-free grammar
at parse-time while successfully treating long-
distance dependencies using low-complexity ap-
proaches before and after parsing. Our ap-
proach is to use finite-state approximations
of long-distance dependencies, as they are de-
scribed in (Schneider, 2003a) for Dependency
Grammar (DG) and (Cahill et al., 2004) for
Lexical Functional Grammar (LFG). (Dienes
and Dubey, 2003) show that finite-state pre-
processing modules can successfully deal with
LDDs. Our approach is similar in also amount-
ing to a preprocessing recognition of LDDs.

Then we show that the implementation
(Pro3Gres) profits from hybridness and is fast

1(Collins, 1999) Model 2 uses some of the functional
labels, and Model 3 some long-distance dependencies

and robust enough to do large-scale parsing of
totally unrestricted texts and give an overview
of its applications. To conclude, two evaluations
are given.

2 A Robust Deep-Linguistic Theory

Generally, a linguistic analysis model aims at
complete and correct analysis, which means
that the mapping between the text data and its
syntactic and semantic analysis is sound (the
model extracts correct readings) and complete
(the model deals with all language phenomena).
In practice, however, both goals cannot be to-
tally reached. The main obstacle for soundness
is the all-pervasive characteristic of natural lan-
guage to be ambiguous, where ambiguities can
often only be resolved with world knowledge.

Statistical disambiguation such as (Collins
and Brooks, 1995) for PP-attachment or
(Collins, 1997; Charniak, 2000) for generative
parsing greatly improve disambiguation, but as
they model by imitation instead of by under-
standing, complete soundness has to remain elu-
sive.

As for completeness, already early “naive”
statistical approaches have shown that the prob-
lem of grammar size is not solved but even ag-
gravated by a naive probabilistic parser imple-
mentation, in which e.g. all CFG rules permit-
ted in the Penn Treebank are extracted. From
his 300,000 words training part of the Penn
Treebank (Charniak, 1996) obtains more than
10,000 CFG rules, of which only about 3,000
occur more than once. It is therefore necessary
to either discard infrequent rules, do manual
editing, use a different rule format such as indi-
vidual dependencies (Collins, 1996) or gain full
linguistic control and insight by using a hand-
written grammar — each of which sacrifices total
completeness.

2.1 Near-full Parsing

The approach we have chosen is to use a
manually-developed wide-coverage tag sequence
grammar (Abney, 1995; Briscoe and Carroll,
2002), and to exclude or restrict rare, marked
and error-prone phenomena. For example,
while it is generally possible for nouns to be
modified by more than one PP, only nouns seen
in the Treebank with several PPs are allowed to
have several PPs. Or, while it is generally possi-
ble for a subject to occur to the immediate right
of a verb (said she), this is only allowed for verbs
seen with a subject to the right in the train-
ing corpus, typically verbs of utterance, and



only in a comma-delimited or sentence-final con-
text. This entails that the parser profits from
a lean grammar but finds a complete structure
spanning the entire sentence in the majority of
real-world sentences and needs to resorts to col-
lecting partial parses in the remaining minority.
Starting from the most probable longest span,
recursively the most probable longest span to
left and right is searched.

Near-full parsing only leads to a very small
loss. If an analysis consists of two partial parses,
on the dependency relation level only the one,
usually high-level relation between the heads
of the two partial parses remains unexpressed.
The risk of returning “garden path”, locally
correct but globally wrong, analyses diminishes
with increasing span length.

2.2 Functional Dependency Grammar

We follow the broad architecture suggested by
(Abney, 1995) which naturally integrates chunk-
ing and dependency parsing and has proven
to be practical, fast and robust (Collins, 1996;
Basili and Zanzotto, 2002). Tagging and chunk-
ing are very robust, finite-state approaches,
parsing then only occurs between heads of
chunks.? The perspicuous rules of a hand-
written dependency grammar build up the pos-
sible syntactic structures, which are ranked and
pruned by calculating lexical attachment proba-
bilities for the majortiy of the dependency rela-
tions used in the grammar. The grammar con-
tains around 1000 rules containing the depen-
dent’s and the head’s tag, the direction of the
dependency, lexical information for closed class
words, and context restrictions®. Context re-
strictions express e.g. that only a verb which
has an object in its context is allowed to attach
a secondary object.

