
On Statistical Parameter Setting

Damir ĆAVAR, Joshua HERRING,
Toshikazu IKUTA, Paul RODRIGUES

Linguistics Dept., Indiana University
Bloomington, IN, 46405

dcavar@indiana.edu

Giancarlo SCHREMENTI
Computer Science, Indiana University

Bloomington, IN, 47405
gischrem@indiana.edu

Abstract

We present a model and an experimental
platform of a bootstrapping approach to
statistical induction of natural language
properties that is constraint based with voting
components. The system is incremental and
unsupervised. In the following discussion we
focus on the components for morphological
induction. We show that the much harder
problem of incremental unsupervised
morphological induction can outperform
comparable all-at-once algorithms with
respect to precision. We discuss how we use
such systems to identify cues for induction in
a cross-level architecture.

1 Introduction

In recent years there has been a growing amount
of work focusing on the computational modeling
of language processing and acquisition, implying a
cognitive and theoretical relevance both of the
models as such, as well as of the language
properties extracted from raw linguistic data.1 In
the computational linguistic literature several
attempts to induce grammar or linguistic
knowledge from such data have shown that at
different levels a high amount of information can
be extracted, even with no or minimal supervision.

Different approaches tried to show how various
puzzles of language induction could be solved.
From this perspective, language acquisition is the
process of segmentation of non-discrete acoustic
input, mapping of segments to symbolic
representations, mapping representations on
higher-level representations such as phonology,
morphology and syntax, and even induction of
semantic properties. