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Abstract 

The emergence of vast quantities of on-line 
information has raised the importance of methods 
for automatic cataloguing of information in a 
variety of domains, including electronic commerce 
and bioinformatics. Ontologies can play a critical 
role in such cataloguing. In this paper, we describe 
a system that automatically induces an ontology 
from any large on-line text collection in a specific 
domain. The ontology that is induced consists of 
domain concepts, related by kind-of and part-of 
links. To achieve domain-independence, we use a 
combination of relatively shallow methods along 
with any available repositories of applicable 
background knowledge. We describe our 
evaluation experiences using these methods, and 
provide examples of induced structures.  

1 Introduction 

The emergence of vast quantities of on-line 
information has raised the importance of methods 
for automatic cataloguing of information in a 
variety of domains, including electronic commerce 
and bioinformatics. Ontologies1 can play a critical 
role in such cataloguing. In bioinformatics, for 
example, there is growing recognition that 
common ontologies, e.g., the Gene Ontology2, are 
critical to interoperation and integration of 
biological data, including both structured data as 
found in protein databases, as well as unstructured 
data, as found in on-line biomedical literature.  

Constructing an ontology is an extremely 
laborious effort. Even with some reuse of “core” 
knowledge from an Upper Model (Cohen et al. 
1999), the task of creating an ontology for a 
particular domain and task has a high cost, 
incurred for each new domain. Tools that could 
automate, or semi-automate, the construction of 
                                                      

1 This research was supported by the National Science 
Foundation (ITR-0205470). 

2 www.geneontology.org 

ontologies for different domains could 
dramatically reduce the knowledge creation cost.  

One approach to developing such tools is to rely 
on information implicit in collections of on-line 
text in a particular domain. If it were possible to 
automatically extract terms and their semantic 
relations from the text corpus, the ontology 
developer could build on that knowledge, revising 
it, as needed, etc. This would be more cost-
effective than having a human develop the 
ontology from scratch.  

Our approach is inspired by research on topic-
focused multi-document summarization of large 
text collections, where there is a need to 
characterize the collection content succinctly in a 
hierarchy of topic terms and their relationships. 
Current approaches to multi-document 
summarization combine linguistic analysis, corpus 
statistics, and the use of background semantic 
knowledge from generic thesauri such as WordNet 
to infer semantic information about a person. In 
extending such approaches to ontology induction, 
the hypothesis is that similar hybrid approaches 
can be used to identify technical terms in a 
domain-specific corpus and infer semantic 
relationships among them.  

In this paper, we describe a system that 
automatically induces an ontology from any large 
on-line text collection in a specific domain, to 
support cataloguing in information access and data 
integration tasks. The induced ontology consists of 
domain concepts related by kind-of and part-of 
links, but does not include more specialized 
relations or axioms. The structure of the ontology 
is a directed acyclic graph (DAG). To achieve 
domain-independence, we use a combination of 
relatively shallow methods along with existing 
repositories of applicable background knowledge. 
These are described in Section 2. In Section 3, we 
also introduce a new metric Relation Precision for 
evaluating induced ontologies in comparison with 
reference ontologies. We have applied our system 
to produce ontologies in numerous domains: 
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Figure 1: System Architecture 
 

IRS 
Publication 17 

285 

 

k1 

0 285 

 

n1 

Reuters 
Corpus 

9 

k2 

19,024 19,043 

n2 

Total 294 19,024 19,328 

 

Table 1: Distribution of ‘income tax’ in domain and background corpora

(i) newswire from the TREC collection (ii) 
taxation information from the IRS (Publication 17, 
from (IRS 2001)), (iii) epidemiological newsgroup 
messages from the Program for Monitoring 
Emerging Diseases (PROMED) from the 
Federation of American Scientists3, (iv) the text of 
a book by the first author called Automatic 
Summarization, and (v) MEDLINE biomedical 
abstracts retrieved from the National Library of 
Medicine’s PubMed system4. In the latter domain, 
we have begun building a large ontology using the 
ontology induction methods along with post-
editing by domain experts in molecular biology at 
Georgetown University 5 . This ontology, called 
PRONTO, involves hundreds of thousands of 
protein names found in MEDLINE abstracts and in 
UNIPROT, the world’s largest protein database6. It 
is therefore infeasible to construct PRONTO by 
hand from scratch. PRONTO is also much larger 
than other ontologies in the biology area; for 
example, the Gene Ontology is rather high-level, 
and contains (as of March 2004) only about 17,000 
terms. 