Our approach can be seen as an extension of
(Collins and Brooks, 1995) from PP-attachment
to most dependency relations. Training data
is a partial mapping of the Penn Treebank to
deep-linguistic dependency structures, similar
to (Basili et al., 1998).

Robustness also depends on the grammar
formalism.  While many formalisms fail to

ZPractical experiments using a toy NP and verb-
group grammar have shown that parsing between heads
of chunks only is about four times faster than parsing
between every word, i.e. without chunking.

3the number of rules is high because of tag combina-
torics leading to many almost identical rules. A subject
relations is e.g. possible between the 6 verb tags and the
4 noun tags

project when subcategorized arguments cannot
be found, in a grammar like DG, in which maxi-
mal projections and terminal nodes are isomor-
phic, projection can never fail.

In classical DG, only content words can be
heads, and there is no distinction between syn-
tactic and semantic dependency — semantic de-
pendency is used as far as possible. These as-
sumptions entail that there are no functional
and no empty nodes, which means that low com-
plexity O(n?) algorithms such as CYK, which is
used here, can be employed.

The classical dependency grammar distinc-
tion between ordre linéaire and ordre struc-
tural, basically an immediate dominance / linear
precedence distinction (ID/LP) also has the ad-
vantage that a number of phenomena classically
assumed to involve long-distance dependencies,
fronted or inversed constituents, can be treated
locally. They only need rules that allow an in-
version of the “canonical” dependency direction
under well-defined conditions. As for fronted el-
ements, since DG does not distinguish between
external and internal arguments, front positions
are always locally available to the verb.

2.3 Underspecification and
Disambiguation

The cheapest approach to dealing with the all-
pervasive NL ambiguity is to underspecifiy ev-
erything, which leads to a sound and complete
mapping, but one that is content-free and ab-
surd. But in few, carefully selected areas where
distinctions do not matter for the task at hand,
where the disambiguation task is particularly
unreliable, or where inter-annotator agreement
is very low, underspecification can serve as a
tool to greatly facilitate linguistic analysis. For
example, intra-base NP ambiguities, such as
quantifier scope ambiguities do not matter for
a parser like ours aiming at predicate-argument
structure, and are thus not attempted to an-
alyze. There is one part-of-speech distinction
where inter-annotator agreement is quite low
and the performance of taggers generally very
poor: the distinction between verbal particles
and prepositions. We currently leave the dis-
tinction underspecified, but a statistical disam-
biguator is being developed.

Conversely, the Penn Treebank annotation is
sometimes not specific enough. The parser dis-
tinguishes between the reading of the tag IN as
a complementizer or as a preposition, and dis-
ambiguates commas as far as it can, between



apposition, subordination and conjunction.
Some typical tagging errors can be robustly
corrected by the hand-written grammar. For
example, the distinction between verb past
tense VBD and participle VBN is unreliable,
but can usually be disambiguated in the pars-
ing process by leaving this tag distinction un-
derspecified for a number of constructions.

2.4 Long-distance Dependencies

Long-distance  dependencies  exponentially
increase parsing complexity (Neuhaus and
Broker, 1997). We therefore use an approach
that preprocesses, post-processes and partly
underspecifies them, allowing us to use a
context-free grammar at parse time.

In detail, (1) before the parsing we model
dedicated patterns across several levels of con-
stituency subtrees partly leading to dedicated,
compressed and fully local dependency rela-
tions, (2) we use statistical lexicalized post-
processing, and (3) we rely on traditional De-
pendency Grammar assumptions (section 2.2).

2.4.1 Pre-processing

(Johnson, 2002) presents a pattern-matching al-
gorithm for post-processing the output of sta-
tistical parsers to add empty nodes to their
parse trees. While encouraging results are re-
ported for perfect parses, performance drops
considerably when using trees produced by a
statistical parser. “If the parser makes a sin-
gle parsing error anywhere in the tree fragment
matched by the pattern, the pattern will no
longer match. This is not unlikely since the sta-
tistical model used by the parser does not model
these larger tree fragments. It suggests that one
might improve performance by integrating pars-
ing, empty node recovery and antecedent find-
ing in a single system ... ” (Johnson, 2002).
We have applied structural patterns to the
Penn Treebank, where like in perfect parses pre-
cision and recall are high, and where in addi-
tion functional labels and empty nodes are avail-
able, so that patterns similar to Johnson’s but
— like (Jijkoun, 2003) — relying on functional
labels and empty nodes reach precision close to
100%. Unlike in Johnson, also patterns for local
dependencies are used; non-local patterns sim-
ply stretch across more subtree-levels. We use
the extracted lexical counts as lexical frequency
training material. Every dependency relation
has a group of structural extraction patterns
associated with it. This amounts to a partial
mapping of the Penn Treebank to Functional

