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Abstract

This paperclarifiesthe basicconceptsandtheoret-
ical perspecties by and from which quantitatve
“weighting” of lexical elementsare defined, and
thendraws, quantitatie portraitsof afew lexical el-
ementsin orderto exemplify the relevanceof the
conceptandperspectiesexamined.

1 Intr oduction

SinceLuhn’s pioneeringwork (Luhn, 1958)in au-
tomatic term weighting, mary methodshave been
proposedn thefieldsof IR (e.g.Spark-Jonesl973;
Harter 1975)and NLP (e.g.Churchet al., 1990).
Some*“standard”methodsof term weighting such
astfidf have beenestablishedAizawa, 2003; &
7K, 1999) and the applicationrangehaswidened,;
termweightinghasbecomea maturetechnology
Despitethis, whathasbeentechnicallyproposed
has not been examined from a theoretical point
of view, i.e. what kind of weighting schemere-
flectswhatkind of lexical naturewithin whatkind
of framework of interpretationsin language. We
will clarify this andthenillustratethe relevanceof
this clarificationby drawing quantitatve portraitsof
somelexical itemsusingthe quantitatve measures.

2 Textsand lexica

Automatic term  weighting starts from
texts/documents. To what spheresthe weights
are attributed can differ. Figure 1 shaws the lin-
guisticsphere®f lexica andtexts (Kageura,2002);
there are both concretedata spheresand abstract
sphere®n boththelexical andtextual sides.
Within this schemethreetypesof relationsbe-
tweenlexica and texts can be identified: concrete
terms attributed to concretetexts, concreteterms
correspondingo discourseandabstraciexica cor
respondingo abstractdiscourse We will show be-
low thatthreemajortypesof automatidcermweight-
ing methodscorrespondo thesethreetypesof rela-
tionsbetweerexicaandtexts.
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Figurel: Textual sphereandlexicologicalsphere.

3 Methods of term weighting
3.1 Tfidf
T fidf is definedas:

Lfidf = filog o 1)

wheref;, is thetotalfrequeng of atermt;, N isthe
total numberof the documentsand IV; is the total
numberof documentsn whichthetermt; occurs.

Aizawa (2003)hasshawn thatthis canbederived
from aninformationtheoreticmeasure.Let D and
T berandomvariablesdefinedover eventsin a set
of documentd = {d;,ds, ..., d;, ...,dn } andaset
of differenttermsT = {t1,%2, ..., t;,...,ta } in D.
Let f;; denotethe frequeng of ¢; in dj, f,, theto-
tal frequeny of ¢;, fq; thetotal numberof running
termsin d;, and F’ the total numberof term tokens
in D. The“weight” of atermt; canbegivenby:

F(t;D) = P(t:) K(P(D[t:)||P(D))

P(d;lt:)
= P(t) P(dj|t;) log — %=~
2, P8 g
Giving probabilities by relative frequencies, andas-
sumingthatall the documentsave equalsizeand
thefrequeng of ¢; in the documentghatcontaint;
is equal,this measurdoecomes fidf; tfidf hasan
informationtheoreticmeaningwithin the given set
of documents (Figure2).

3.2 Term representatveness

Hisamitsu, et al. (2000a) proposeda measureof
“term representatieness”jn orderto overcomethe
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excessve sensitvity of weighting measurego to-
kenfrequenciesThey hypothesisedhat, for aterm
t, if the termis representatie, D, (the setof all
documentscontainingt) have somespecificchar
acteristic. They definea measurewvhich calculates
the distancebetweena distributional characteristic
of wordsaroundt andthe samedistributional char
acteristicin thewholedocumenset.

In orderto remove the factorof datasizedepen-
dengy, Hisamitsuetal. (2000a)defineghe“baseline
function; whichindicatesthe distancebetweerthe
distribution of wordsin the original documentset
andthe distribution of wordsin randomlyselected
documentsubsetdor eachsize. The distancebe-
tweenthe distribution of wordsin the original doc-
umentsetandthe distribution of wordsin the doc-
umentswhich accompan the focal term ¢ is nor
malisedby the“baselinefunction’

Formally; ( )
Dist(P;, P
Replt) = 5P, ) @

where D denotesthe set of all documents;P the
distribution of wordsin D; ¢ afocal term; D; the
setof all documentscontainingt; P, distribution
of wordsin Dy; Pg, distribution of wordsin ran-
domly selecteddocumentswhosesize equalsDy;
Dist(P;, P;) thedistancebetweertwo distributions
of words P; and P;. Log-likelihoodratio wasused
to measurehedistance.