                                                      
3 www.fas.org/promed/ 
4www4.ncbi.nlm.nih.gov/PubMed/ 
5 complingone.georgetown.edu/~prot/ 
6pir.georgetown.edu 

2 Approach 

2.1 System Architecture 

An overall architecture for domain-independent 
ontology induction is shown in Figure 1. The 
documents are preprocessed to separate out 
headers. Next, terms are extracted using finite-state 
syntactic parsing and scored to discover domain-
relevant terms. The subsequent processing infers 
semantic relations between pairs of terms using the 
‘weak’ knowledge sources run in the order 
described below. Evidence from multiple 
knowledge sources is then combined to infer the 
resulting relations. The resulting ontologies are 
written out in a standard XML-based format (e.g., 
XOL, RDF, OWL), for use in various information 
access applications.  

While the ontology induction procedure does not 
involve human labor, except for writing the 
preprocessing and term tokenization program for 
specialized technical domains, the human may edit 
the resulting ontology for use in a given 
application. An ontology editor has been 
developed, discussed briefly in Section 3.1. 

2.2 Term Discovery 

The system takes a collection of documents in a 
subject area, and identifies terms characteristic of 
the domain.  In a given domain such as 
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bioinformatics, specialized term tokenization (into 
single- and multi-word terms) is required. The 
protein names can be long, e.g., 
“steroid/thyroid/retinoic nuclear hormone receptor 
homolog nhr-35”, and involve specialized patterns. 
In constructing PRONTO, we have used a protein 
name tagger based on an ensemble of statistical 
classifiers to tag protein names in collections of 
MEDLINE abstracts (Anon 2004). Thus, in such a 
domain, a specialized tagger replaces the 
components in the dotted box in Figure 1. 

In other domains, we adopt a generic term-
discovery approach. Here the text is tagged for 
part-of-speech, and single- and multi-word terms 
consisting of minimal NPs are extracted using 
finite-state parsing with CASS (Abney 1996). All 
punctuation except for hyphens are removed from 
the terms, which are then lower-cased. Each word 
in each term is stemmed, with statistics (see below) 
being gathered for each stemmed term. Multi-word 
terms are clustered so that open, closed and 
hyphenated compounds are treated as equivalent, 
with the most frequent term in the collection being 
used as the cluster representative.  

The terms are scored for domain-relevance based 
on the assumption that if a term occurs 
significantly more in a domain corpus than in a 
more diffuse background corpus, then the term is 
clearly domain relevant.  

As an illustration, in Table 1 we compare the 
number of documents containing the term ‘income 
tax’ (or ‘income taxes’) in a long (2.18 Mb) IRS 
publication, Publication 17, from an IRS web site 
(IRS 2001) compared to a larger (27.63 Mb subset 
of the) Reuters 21578 news corpus7. One would 
expect that ‘income tax’ is much more a 
characteristic of the IRS publication, and this is 
borne out by the document frequencies in the table. 
We use the log likelihood ratio (LLR) (Dunning 
1993) given by 

-2log2(Ho(p;k1,n1,k2,n2)/Ha(p1,p2;n1,k1,n2,k2))  

LLR measures the extent to which a 
hypothesized model of the distribution of cell 
counts, Ha, differs from the null hypothesis, Ho  
(namely, that the percentage of documents 
containing this term is the same in both corpora). 
We used a binomial model for Ho and Ha

8.   

2.3 Relationship Discovery 

The main innovation in our approach is to fuse 
together information from multiple knowledge 
                                                      

7 In Publication 17, each “chapter” is a document. 
8From Table 1, p=294/19238=.015, p1=285/285=1.0, 

p2=9/19043=4.72, k1=285, n1=285, k2=9, n2=19043.  

sources as evidence for particular semantic 
relationships between terms. To infer semantic 
relations such as kind-of and part-of, the system 
uses a bottom-up data-driven approach using a 
combination of evidence from shallow methods. 

2.3.1 Subphrase Relations  
These are based on the presence of common 

syntactic heads, and allow us to infer, for example, 
that ‘p68 protein’ is a kind-of ‘protein’. Likewise, 
in the TREC domain, subphrase analysis tells us 
that ‘electric car’ is a kind of ‘car’, and in the IRS 
domain, that ‘federal income tax’ is a kind of 
‘income tax’.  

