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Abstract 

We present a model and an experimental 
platform of a bootstrapping approach to 
statistical induction of natural language 
properties that is constraint based with voting 
components. The system is incremental and 
unsupervised. In the following discussion we 
focus on the components for morphological 
induction. We show that the much harder 
problem of incremental unsupervised 
morphological induction can outperform 
comparable all-at-once algorithms with 
respect to precision. We discuss how we use 
such systems to identify cues for induction in 
a cross-level architecture. 

1 Introduction 

In recent years there has been a growing amount 
of work focusing on the computational modeling 
of language processing and acquisition, implying a 
cognitive and theoretical relevance both of the 
models as such, as well as of the language 
properties extracted from raw linguistic data.1 In 
the computational linguistic literature several 
attempts to induce grammar or linguistic 
knowledge from such data have shown that at 
different levels a high amount of information can 
be extracted, even with no or minimal supervision. 

Different approaches tried to show how various 
puzzles of language induction could be solved. 
From this perspective, language acquisition is the 
process of segmentation of non-discrete acoustic 
input, mapping of segments to symbolic 
representations, mapping representations on 
higher-level representations such as phonology, 
morphology and syntax, and even induction of 
semantic properties. Due to space restrictions, we 
cannot discuss all these approaches in detail. We 
will focus on the close domain of morphology. 

Approaches to the induction of morphology as 
presented in e.g. Schone and Jurafsky (2001) or 
Goldsmith (2001) show that the morphological 

                                                      
1 See Batchelder (1998) for a discussion of these 

aspects. 

properties of a small subset of languages can be 
induced with high accuracy, most of the existing 
approaches are motivated by applied or 
engineering concerns, and thus make assumptions 
that are less cognitively plausible: a. Large corpora 
are processed all at once, though unsupervised 
incremental induction of grammars is rather the 
approach that would be relevant from a 
psycholinguistic perspective; b. Arbitrary decisions 
about selections of sets of elements are made, 
based on frequency or frequency profile rank,2 
though such decisions should rather be derived or 
avoided in general. 

However, the most important aspects missing in 
these approaches, however, are the link to different 
linguistic levels and the support of a general 
learning model that makes predictions about how 
knowledge is induced on different linguistic levels 
and what the dependencies between information at 
these levels are. Further, there is no study focusing 
on the type of supervision that might be necessary 
for the guidance of different algorithm types 
towards grammars that resemble theoretical and 
empirical facts about language acquisition, and 
processing and the final knowledge of language. 

While many theoretical models of language 
acquisition use innateness as a crutch to avoid 
outstanding difficulties, both on the general and 
abstract level of I-language as well as the more 
detailed level of E-language, (see, among others,  
Lightfoot (1999) and Fodor and Teller (2000), 
there is also significant research being done which 
shows that children take advantage of statistical 
regularities in the input for use in the language-
learning task (see Batchelder (1997) and related 
references within). 

In language acquisition theories the dominant 
view is that knowledge of one linguistic level is 
bootstrapped from knowledge of one, or even 
several different levels. Just to mention such 
approaches: Grimshaw (1981), and Pinker (1984) 
                                                      

2 Just to mention some of the arbitrary decisions 
made in various approaches, e.g. Mintz (1996) selects a 
small set of all words, the most frequent words, to 
induce word types via clustering ; Schone and Jurafsky 
(2001) select words with frequency higher than 5 to 
induce morphological segmentation. 
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assume that semantic properties are used to 
bootstrap syntactic knowledge, and Mazuka (1998) 
suggested that prosodic properties of language 
establish a bias for specific syntactic properties, 
e.g. headedness or branching direction of 
constituents. However, these approaches are based 
on conceptual considerations and psycholinguistc 
empirical grounds, the formal models and 
computational experiments are missing. It is 
unclear how the induction processes across 
linguistic domains might work algorithmically, and 
the quantitative experiments on large scale data are 
missing. 

As for algorithmic approaches to cross-level 
induction, the best example of an initial attempt to 
exploit cues from one level to induce properties of 
another is presented in Déjean (1998), where 
morphological cues are identified for induction of 
syntactic structure. Along these lines, we will 
argue for a model of statistical cue-based learning, 
introducing a view on bootstrapping as proposed in 
Elghamry (2004), and Elghamry and Ćavar (2004), 
that relies on identification of elementary cues in 
the language input and incremental induction and 
further cue identification across all linguistic 
levels. 