Relation Label Example
verb—subject subj he sleeps
verb—first object obj sees it
verb—second object obj2 gave (her) kisses
verb—adjunct adj ate yesterday
verb—subord. clause  sentobj  saw (they) came

verb—prep. phrase pobj slept in bed

noun—prep. phrase modpp draft of paper
noun-—participle modpart report written
verb—complementizer compl to eat apples
noun—preposition prep to the house

Table 1: The most important dependency types
used by the parser

NP-S ‘ J-X@ VP@
noun v~ NP
passiv‘e verb -NONE-
. x
?

NP-SBJ-X@ VP@
noun
contr(‘)l—verb NP—:SBJ
-NONE-
*—‘X

Figure 1: The extaction patterns for passive
subjects (top) and subject control (bottom)

DG (Haji¢, 1998), (Tapanainen and Jérvinen,
1997). Table 1 gives an overview of the most
important dependencies.

The subj relation, for example, has the head
of an arbitrarily nested NP with the functional
tag SBJ as dependent, and the head of an ar-
bitrarily nested VP as head for all active verbs.
In passive verbs, however, a movement involv-
ing an empty constituent is assumed, which cor-
responds to the extraction pattern in figure 1,
where VP@ is an arbitrarily nested VP, and NP-
SBJ-X@ the arbitrarily nested surface subject
and X the co-indexed, moved element. Move-
ments are generally supposed to be of arbitrary
length, but a closer investigation reveals that
this type of movement is fixed.

The same argument can be made for other
relations, for example control structures, which
have the extraction pattern shown in figure 1.
Grammatical role labels, empty node labels and
tree configurations spanning several local sub-
trees are used as integral part of some of the
patterns. This leads to much flatter trees, as
typical for DG, which has the advantages that
(1) it helps to alleviate sparse data by map-
ping nested structures that express the same



dependency relation, (2) the costly overhead for
dealing with unbounded dependencies can be
largely avoided, (3) it is ensured that the lex-
ical information that matters is available in one
central place, allowing the parser to take one
well-informed decision instead of several brittle
decisions plagued by sparseness, which greatly
reduces complexity and the risk of errors (John-
son, 2002). Collapsing deeply nested structures
into a single dependency relation is less complex
but has the same effect as carefully selecting
what goes in to the parse history in history-
based approaches. “Much of the interesting
work is determining what goes into [the history]
H(c)” (Charniak, 2000).

(Schneider, 2003a) shows that the vast ma-
jority of LDDs can be treated in this way,
essentially compressing non-local subtrees into
dedicated relations even before grammar writ-
ing starts. The compressed trees correspond
to a simple LFG f-structure. The trees ob-
tained from parsing can be decompressed into
traditional constituency trees including empty
nodes and co-indexation, or into shallow seman-
tic structures such as Minimal Logical Forms
(MLF) (Rinaldi et al., 2004b; Schneider et al.,
2000; Schwitter et al., 1999). This approach
leaves LDDs underspecified, but recoverable,
and makes no claims as to whether empty nodes
at an automonous syntactic level exist or not.

2.4.2 Post-Processing

After parsing, shared constituents can be ex-
tracted again. The parser explicitly does this
for control, raising and semi-auxiliary relations,
because the grammar does not distinguish be-
tween subordinating clauses with and without
control. A probability model based on the verb
semantics is invoked if a subordinate clause
without overt subject is seen, in order to decide
whether the matrix clause subject or object is
shared.

2.4.3 What do we lose?

Among the 10 most frequent types of empty
nodes, which cover more than 60,000 of the
64,000 empty nodes in the Penn treebank, there
are only two problematic LDD types: WH
Traces and indexed gerunds.