2.3.2 Existing Ontology Relations 
These are obtained from a thesaurus. For 

example, the Gene Ontology can be used to infer 
that ‘ATP-dependent RNA helicase’ is a kind of 
‘RNA-helicase’. Likewise, in the TREC domain, 
using WordNet tells us that ‘tailpipe’ is part of 
‘automobile’, and in the IRS domain, that ‘spouse’ 
is a kind of ‘person’.  Synonyms are also merged 
together at this stage. 

2.3.3 Contextual Subsumption Relations 
We also infer hierarchical relations between 

terms, by top-down clustering using a context-
based subsumption (CBS) algorithm. The 
algorithm uses a probabilistic measure of set 
covering to find subsumption relations. For each 
term in the corpus, we note the set of contexts in 
which the term appears. Term1 is said to subsume 
term2 when the conditional probability of term1 
appearing in a context given the presence of term2, 
i.e., P(term1|term2), is greater than some threshold.  

CBS is based on the algorithm of (Lawrie et al. 
2001), which used a greedy approximation of the 
Domination Set Problem for graphs to discover 
subsumption relations among terms. Unlike their 
work, we did not seek to minimize the set of 
covering terms; therefore, a subsumed term may 
have multiple parents. The conditional probability 
threshold (0.8) we use to determine subsumption is 
much higher than in their approach. We also 
restrict the height of the hierarchies we build to 
three tiers. Tightening these latter two constraints 
appears to notably improve the quality of our 
subsumption relations.  

The largest corpus against which CBS has run is 
the ProMed corpus where, considering each 
paragraph a distinct context, there were 117,690 
contexts in the 11,198 documents. Here is an 
example from ProMed of a transitive relation that 
spans three tiers: ‘mosquito’ is a hypernym of 
‘mosquito pool’, and ‘mosquito’ is also a 
hypernym of ‘standing water’. 
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2.3.4 Explicit Patterns Relations 
This knowledge source infers specific relations 

between terms based on characteristic cue-phrases 
which relate them. For example, the cue-phrase 
“such as” (Hearst 1992) (Caraballo 1999) suggest a 
kind-of relation, e.g., ‘a ligand such as 
triethylphosphine’ tells us that ‘triethylphosphene’ 
is a kind of ‘ligand’. Likewise, in the TREC 
domain, ‘air toxics such as benzene’ can suggest 
that ‘benzene’ is a kind of ‘air toxic’. However, 
since such cue-phrase patterns tend to be sparse in 
occurrence, we do not use them in the evaluations 
described below.  

2.3.5 Domain-Specific Knowledge Sources 
Although our approach is domain-independent, it 

is possible to factor in domain knowledge sources 
for a given domain. For example, in biology, ‘ase’ 
is usually a suffix indicating an enzyme.  
Postmodifying PPs (found using a CASS grammar) 
can also be useful in some domains, as shown in  
‘tax on investment income of child’ in Figure 2. 
We have so far, however, not investigated other 
domain-specific knowledge sources. 

 
2.4 Evidence Combination 

The main point about these and other knowledge 
sources is that each may provide only partial 
information. Combining these knowledge sources 
together, we expect, will lead to superior 
performance compared to just any one of them. 
Not only do inferences from different knowledge 
sources support each other, but they are also 
combined to produce new inferences by transitivity 
relations. For example, since phrase analysis tells 
us that ‘pyridine metabolism’ is a kind-of 
‘metabolism’, and Gene Ontology tells us that 
‘metabolism’ is a kind-of ‘biological process’, it 

follows that ‘pyridine metabolism’ is a kind-of 
‘biological process’. The evidence combination, in 
addition to computing transitive closure of these 
relations, also detects inconsistencies, querying the 
user to resolve them when detected. 

3 Evaluation 

3.1 Informal Assessment 
Subphrase Relations is a relatively high-

precision knowledge source compared to the 
others, producing many linked chains. Its 
performance can be improved by flagging and 
excluding proper names and idioms from its input 
(e..g, so that ‘palm pilot’ doesn’t show up as a 
kind-of ‘pilot’). However, a chain of such relations 
can be interrupted by terms that aren’t lexically 
similar, but that are nevertheless in a kind-of 
relation. Some of these gaps are filled by 
transitivity relations involving other knowledge 
sources, especially Existing Ontologies, which is 
especially useful in filling gaps in some of the 
upper levels of the ontology. While Contextual 
Subsumption is good at  discovering associations 
between ‘leaves’ in the DAG and other concepts, 
the method cannot reliably infer the label of the 
relation. For example, in the IRS domain, we 
obtain ‘divorce’ as more general than ‘decree of 
divorce’ and ‘separate maintenance’, but we don’t 
know the nature of the relations. Contextual 
Subsumption-inferred links are directed edges with 
label ‘unknown’. 