1.1 Cue-based learning 

Presupposing input driven learning, it has been 
shown in the literature that initial segmenations 
into words (or word-like units) is possible with 
unsupervised methods (e.g. Brent and Cartwright 
(1996)), that induction of morphology is possible 
(e.g. Goldsmith (2001), Schone and Jurafsky 
(2001)) and even the induction of syntactic 
structures (e.g. Van Zaanen (2001)). As mentioned 
earlier, the main drawback of these approaches is 
the lack of incrementality, certain arbitrary 
decisions about the properties of elements taken 
into account, and the lack of integration into a 
general model of bootstrapping across linguistic 
levels. 

As proposed in Elghamry (2004), cues are 
elementary language units that can be identified at 
each linguistic level, dependent or independent of 
prior induction processes. That is, intrinsic 
properties of elements like segments, syllables, 
morphemes, words, phrases etc. are the ones 
available for induction procedures. Intrinsic 
properties are for example the frequency of these 
units, their size, and the number of other units they 
are build of. Extrinsic properties are taken into 
account as well, where extrinsic stands for 
distributional properties, the context, relations to 
other units of the same type on one, as well as 
across linguistic levels. In this model, extrinsic and 
intrinsic properties of elementary language units 

are the cues that are used for grammar induction 
only. 

As shown in Elghamry (2004) and Elghamry and 
Ćavar (2004), there are efficient ways to identify a 
kernel set of such units in an unsupervised fashion 
without any arbitrary decision where to cut the set 
of elements and on the basis of what kind of 
features. They present an algorithm that selects the 
set of kernel cues on the lexical and syntactic level, 
as the smallest set of words that co-occurs with all 
other words. Using this set of words it is possible 
to cluster the lexical inventory into open and 
closed class words, as well as to identify the 
subclasses of nouns and verbs in the open class. 
The direction of the selectional preferences of the 
language is derived as an average of point-wise 
Mutual Information on each side of the identified 
cues and types, which is a self-supervision aspect 
that biases the search direction for a specific 
language. This resulting information is understood 
as derivation of secondary cues, which then can be 
used to induce selectional properties of verbs 
(frames), as shown in Elghamry (2004). 

The general claim thus is: 
• Cues can be identified in an unsupervised 

fashion in the input. 
• These cues can be used to induce properties of 

the target grammar. 
• These properties represent cues that can be 

used to induce further cues, and so on. 
The hypothesis is that this snowball effect can 

reduce the search space of the target grammar 
incrementally. The main research questions are 
now, to what extend do different algorithms 
provide cues for other linguistic levels and what 
kind of information do they require as supervision 
in the system, in order to gain the highest accuracy 
at each linguistic level, and how does the linguistic 
information of one level contribute to the 
information on another. 

In the following, the architectural considerations 
of such a computational model are discussed, 
resulting in an example implementation that is 
applied to morphology induction, where 
morphological properties are understood to 
represent cues for lexical clustering as well as 
syntactic structure, and vice versa, similar to the 
ideas formulated in Déjean (1998), among others. 

1.2 Incremental Induction Architecture 

The basic architectural principle we presuppose 
is incrementality, where incrementally utterances 
are processed. The basic language unit is an 
utterance, with clear prosodic breaks before and 
after. The induction algorithm consumes such 
utterances and breaks them into basic linguistic 
units, generating for each step hypotheses about 
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the linguistic structure of each utterance, based on 
the grammar built so far and statistical properties 
of the single linguistic units. Here we presuppose a 
successful segmentation into words, i.e. feeding 
the system utterances with unambiguous word 
boundaries. We implemented the following 
pipeline architecture: 

 
The GEN module consumes input and generates 

hypotheses about its structural descriptions (SD). 
EVAL consumes a set of SDs and selects the set of 
best SDs to be added to the knowledge base. The 
knowledge base is a component that not only stores 
SDs but also organizes them into optimal 
representations, here morphology grammars. 

All three modules are modular, containing a set 
of algorithms that are organized in a specific 
fashion. Our intention is to provide a general 
platform that can serve for the evaluation and 
comparison of different approaches at every level 
of the induction process. Thus, the system is 
designed to be more general, applicable to the 
problem of segmentation, as well as type and 
grammar induction. 