WH traces Only 113 of the 10,659 WHNP
antecedents in the Penn Treebank are actually
question pronouns. The vast majority, over
9,000, are relative pronouns. For them, an in-
version of the direction of the relation they have
to the verb is allowed if the relative pronoun

FDG Gratnrar

Y

Chudker, Tagme,
RawText  —m Hoet Bzt o CVKParser e Proner  —») Post-Processor
Relation Lesticalrzed Dependency  Predicate - Argument
gk - Extractor K Statistical Data Tree Structure

Figure 2: Pro3Gres flowchart

precedes the subject. This method succeeds in
most cases, but linguistic non-standard assump-
tions need to be made for stranded prepositions.

Only non-subject WH-question pronouns and
support verbs need to be treated as “real”
non-local dependencies. In question sentences,
before the main parsing is started, the sup-
port verb is attached to any lonely participle
chunk in the sentence, and the WH-pronoun
pre-parses with any verb.

Indexed Gerunds Unlike in control, rais-
ing and semi-auxiliary constructions, the an-
tecedent of an indexed gerund cannot be es-
tablished easily. The fact that almost half of
the gerunds are non-indexed in the Penn Tree-
bank indicates that information about the un-
expressed participant is rather semantic than
syntactic in nature, much like in pronoun res-
olution. Currently, the parser does not try to
decide whether the target gerund is an indexed
or non-indexed gerund nor does it try to find the
identity of the lacking participant in the latter
case. This is an important reason why recall
values for the subject and object relations are
lower than the precision values.

3 Robustness “in the small”

In addition to a robust deep-linguistic design
(robustness “in the large”, section 2), the im-
plemented parser, Pro3Gres, uses a number of
practical robust approaches “in the small” at
each processing level, such as relying on finite-
state tagging and chunking or collecting par-
tial parses if no complete analysis can be found,
or using incrementally more aggressive pruning
techniques in very long sentences. During the
parsing process, only a certain number of alter-
natives for each possible span are kept. Experi-
ments have shown that using a fixed number or



a number dependent on the parsing complex-
ity in terms of global chart entries lead to very
similar results. Using reasonable beam sizes in-
creases parsing speed by an order of magnitude
while hardly affecting parser performance. For
the fixed number model, performance starts to
collapse only when less than 4 alternatives per
span are kept.

When a certain complexity has been reached
(currently 1000 chart entries), only reductions
above a certain probability threshold are per-
missible. The threshold starts very low, but
is a function of the total number of chart en-
tries. This entails that even sentences with
hundreds of words can be parsed quickly, but
it is not aimed at finding complete parses for
them, rather a graceful degradation of perfor-
mance (Menzel, 1995) is intended.

4 A hybrid approach on many levels

Pro3Gres profits from being hybrid on many
levels. Hybridness means that the most robust
approach can be chosen for each task and each
processing level.

statistical vs. rule-based the most obvious
way in which Pro3Gres is a hybrid (Schneider,
2003b). Unlike formal grammars to which post-
hoc statistical disambiguators can be added,
Pro3Gres has been designed to be hybrid, care-
fully distinguishing between tasks that can best
be solved by finite-state methods, rule-based
methods and statistical methods. While e.g.
grammar writing is easy for a linguist, and a
naive Treebank grammar suffers from similar
complexity problems as a comprehensive for-
mal grammar, the scope of application and the
amount of ambiguity a rule creates is often be-
yond our imagination and best handled by a
statistical system.

shallow vs. deep the designing philosophy
for Pro3Gres has been to stay as shallow as pos-
sible to obtain reliable results at each level.

Treebank constituency vs. DG the obser-
vation that a DG that expresses grammatical
relations is more informative, but also more in-
tuitive to interpret for a non-expert, and that
Functional DG can avoid a number of LDD
types has made DG the formalism of our choice.
For lexicalizing the grammar, a partial mapping
from the largest manually annotated corpus
available, the Penn Treebank, was necessary, ex-
hibiting a number of mapping challenges.

history-based vs. mapping-based
Pro3Gres is not a parse-history-based ap-
proach. Instead of manually selecting what
goes into the history, as is usually done (see
(Henderson, 2003) for an exception), we man-
ually select how to linguistically meaningfully
map Treebank structures onto dependency re-
lations by the use of mapping patterns adapted
from (Johnson, 2002).

probabilistic vs. statistical Pro3Gres is
not a probabilistic system in the sense of a
PCFG. From a practical viewpoint, knowing the
probability of a certain rule expansion per se
is of little interest. Pro3Gres models decision
probabilities, the probability of a parse is un-
derstood to be the product of all the decision
probabilities taken during the derivation.

local subtress vs. DOP psycholinguistic
experiments and Data-Oriented Parsing (DOP)
(Bod et al., 2003) suggest that people store
subtrees of various sizes, from two-word frag-
ments to entire sentences. But (Goodman,
2003) suggests that the large number of sub-
trees can be reduced to a compact grammar that
makes DOP parsing computationally tractable.
In Pro3Gres, a subset of non-local fragments
which, based on linguistic intuition are espe-
cially important, are used.

generative vs. structure-generating DG
generally, although generative in the sense that
connected complete structures are generated, is
not generative in the sense that it is always
guaranteed to terminate if used for random gen-
eration of language. Since a complete or partial
hierarchical structure that follows CFG assump-
tions due to the employed grammar is built up
for each sentence. Pro3Gres’ constraint to allow
each complement dependency type only once
per verb can be seen as a way of rendering it
generative in practice.

syntax vs. semantics instead of using
a back-off to tags (Collins, 1999), semantic
classes, Wordnet for nouns and Levin classes
for verbs, are used, in the hope that they better
manage better to express selectional restrictions
than tags. Practical experiments have shown,
however, that, in accordance to (Gildea, 2001)
on head-lexicalisation, there is almost no in-
crease in performance.

5 Applications and Evaluation

Pro3Gres is currently being applied in a Ques-
tion Answering system specifically targeted at
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Figure 3: Dependency Tree output of the SWI Prolog graphical implementation of the parser

technical domains (Rinaldi et al., 2004b). One
of the main advantages of a dependency-based
parser such as Pro3Gres over other parsing ap-
proaches is that a mapping from the syntactic
layer to a semantic layer (meaning representa-
tion) is partly simplified (Moll4 et al., 2000; Ri-
naldi et al., 2002).

The original version of the QA system used
the Link Grammar (LG) parser (Sleator and
Temperley, 1993), which however had a number
of significant shortcomings. In particular the
set of the dependency relations used in LG is
very idiosyncratic, which makes any syntactic-
semantic mapping created for LG necessarily
unportable and difficult to extend and maintain.

A recent line of research concerns applications
for the Semantic Web. The documents avail-
able in the World Wide Web are mostly written
in natural language. As such, they are under-
standable only to humans. One of the directions
of Semantic Web research is about adding a
layer to the documents that somehow formalizes
their content, making it understandable also to
software agents. Such Semantic Web annota-
tions can be seen as a way to mark explicitly
the meaning of certain parts of the documents.
The dependency relations provided by a parser
such as Pro3Gres, combined with domain spe-
cific axioms, allow the creation of (some of) the
semantic annotations, as described in (Rinaldi
et al., 2003; Kaljurand et al., 2004).

The modified QA system (using Pro3Gres) is
being exploited in the area of ‘Life Sciences’, for
applications concerning Knowledge Discovery
over Medline abstracts (Rinaldi et al., 2004a;
Dowdall et al., 2004). We illustrate some of the
differences between general-purpose parsing and
the parsing of highly technical texts like Med-
line and give two evaluations.

5.1 General unrestricted texts

We first report an evaluation on sentences from
an open domain, which gives a good impression
of the performance of the parser on general, un-
restricted text.

In traditional constituency approaches,
parser evaluation is done in terms of the corre-
spondence of the bracketting between the gold
standard and the parser output. (Lin, 1995;
Carroll et al., 1999) suggest evaluating on the
linguistically more meaningful level of syntactic
relations. Two evaluations on the syntactic
relation level are reported in the following.
First, a general-purpose evaluation using a
hand-compiled gold standard corpus (Carroll
et al., 1999), which contains the grammatical
relation data of 500 random sentences from the
Susanne corpus.