Overall, the ontologies produced are noisy and 
require human correction, and the methods can 
produce many fragments that need to be linked by 
hand. While the system can detect cycles that need 
resolution by the human, these rarely arise

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2: An IRS Ontology viewed in the Ontology Editor 
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Term Target  

DF 
Back-

ground 
DF 

LLR IG MI DF TF TF * 
IDF 

electric 80 61 99.9 99.9 81.3 99.9 99.9 27.8 

car 77 56 99.6 99.3 81.5 99.8 99.9 79.4 

battery 54 16 99.0 98.2 86.9 98.7 99.9 94.9 

emission 15 0 96.5 96.8 99.2 79.1 96.6 64.8 

year 58 505 67.9 67.6 25.0 99.2 99.7 65.7 

informal 10 29 66.2 66.3 0.2 48.6 99.7 99.2 

record 8 138 15.2 15.7 4.4 50.2 99.9 99.9 

osha 1 0 0.0 0.0 0.0 0.0 99.9 0.0 

Table 2: Comparing Topic 230 Term Percentile Rankings 
 

For a flavor of the kind of results we get, see 
Figure 2, which displays an ontology induced 
without any human intervention from IRS 
Publication 17. Here the DAG is displayed as a 
tree. The immediate children of  ‘person’, a node 
high in the ontology, is shown in the left part of the 
window. Selecting ‘child’ brings up its kinds as 
well as some other children linked by “unknown” 
label via Contextual Subsumption, e.g., ‘full-time 
student’. A list of orphaned terms that aren’t 
related to any others are shown on the far right. 
The terms with checkboxes are those that occur in 
the corpus; the others are those that are found 
exclusively by Existing Ontology Relations. 
Checking a term allows it to be inspected in its 
occurrence context in the corpus. The editor comes 
with a variety of tools to help integrate ontology 
fragments. 
3.2 Human Evaluation 
3.2.1 Term Scoring  

To evaluate term scoring, we used a corpus of 
news articles about automobiles that consisted of 
85 documents relevant to the TREC Topic 230 
query: “Is the automobile industry making an 
honest effort to develop and produce an electric-
powered automobile?” In Table 2, we provide 
some examples of how the LLR term scoring 
statistic performed with respect to five others on 
selected unigrams in the Topic 230 domain: term 
frequency, document frequency, term frequency 
times inverse document frequency (TF*IDF), 
pointwise mutual information (MI), and 
information gain (IG). Terms in bold are ones we 
judged important in the Topic 230 domain, the 
others are deemed unimportant. The numbers are 
percentile rankings. LLR and IG do equally well, 
outperforming the others. 

We carried out other comparisons for two other 
domains. In the income-tax domain, a hand-built 
term list from the IRS contained 82 terms which 
occurred in IRS Publication 17, of which the 
system discovered 77 (94% recall). In the ProMed 
domain, a pre-existing hand-built taxonomy 
produced by a bioterrorism analyst had 1048 terms 
which occurred in the ProMed message corpus, of 
which 607 were discovered by the system (58% 
recall). However, the hand-built taxonomy, which 
was built without consulting a corpus, wasn’t a 
full-fledged ontology, for example, there was no 
label for the parent-child relation.  
3.2.2 Term Relationships  

We also carried out an evaluation experiment to 
determine if the relations being discovered by the 
machine were in keeping with human judgments. 
We focused here on an evaluation of pairs of 
knowledge sources. Our experiment examined the 
case where the system discovered a kind-of 
relation. Here each subject was first asked to read 
four newspaper articles from the TREC topic-230 
sub-collection. The articles were then kept 
accessible to the subject in a browser window for 
the subject to consult if needed in answering 
subsequent questions. The subject was asked to 
judge, based on the documents read, whether term 
X was a kind of term Y, term Y was a kind of term 
X, or neither; e.g., “Is acid a kind of pollutant, or is 
pollutant a kind of acid, or neither?”. The subject 
had one of three mutually exclusive choices; the 
first two choices were presented in randomized 
order. 

The subjects were 16 native speakers of English 
unconnected with the project. Each subject was 
given ten questions to answer in each of the 
experiments. For each set of ten questions, five 
were chosen at random from pairs of terms related 
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by (immediate) kind-of relations. The remaining 
five questions were chosen at random from pairs of 
terms between which the system found no relation 
whatsoever. 