We assume for the input to consist of an 
alphabet: a non-empty set A of n symbols {s1, s2,... 
sn}. A word w is a non-empty list of symbols w = 
[s1,s2,... sn], with s∈A. The corpus is a non-empty 
list C of words C = [w1,w2,... wn]. 

In the following, the individual modules for the 
morphology induction task are described in detail. 

1.2.1 GEN 
For the morphology task GEN is compiled from a 

set of basically two algorithms. One algorithm is a 
variant of Alignment Based Learning (ABL), as 
described in Van Zaanen (2001). 

The basic ideas in ABL go back to concepts of 
substitutability and/or complementarity, as 
discussed in Harris (1961). The concept of 
substitutability generally applies to central part of 
the induction procedure itself, i.e. substitutable 
elements (e.g. substrings, words, structures) are 
assumed to be of the same type (represented e.g. 
with the same symbol). 

The advantage of ABL for grammar induction is 
its constraining characteristics with respect to the 
set of hypotheses about potential structural 
properties of a given input. While a brute-force 
method would generate all possible structural 

representations for the input in a first order 
explosion and subsequently filter out irrelevant 
hypotheses, ABL reduces the set of possible SDs 
from the outset to the ones that are motivated by 
previous experience/input or a pre-existing 
grammar. 

Such constraining characteristics make ABL 
attractive from a cognitive point of view, both 
because hopefully the computational complexity is 
reduced on account of the smaller set of potential 
hypotheses, and also because learning of new 
items, rules, or structural properties is related to a 
general learning strategy and previous experience 
only. The approaches that are based on a brute-
force first order explosion of all possible 
hypotheses with subsequent filtering of relevant or 
irrelevant structures are both memory-intensive 
and require more computational effort. 

The algorithm is not supposed to make any 
assumptions about types of morphemes. There is 
no expectation, including use of notions like stem, 
prefix, or suffix. We assume only linear sequences. 
The properties of single morphemes, being stems 
or suffixes, should be a side effect of their 
statistical properties (including their frequency and 
co-occurrence patterns, as will be explained in the 
following), and their alignment in the corpus, or 
rather within words. 

There are no rules about language built-in, such 
as what a morpheme must contain or how frequent 
it should be. All of this knowledge is induced 
statistically. 

In the ABL Hypotheses Generation, a given 
word in the utterance is checked against 
morphemes in the grammar. If an existing 
morpheme LEX aligns with the input word INP, a 
hypothesis is generated suggesting a 
morphological boundary at the alignment 
positions: 

INP (speaks) + LEX (speak) = HYP [speak, s] 
Another design criterion for the algorithm is 

complete language independence. It should be able 
to identify morphological structures of Indo-
European type of languages, as well as 
agglutinative languages (e.g. Japanese and 
Turkish) and polysynthetic languages like some 
Bantu dialects or American Indian languages. In 
order to guarantee this behavior, we extended the 
Alignment Based hypothesis generation with a 
pattern identifier that extracts patterns of character 
sequences of the types: 

1. A — B — A 
2. A — B — A — B 
3. A — B — A — C 

This component is realized with cascaded 
regular expressions that are able to identify and 
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return the substrings that correspond to the 
repeating sequences.3 

All possible alignments for the existing grammar 
at the current state, are collected in a hypothesis 
list and sent to the EVAL component, described in 
the following. A hypothesis is defined as a tuple: 

H = <w, f, g>, with w the input word, f its 
frequency in C, and g a list of substrings that 
represent a linear list of morphemes in w, g = [ 
m1, m2, ... mn ]. 

1.2.2 EVAL 
EVAL is a voting based algorithm that subsumes 

a set of independent algorithms that judge the list 
of SDs from the GEN component, using statistical 
and information theoretic criteria. The specific 
algorithms are grouped into memory and usability 
oriented constraints. 