This measureobsenesthe centripetalforce of a
termvis-a-visdiscoursei.e. it capturesthe charac-
teristic of terms in the general discourse as repre-
sented by the given set of documents (Figure3).

3.3 Lexical productivity

Nakagava (2000) incorporatesa factor of lexical
productvity of constituentelementsof compound
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unitsfor complex term extraction. The methodob-
senesin how mary different compoundsan ele-
mentt; is usedin a givendocumentset(let us de-
notethis asd(i, N) where N indicatesthe size of

the overall documentsetascountedby the number
of word tokens),andusedthatin the weighting of

compoundgontainingt;, by takingweightedaver-

age. By explicitly limiting the syntagmaticrange
of obsenation of cooccurrenceo the unit of com-

pounds, he focusedon the lexical productvity as
manifastedn texts.

This measuredependson the token occurrence,
but we canalsothink of the theoretical lexical pro-
ductvity in the lexicological sphere: hov mary
compoundg; canpotentially make” (let us denote
thisby d(¢)). For that, it is necessaryo remove the
factorof tokenoccurrenceThis canbedoneby:

d(i) = d(i, AN) (X — o0).

This hasso far beenunexplored. Potentiallex-
ical productvity of an elementcan be estimated
from textual data: Letting p;, be the occurrence
probability of ¢; in texts, f(i, N) be the token
occurrenceof t; in texts, and C; be the sample
space{ii, iz, i3, ..., iq(;) } Of thedistribution of com-
pounds(and simplex word) that containst; with
probabilityp(c)ik given to eachcompoundiy, and
assuminghe combinationof binomial distribution,
we have:

BIfG.N)) = pi- N
' B pt;-N d(7) i, m iem
TR 3 o (I PR
m=1 k=1

Whatis givenin the datais the empiricalvaluefor
d(i, N'), with theempiricaldistributionsof whatac-
tually occurin thedocumensetamongC;. d(z) can
beestimatedby LNRE methodgBaayen2001).

Beingameasureepresentinghe potentialpower
of alexical elementt; for constructingcompounds,
d(7) indicatesthe lexical productivity in the lex-
icological sphere which correspondo theoretical
sphereof discoursaasrepresentetly the givendoc-
umentset(Figure4).
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4 Portraits of lexical elements

As thethreedifferentmeasuresapturethreediffer-
ent aspectf lexical elementsthey are not com-
petitive 1. We hereusethesemeasureso illustrate
characteristicef afew lexical elements.

We usedNIl morphologicallytagged-corpugor
obsenration (Okadaet al., 2001),which consistsof
Japaneseabstractsn the field of artificial intelli-
gence. Table 1 shaws the basicquantitative infor-
mation.

No. of wordtokens word types
abstracts (simplex/compound) (simp./comp.)
1816 299846/230708 8764/23243

Tablel: Thebasicdatafor NIl corpus.

We chosethe six mostfrequentlyoccurringnom-
inal elemenfor obsenation,i.e. > A7 L (system),
HIF% (knowledge), & (learning) 7 (problem),
E£7 )V (model), and 1§ % (information). Intu-
itively, “system”, and “model” are rathergeneral
with respecto the domainof artificial intelligence,
“knowledge” and “learning” are domain specific,
and “information” and “problem” arein between.
Table2 shavsthebasicquantitatve informationfor
thesesix lexical elements.

Figure5 plotst fidf andtermrepresentatieness
for the six elements. Table 3 shaws the estimated
valueof lexical productvity.

p d(7)
system 0.96 273402688337
knowledge 0.88 689
learning 0.39 2251563675
problem 0.70 1951
model 0.47 3676671255

information 0.84 667
Table3: Lexical productvity for thesix elements.

Figure5 shaws “learning” and“knowledge”, in-
tuitively the domain-dependemlementstake high

11t is thussimplisticto evaluatewhich measuresvork better
in an application,unlessthe conceptuaktatusof the applica-
tionsis suficiently clarified.
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tfidf values,while “information” takesthe lowest
value. Term representafienessgives “learning” a
high value but the valuesof “knowledge”is much
lower, and aboutthe sameas “information”. In-
terestingly the lexical productvity of “knowledge”
and“information” is alsovery closeto eachother