The performance, shown in table 2, is, accord-
ing to (Preiss, 2003), similar to a large selection
of statistical parsers and a grammatical relation
finder. Relations involving long-distance depen-
dencies form part of these relations. In order to
measure specifically their performance, a selec-
tion of them is also given: WH-Subject (WHS),
WH-Object (WHO), passive Subject (PSubj),
control Subject (CSubj), and the anaphor of the
relative clause pronoun (RclSubjA).

5.2 Parsing highly technical language

While measuring general parsing performance is
fundamental in the development of any parsing
system there is a danger of fostering domain de-
pendence in concentrating on a single domain.

In order to answer how the parser performs
over domains markedly different to the training
corpus , the parser has been applied to the GE-
NIA corpus (Kim et al., 2003), 2000 MEDLINE
abstracts of more than 400,000 words describing
the results of Biomedical research.

Average sentence length is 27 words, the lan-



Percentage Values for some relations, general, on Carroll corpus only LDD-involving

Subject Object mnoun-PP  verb-PP subord. cl. WHS WHO PSubj CSubj RclSubjA
Precision 91 89 73 74 68 92 60 n/a 80 89
Recall 81 83 67 83 n/a 90 86 83 n/a 63

Table 2: Results of evaluating the parser output on Carroll’s test suite on subject, object, PP-
attachment and clause subordination relations, and a selective evaluation of 5 relations involving

long-distance dependencies (LDD)

Percentage Values for some relations, general, on the GENIA corpus
Subject Object noun-PP  verb-PP subord. clause
Precision 90 94 83 82 71
Recall 86 95 82 84 75

Table 3: Results of evaluating 100 random sentences from the terminology-annotated GENIA
corpus, on subject, object, PP-attachment and clause subordination relations

guage is very technical and extremely domain-
specific. But the most striking characteristic
of this domain is the frequency of MultiWord
Terms (MWT) which are known to cause seri-
ous problems for NLP systems (Sag et al., 2002),
(Dowdall et al., 2003). The token to chunk ra-
tio: NPs = 2.3 , VPs = 1.3 (number of tokens
divided by the number of chunks) is unusually
high.

The GENIA corpus does not include any syn-
tactic annotation (making standard evaluation
more difficult) but approx. 100, 000 MWTs are
annotated and assigned a semantic type from
the GENIA ontology.

This novel parsing application is designed to
determine how parsing performance interacts
with MWT recognition as well as the applica-
bility and possible improvements to the proba-
blistic model over this domain, to test the hy-
pothesis if terminology is the key to a successful
parsing system. We do not discard this infor-
mation, thus simulating a situation in which a
near-perfect terminology-recognition tool is at
one’s disposal. MWT are regarded as chunks,
the parsing thus takes place between between
the heads of MWT, words and chunks.

100 random sentences from the GENIA cor-
pus have been manually annotated for this eval-
uation and compared to the parser output. De-
spite the extreme complexity and technical lan-
guage, parsing performance under these condi-
tions is considerably better than on the Carroll
corpus when using automated chunking, as ta-
ble 3 reveals.

It is worth noting that 10 of the 17 subject
precision errors (out of 171 subjects) are “hard”
cases involving long-distance dependencies (1
control, 4 relative pronouns) and 5 verb group

chunking errors. Equally interesting, 2 of the 4
object recall errors (out of 79 objects) are due
to 1 mistagging and 1 mischunking.

In practice, MWT extraction is still not au-
tomated to the level of chunking or Name En-
tity recognition simulated in this experiment
(for a comprehensive review of the state-of-the-
art see (Castellv et al., 2001)). This is, in
a large part, due to the lack of definitive or-
thographic, morphological and syntactic char-
acteristics to differentiante between MWTs and
canonical phrases. So MWT extraction remains
a semi-automated task performed in cycles with
the result of each cycle requiring manual valida-
tion. The return for this time consuming activ-
ity are the characteristics of MWTs which can
be use to fine tune the algorithms during the
next extraction cycle.

6 Conclusion

We have suggested a robust, deep-linguistic
grammar theory delivering grammatical rela-
tion structures as output, which are closer to
predicate-argument structures than pure con-
stituency structures, and more informative if
non-local dependencies are involved. We have
presented an implementation of the theory that
is used for large-scale parsing. An evaluation
at the grammatical relation level shows that its
performance is state-of-the-art.
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