Taken as a whole, the system assumes two (often 
competing) cognitive considerations. The first of 
these forms a class of what we term “time-based” 
constraints on learning. These constraints are 
concerned with the processing time required of a 
system to make sense of items in an input stream, 
whereby “time” is understood to mean the number 
of steps required to generate or parse SDs rather 
than the actual temporal duration of the process. 
To that end, they seek to minimize the amount of 
structure assigned to an utterance, which is to say 
they prefer to deal with as few rules as possible. 
The second of these cognitive considerations forms 
a class of “memory-based” constraints. Here, we 
are talking about constraints that seek to minimize 
the amount of memory space required to store an 
utterance by maximizing the efficiency of the 
storage process. In the specific case of our model, 
which deals with morphological structure, this 
means that the memory-based constraints search 
the input string for regularities (in the form of 
repeated substrings) that then need only be stored 
once (as a pointer) rather than each time they are 
found. In the extreme case, the time-based 
constraints prefer storing the input “as is”, without 
any processing at all, where the memory-based 
constraints prefer a rule for every character, as this 
would assign maximum structure to the input. 
Parsable information falls out of the tension 
between these two conflicting constraints, which 
can then be applied to organize the input into 
potential syntactic categories. These can then be 

                                                      
3 This addition might be understood to be a sort of 

supervision in the system. However, as shown in recent 
research on human cognitive abilities, and especially on 
the ability to identify patterns in the speech signal by 
very young infants (Marcus et al, 1999) shows that we 
can assume such an ability to be part of the cognitive 
abilities, maybe not even language specific 

used to set the parameters for the internal adult 
parsing system. 

Each algorithm is weighted. In the current 
implementation these weights are set manually. In 
future studies we hope to use the weighting for 
self-supervision.4 Each algorithm assigns a 
numerical rank to each hypothesis multiplied with 
the corresponding weight, a real number between 0 
and 1. 

On the one hand, our main interest lies in the 
comparison of the different algorithms and a 
possible interaction or dependency between them. 
Also, we expect the different algorithms to be of 
varying importance for different types of 
languages. 
Mutual Information (MI) 

For the purpose of this experiment we use a 
variant of standard Mutual Information (MI), see 
e.g. MacKay (2003). Information theory tells us 
that the presence of a given morpheme restricts the 
possibilities of the occurrence of morphemes to the 
left and right, thus lowering the amount of bits 
needed to store its neighbors. Thus we should be 
able to calculate the amount of bits needed by a 
morpheme to predict its right and left neighbors 
respectively. To calculate this, we have designed a 
variant of mutual information that is concerned 
with a single direction of information. 

This is calculated in the following way. For 
every morpheme y that occurs to the right of x we 
sum the point-wise MI between x and y, but we 
relativize the point-wise MI by the probability that 
y follows x, given that x occurs. This then gives us 
the expectation of the amount of information that x 
tells us about which morpheme will be to its right. 
Note that p(<xy>) is the probability of the bigram 
<xy> occurring and is not equal to p(<yx>) which 
is the probability of the bigram <yx> occurring. 

We calculate the MI on the right side of x∈G by: 

p(< xy >| x)lg
p(< xy >)
p(x)p(y)y∈{<xY >}

∑  

and the MI on the left of x∈G respectively by: 

p(< yx >| x)lg
p(< yx >)
p(y) p(x)y∈{<Yx>)

∑  

One way we use this as a metric, is by summing 
up the left and right MI for each morpheme in a 
                                                      

4 One possible way to self-supervise the weights in 
this architecture is by taking into account the revisions 
subsequent components make when they optimize the 
grammar. If rules or hypotheses have to be removed 
from the grammar due to general optimization 
constraints on the grammars as such, the weight of the 
responsible algorithm can be lowered, decreasing its 
general value in the system on the long run. The 
relevant evaluations with this approach are not yet 
finished. 
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hypothesis. We then look for the hypothesis that 
results in the maximal value of this sum. The 
tendency for this to favor hypotheses with many 
morphemes is countered by our criterion of 
favoring hypotheses that have fewer morphemes, 
discussed later. 

Another way to use the left and right MI is in 
judging the quality of morpheme boundaries. In a 
good boundary, the morpheme on the left side 
should have high right MI and the morpheme on 
the right should have high left MI. Unfortunately, 
MI is not reliable in the beginning because of the 
low frequency of morphemes. However, as the 
lexicon is extended during the induction procedure, 
reliable frequencies are bootstrapping this 
segmentation evaluation. 
Minimum Description Length (DL) 

The principle of Minimum Description Length 
(MDL), as used in recent work on grammar 
induction and unsupervised language acquisition, 
e.g. Goldsmith (2001) and De Marcken (1996), 
explains the grammar induction process as an 
iterative minimization procedure of the grammar 
size, where the smaller grammar corresponds to the 
best grammar for the given data/corpus. 