It is possibleto infer from thesevaluesof term
representatienessaindlexical productvity thatboth
“information” and“knowledge”are,within the dis-
courseof artificial intelligence,not with high cen-
tripetal value asboth arerather“base” conceptsof
thedomain. If we obsene Table2, “knowledge”is
moreoften usedasit is, while “information” tends
to occur as compounds. From this we might be
ableto hypothesis¢hat“knowledge”is in itself the
“base” conceptof artificial intelligencewhile “in-
formation”becomeshe“base”concepin combina-
tion with otherlexical items. This fits our intuition,
as‘“information” in itself is morea “base” concept
of information and computerscience,which is a
broaderdomain of which artificial intelligenceis
a subdomain. The low ¢ fidf value of “informa-
tion” comesfrom the low token frequeng coupled
with relatively high DF, which shaovsthat“informa-
tion”, aslong asit is used,tendsto scatteracross
documents. This is in accordancewith the inter
pretationthat“information” tendsto occurin com-
pounds Still, however, it is difficult to interpretsen-
sibly the factthatthe t fidf valueof “information”
is lower thanthoseof “model” and“system”. Per
hapsit is more sensibleto interprett fidf among
elementswhich take the valuesof term representa-
tivenesshigherthan a certainthreshold. Thenwe
cansaythat“learning” and“knowledge” represent
conceptanore “central” to the domainof artificial
intelligencethan“information”.

The element‘learning”, which takesthe highest
valuesbothin ¢ fidf andin termrepresentatieness,
is conspicuoudn its lexical productiity. Compared
to “knowledge” whosetfidf value is also high,
and with the threeelements‘problem”, “informa-
tion” and“knowledge” whoseterm representatie-
nessvaluesarerelatively high, the orderof lexical
productvity of “learning” is a million timeshigher
(andsimilarto “model” or “system”). Table2 showvs
that“learning” doesnotoccurmuchasit is, nordoes
it occurmuchasthe headof compounds.This in-
dicateghat“learning” representanimportantcon-
cept of the given dataand in the discourseof ar
tificial intelligence,but only “indirectly” in com-
binationwith otherelementsn compoundsvhere
“learning” tendto contrituteto asa modifierrather
thanahead.

Thetwo “general”lexical elementsj.e. “model”
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TF DF Comp(A) Comp(H) Simp d(i,N)(A) d(i, N)(H)
system 2659 989 1922 1247 737 937 502
knowledge 2183 669 1399 443 784 424 137
learning 1776 462 1513 208 263 375 73
problem 1758 660 1197 558 561 334 152
model 1480 550 1144 687 343 447 263
information 1038 460 656 268 382 207 155

Note: Comp(A)indicateshe numberof compoundshatcontainghelexical elementComp(H)indicateshe number
of compoundshatcontainghelexical elementasthehead;d(i, N)(A) indicatesthe numberof differentcompounds
(plusonesimplex) thatcontainsthelexical elementgd(i, N)(H) indicatesthe numberof differentcompoundgplus
onesimplex) thatcontainsthelexical elemeniasthe head.

Table2: Thebasicdatafor thesix lexical elements.

and“system”,take low termrepresentatienessval-

ueg. Thisis in accordancavith our intuition. The

lexical productvity of thesetwo elementsare ex-

tremely high (practically infinite). This indicates
that thesetwo elementscan be widely usedin va-

rietiesof discoursakontets, without in itself con-

tributing muchto consolidatingthe contentof dis-

course.Thisfits nicelyto ourintuitive interpretation
of the meaningf thesetwo elementsj.e. they are
orthogonalto to suchdomain-dependerglements
as“knowledge”or “learning”.

This leavesuswith thefinal element‘problem”.
Thevalueof termrepresentatienesss high, second
only to “learning” andin between“learning” and
“information”/“knowledge”. Thelexical producti/-
ity is much closerto “information” and “knowl-
edge” than to the other three. As such, “prob-
lem” canbeinterpretedasakind of “base”concept,
thoughit retainsstrongercentripetaforcethan‘in-
formation” and “knowledge”. If we ignoretfidf
valuesof “model” and“system”andonly compare
“information”, “problem”, “learning” and “knowl-
edge’,it is alsosensibleto seethat“problem” rep-
resenta conceptmore centralto the domainthan
“information” but lesscentralthan “learning” and
“knowledge”.

5 Conclusions

We have shavn that differentterm weightingmea-
sureshave different spheresof interpretation;on
the basisof that we have illustratedthat the com-
binationof thesecanillustratescomplex aspectof
lexical nature. Thoughit canbe arguedthat the
presentstudy doesnot shov waysfor applications
nor “empirical” evaluationswithin applicationswe
believe that“empirical” evaluationsshouldbe prop-
erly foundedby the frameawork of interpretationin
orderfor theresultsto be generalisedn a scientific

2Thisis in accordancevith the obsenationby Hisamitsuet
al. (2000)which saysthatthe measureof termrepresentatie-
nesss particularlyusefulto excludegeneraklements.

way; history of scienceshave shavn that oftenre-
lianceon“empirical” evaluationscorrelatesith the
lack of theoryor scientificwholesomeness.
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