 
 Human 

System kind-
of(A, B) 

not kind-
of(A,B) 

kind-of(A, B) 56 18 
not kind-
of(A,B) 

6 
 

74 
 

Table 3: Is X a kind-of Y? 
 
We first discuss inter-subject agreement. Three 

subjects given the same relation to judge agreed 
75% of the time, leading to a Kappa score of 0.72, 
indicating a good level of agreement. This means 
that subjects were able to reliably make judgments 
as to whether A is a kind of B in some document. 

The results for the 16 subjects are shown in 
Table 3. When the system is compared to the 
human as ground truth, this gives a Precision of 
.90, a Recall of .75, and an F-measure of .82. This 
performance is also significantly better than 
random assignment: with chi-square=74.29, with p 
< 0.0019. The substantial effect sizes of the chi-
square indicates a very solid result. There were 62 
decisions involving Subphrase Relations (with 44 
True Positives and 18 False Negatives), and 10 
decisions involving WordNet (with 12 True 
Positives). This shows that there is solid agreement 
between the human subjects and the system on the 
kind-of relations.  However, these 154 decisions 
involved only four newspaper articles, so clearly 
more data would be helpful.  
3.3 Automatic Evaluation 

While evaluation by humans is valuable, it is 
expensive to carry out, and this expense must be 
incurred each time one wants to do an evaluation. 
Automatic comparison of a machine-generated 
ontology against reference ontologies constructed 
by humans, e.g., (Zhang et al. 1996) (Sekine et al. 
1999) (Daude et al. 2001), is therefore desirable, 
provided suitable reference ontologies are 
available. In this evaluation, the human-generated 
taxonomy for ProMed described in Section 3.2.1 
was used as a reference ontology, with its 
unlabeled parent-child relation treated as a kind-of 
link. However, the human ‘ontology’ was created 
without looking at a corpus, and was developed for 
use with a different set of goals in mind. Although 
this involves comparing ‘apples’ and ‘oranges’, a 
comparison is nevertheless illustrative, and can in 

addition be useful when comparing mutiple 
ontologies created under similar conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3:  Automatically Induced Fragment 
from ProMed 

To set aside the problem of differences in 
terminology involved in the comparison, we 
decided to restrict our attention to the set of terms 
TH (of cardinality 3025) in the human ontology 
(H), and have our system induce relations between 
them using the ProMed corpus. Relations were 
induced automatically in the machine ontology (M) 
for just 761 of those terms, yielding a set TH1.  The 
structure of  TH1 is shown in a fragment in Figure 
3.  Here A is a kind-of B if it is printed under B 
without a label; A is a part-of B if it is printed 
under B with a “p” label. 

We then automatically computed, for each pair 
of terms t1 and t2 in TH1 that were linked distance 1 
apart in M, the distance between those terms in H. 
Likewise, we also computed, for each pair of terms 
t1 and t2 in TH1 distance 1 apart in H, the distance 
between those terms in M. 

The results of this comparison are as follows. 
The number of relations where the two ontologies 
agree exactly is 63 (i.e., the terms are distance 1 
apart in both ontologies). Since, given a set of 
terms, there are many different ways to construct 
an ontology, this is encouraging.   

The number of relations that our system found 
which were ‘missed’, i.e., more than distance 1 
away, in H is 1203. Given the previous experiment 
where the human subjects agreed with the system's 
relations, these 1203 relations are likely to contain 
many that the human probably missed. For 
example, the relations in the machine ontology 
between ‘eye’ and ‘farsightedness’, and ‘medicine’ 

                                                      
9  The chi-square for Subphrase Relations is 61.68, 

and the chi-square for WordNet is 56.73, with p < 0.001 
in all cases. 
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4 Related Work and ‘chiropractic medicine’ are missed by H. This 
highlights a problem with human-generated 
ontologies: substantial errors of omission.  The existing approaches to ontology induction 

include those that start from structured data, 
merging ontologies or database schemas (Doan et 
al. 2002). Other approaches use natural language 
data, sometimes just by analyzing the corpus 
(Sanderson and Croft 1999), (Caraballo 1999) or 
by learning to expand WordNet with clusters of 
terms from a corpus, e.g., (Girju et al. 2003). 
Information extraction approaches that infer 
labeled relations either require substantial hand-
created linguistic or domain knowledge, e.g., 
(Craven and Kumlien 1999) (Hull and Gomez 
1993), or require human-annotated training data 
with relation information for each domain (Craven 
et al. 1998).  