The description length metric, as we use it here, 
tells us how many bits of information would be 
required to store a word given a hypothesis of the 
morpheme boundaries, using the so far generated 
grammar. For each morpheme in the hypothesis 
that doesn't occur in the grammar we need to store 
the string representing the morpheme. For 
morphemes that do occur in our grammar we just 
need to store a pointer to that morphemes entry in 
the grammar. We use a simplified calculation, 
taken from Goldsmith (2001), of the cost of storing 
a string that takes the number of bits of 
information required to store a letter of the 
alphabet and multiply it by the length of the string. 

lg(len(alphabet))* len(morpheme) 
We have two different methods of calculating 

the cost of the pointer. The first assigns a variable 
the cost based on the frequency of the morpheme 
that it is pointing to. So first we calculate the 
frequency rank of the morpheme being pointed to, 
(e.g. the most frequent has rank 1, the second rank 
2, etc.). We then calculate: 

floor(lg( freq_ rank) −1)  
to get a number of bits similar to the way Morse 

code assigns lengths to various letters. 
The second is simpler and only calculates the 

entropy of the grammar of morphemes and uses 
this as the cost of all pointers to the grammar. The 
entropy equation is as follows: 

p(x)lg
1

p(x)x∈G
∑  

The second equation doesn't give variable 
pointer lengths, but it is preferred since it doesn't 
carry the heavy computational burden of 
calculating the frequency rank. 

We calculate the description length for each GEN 
hypothesis only,5 by summing up the cost of each 
morpheme in the hypothesis. Those with low 
description lengths are favored. 
Relative Entropy (RE) 

We are using RE as a measure for the cost of 
adding a hypothesis to the existing grammar. We 
look for hypotheses that when added to the 
grammar will result in a low divergence from the 
original grammar. 

We calculate RE as a variant of the Kullback-
Leibler Divergence, see MacKay (2003). Given 
grammar G1, the grammar generated so far, and G2 
the grammar with the extension generated for the 
new input increment, P(X) is the probability mass 
function (pmf) for grammar G2, and Q(X) the pmf 
for grammar G1: 

P(x)lg
P(x)
Q(x)x∈X

∑  

Note that with every new iteration a new element 
can appear, that is not part of G1. Our variant of RE 
takes this into account by calculating the costs for 
such a new element x to be the point-wise entropy 
of this element in P(X), summing up over all new 
elements: 

P(x)lg
1

P(x)x∈X
∑  

These two sums then form the RE between the 
original grammar and the new grammar with the 
addition of the hypothesis. Hypotheses with low 
RE are favored. 

This metric behaves similarly to description 
length, that is discussed above, in that both are 
calculating the distance between our original 
grammar and the grammar with the inclusion of the 
new hypothesis. The primary difference is RE also 
takes into account how the pmf differs in the two 
grammars and that our variation punishes new 
morphemes based upon their frequency relative to 
the frequency of other morphemes. Our 
implementation of MDL does not consider 
frequency in this way, which is why we are 
including RE as an independent metric. 
Further Metrics 

In addition to the mentioned metric, we take into 
account the following criteria: a. Frequency of 

                                                      
5 We do not calculate the sizes of the grammars with 

and without the given hypothesis, just the amount each 
given hypothesis would add to the grammar, favoring 
the least increase of total grammar size. 
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morpheme boundaries; b. Number of morpheme 
boundaries; c. Length of morphemes. 

The frequency of morpheme boundaries is given 
by the number of hypotheses that contain this 
boundary. The basic intuition is that the higher this 
number is, i.e. the more alignments are found at a 
certain position within a word, the more likely this 
position represents a morpheme boundary. We 
favor hypotheses with high values for this 
criterion. 

The number of morpheme boundaries indicates 
how many morphemes the word was split into. To 
prevent the algorithm from degenerating into the 
state where each letter is identified as a morpheme, 
we favor hypotheses with low number of 
morpheme boundaries. 

The length of the morphemes is also taken into 
account. We favor hypotheses with long 
morphemes to prevent the same degenerate state as 
the above criterion. 

1.2.3 Linguistic Knowledge 
The acquired lexicon is stored in a hypothesis 

space which keeps track of the words from the 
input and the corresponding hypotheses. The 
hypothesis space is defined as a list of hypotheses: 

Hypotheses space: S = [ H1, H2, ... Hn] 
Further, each morpheme that occurred in the SDs 

of words in the hypothesis space is kept with its 
frequency information, as well as bigrams that 
consist of morpheme pairs in the SDs and their 
frequency.6 

Similar to the specification of signatures in 
Goldsmith (2001), we list every morpheme with 
the set of morphemes it co-occurs. Signatures are 
lists of morphemes. Grammar construction is 
performed by replacement of morphemes with a 
symbol, if they have equal signatures. 

The hypothesis space is virtually divided into 
two sections, long term and short term storage. 
Long term storage is not revised further, in the 
current version of the algorithm. The short term 
storage is cyclically cleaned up by eliminating the 
signatures with a low likelihood, given the long 
term storage. 

2 The experimental setting 

In the following we discuss the experimental 
setting. We used the Brown corpus,7 the child-
                                                      

6 Due to space restrictions we do not formalize this 
further. A complete documentation and the source code 
is available at: http://jones.ling.indiana.edu/~abugi/. 

7 The Brown Corpus of Standard American English, 
consisting of 1,156,329 words from American texts 
printed in 1961 organized into 59,503 utterances and 
compiled by W.N. Francis and H. Kucera at Brown 
University. 

oriented speech portion of the CHILDES Peter 
corpus,8 and Caesar’s “De Bello Gallico” in Latin.9 

From the Brown corpus we used the files ck01 – 
ck09, with an average number of 2000 words per 
chapter. The total number of words in these files is 
18071. The randomly selected portion of “De Bello 
Gallico” contained 8300 words. The randomly 
selected portion of the Peter corpus contains 58057 
words. 

The system reads in each file and dumps log 
information during runtime that contains the 
information for online and offline evaluation, as 
described below in detail. 

The gold standard for evaluation is based on 
human segmentation of the words in the respective 
corpora. We create for every word a manual 
segmentation for the given corpora, used for online 
evaluation of the system for accuracy of hypothesis 
generation during runtime. Due to complicated 
cases, where linguist are undecided about the 
accurate morphological segmentation, a team of 5 
linguists was cooperating with this task. 

The offline evaluation is based on the grammar 
that is generated and dumped during runtime after 
each input file is processed. The grammar is 
manually annotated by a team of linguists, 
indicating for each construction whether it was 
segmented correctly and exhaustively. An 
additional evaluation criterion was to mark 
undecided cases, where even linguists do not 
agree. This information was however not used in 
the final evaluation. 

2.1 Evaluation 

We used two methods to evaluate the 
performance of the algorithm. The first analyzes 
the accuracy of the morphological rules produced 
by the algorithm after an increment of n words. 
The second looks at how accurately the algorithm 
parsed each word that it encountered as it 
progressed through the corpus.  

The morphological rule analysis looks at each 
grammar rule generated by the algorithm and 
judges it on the correctness of the rule and the 
resulting parse. A grammar rule consists of a stem 
and the suffixes and prefixes that can be attached 
to it, similar to the signatures used in Goldsmith 
(2001). The grammar rule was then marked as to 
whether it consisted of legitimate suffixes and 
prefixes for that stem, and also as to whether the 
                                                      

8 Documented in L. Bloom (1970) and available at 
http://xml.talkbank.org:8888/talkbank/file/CHILDES/E
ng-USA/Bloom70/Peter/. 

9 This was taken from the Gutenberg archive at: 
http://www.gutenberg.net/etext/10657. The Gutenberg 
header and footer were removed for the experimental 
run. 
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stem of the rule was a true stem, as opposed to a 
stem plus another morpheme that wasn't identified 
by the algorithm. The number of rules that were 
correct in these two categories were then summed, 
and precision and recall figures were calculated for 
the trial. The trials described in the graph below 
were run on three increasingly large portions of the 
general fiction section of the Brown Corpus. The 
first trial was run on one randomly chosen chapter, 
the second trial on two chapters, and the third on 
three chapters. The graph shows the harmonic 
average (F-score) of precision and recall. 