The number of relations in H that our system 
missed (relations that were more than distance 1 
away in the system ontology), is 3493. However, 
of these 3493 relations, 2955 involved at least 1 
term that was not included in M, leaving 538 
relations that we could calculate the distance for in 
M. These 538 relations in H include relations 
between ‘acid indigestion medicine’ and ‘maalox’, 
and ‘alternative medicine’ and ‘acupuncture’ (a 
majority of the misses involved relations between a 
disease and the name of a specific drug for it, 
which aren’t part-of or kind-of relations).  

 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1 2 3 4 5 6 7 8 9 
D 

Relation-
Prec.(H,M,D)
Relation-
Prec.(M,H,D)

 

Many, though not all, domain-independent 
approaches (Evans et al. 1991) (Grefenstette 1997) 
have restricted themselves to discovering term-
associations, rather than labeled relations. A 
notable exception is (Sanderson and Croft 1995), 
which (unlike our approach) assumes the existence 
of a query that was used to originally retrieve the 
documents (so that terms can be extracted from the 
query and then expanded to generate additional 
terms for the ontology). Their approach also is 
restricted to one method to discover relations, 
while we use several.  

Our approach is complementary to approaches 
aimed at automatically enhancing existing 
resources for a particular domain, e.g. (Moldovan 
et al. 2000). Finally, the prior methods, while they 
often carry out evaluation, lack standard criteria for 
ontology evaluation. Although ontology evaluation 
remains challenging, we have discussed several 
evaluation methods in this paper. 

Figure 4: Relation Precision 
These observations lead to a metric for 

comparing one ontology with another one serving 
as a reference ontology. Given two ontologies A 
and B, define Relation Precision (A, B, D) as the 
proportion of the distance 1 relations in A that are 
at most a distance D apart in B. This measure can 
be plotted for different values of D. In Figure 4, we 
show the Relation Precision(H, M, D), and 
Relation Precision(M, H, D), for our machine 
ontology M and human ontology H. Both curves 
show Relation Precision(H, M, D) growing faster 
than Relation Precision(M, H, D), with 70% of the 
area being below the former curve and 54% being 
below the latter curve. The graph shows that while 
22% of distance 1 relations in M are at most 3 
apart in H (but keep in mind the errors of omission 
in H), 40% of distance 1 relations in H are at most 
3 apart in M10. 

5 Conclusion 

The evidence combination described above is 
based on transitivity and union. Since the above 
evaluations, we have been experimenting with an 
ad hoc weighted evidence combination scheme, 
based on each knowledge source expressing a 
strength for a posited relation. In future, we will 
also investigate using an initial seed ontology to 
provide a better ‘backbone’ for induction, and then 
using a spreading activation method to activate 
nodes related by existing knowledge sources to 
seed nodes. Corpus statistics can be used to weight 
the links. For example, based on (Caraballo 1999), 
each parent of a leaf node could be viewed as a 
cluster label for its children, with the weight of a 
parent-child link being determined based on how 
strongly the child is associated with the cluster.  

                                                      
10 The mean distance in H between terms that are 

distance 1 apart in M is 5.17, with a standard deviation 
of 2.12. The mean distance in M between terms which 
are distance 1 apart in H is 3.85, with a standard 
deviation of 1.69. 

The ontology induction methods described here 
can allow for considerable savings in time in 
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constructing ontologies. The evaluations we have 
carried out are suggestive, but many issues remain 
open. There are many unanswered questions about 
human-created reference ontologies, including lack 
of inter-annotator agreement studies. Indeed, 
experience shows that without guidelines for 
ontology construction, humans are prone to come 
up with very different ontologies for a domain. 
Comparing a machine-induced ontology against an 
ideal human reference ontology, were one to be 
available, is also fraught with problems. Our 
experience with using an implementation of the 
(Daude et al. 2001) constraint relaxation algorithm 
for ontology comparison suggests that much work 
is needed on distance metrics which are not over-
sensitive to small differences in structure.  

Our interest, therefore, is focused more towards 
an extrinsic evaluation. PRONTO, which is due to 
be released in 2004, offers the opportunity to 
measure costs of ontology induction and post-
editing on a large-scale problem of value to the 
biology community. We also plan to measure the 
effectiveness of PRONTO in query expansion for 
information access to MEDLINE and protein 
databases. Finally, we will investigate more 
sophisticated evidence combination methods, and 
compare against other automatic methods for 
ontology induction. 

The ontology induction tools are available for 
free distribution for research purposes. 
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