 
The second analysis is conducted as the 

algorithm is running and examines each parse the 
system produces. The algorithm's parses are 
compared with the “correct” morphological parse 
of the word using the following method to derive a 
numerical score for a particular parse. The first 
part of the score is the distance in characters 
between each morphological boundary in the two 
parses, with a score of one point for each character 
space. The second part is a penalty of two points 
for each morphological boundary that occurs in 
one parse and not the other. These scores were 
examined within a moving window of words that 
progressed through the corpus as the algorithm ran. 
The average scores of words in each such window 
were calculated as the window advanced. The 
purpose of this method was to allow the 
performance of the algorithm to be judged at a 
given point without prior performance in the 
corpus affecting the analysis of the current 
window. The following graph shows how the 
average performance of the windows of analyzed 
words as the algorithm progresses through five 
randomly chosen chapters of general fiction in the 
Brown Corpus amounting to around 10,000 words. 
The window size for the following graph was set to 
40 words. 

 
The evaluations on Latin were based on the 

initial 4000 words of “De Bello Gallico” in a 

pretest. In the very initial phase we reached a 
precision of 99.5% and a recall of 13.2%. This is 
however the preliminary result for the initial phase 
only. We expect that for a larger corpus the recall 
will increase much higher, given the rich 
morphology of Latin, potentially with negative 
consequences for precision. 

The results on the Peter corpus are shown in the 
following table: 

After file precision recall 
01 .9957 .8326 
01-03 .9968 .8121 
01-05 .9972 .8019 
01-07 .9911 .7710 
01-09 .9912 .7666 

We notice a more or less stable precision value 
with decreasing recall, due to a higher number of 
words. The Peter corpus contains also many very 
specific transcriptions and tokens that are indeed 
unique, thus it is rather surprising to get such 
results at all. The following graphics shows the F-
score for the Peter corpus: 

 

3 Conclusion 

The evaluations on two related morphology 
systems show that with a restrictive setting of the 
parameters in the described algorithm, approx 99% 
precision can be reached, with a recall higher than 
60% for the portion of the Brown corpus, and even 
higher for the Peter corpus. 

We are able to identify phases in the generation 
of rules that turn out to be for English: a. initially 
inflectional morphology on verbs, with the plural 
“s” on nouns, and b. subsequently other types of 
morphemes. We believe that this phenomenon is 
purely driven by the frequency of these 
morphemes in the corpora. In the manually 
segmented portion of the Brown corpus we 
identified on the token level 11.3% inflectional 
morphemes, 6.4% derivational morphemes, and 
82.1% stems. In average there are twice as many 
inflectional morphemes in the corpus, than 
derivational. 

Given a very strict parameters, focusing on the 
description length of the grammar, our system 
would need long time till it would discover 
prefixes, not to mention infixes. By relaxing the 
weight of description length we can inhibit the 
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generation and identification of prefixing rules, 
however, to the cost of precision. 

Given these results, the inflectional paradigms 
can be claimed to be extractable even with an 
incremental approach. As such, this means that 
central parts of the lexicon can be induced very 
early along the time line. 

The existing signatures for each morpheme can 
be used as simple clustering criteria.10 Clustering 
will separate dependent (affixes) from independent 
morphemes (stems). Their basic distinction is that 
affixes will usually have a long signature, i.e. 
many elements they co-occur with, as well as a 
high frequency, while for stems the opposite is 
true.11 Along these lines, morphemes with a similar 
signature can be replaced by symbols, expressing 
the same type information and compressing the 
grammar further. This type information, especially 
for rare morphemes is essential in subsequent 
induction of syntactic structure. Due to space 
limitations, we cannot discuss in detail subsequent 
steps in the cross-level induction procedures. 
Nevertheless, the model presented here provides an 
important pointer to the mechanics of how 
grammatical parameters might come to be set. 

Additionally, we provide a method by which to 
test the roles different statistical algorithms play in 
this process. By adjusting the weights of the 
contributions made by various constraints, we can 
approach an understanding of the optimal ordering 
of algorithms that play a role in the computational 
framework of language acquisition. 

This is but a first step to what we hope will 
eventually finish a platform for a detailed study of 
various induction algorithms and evaluation 
metrics. 
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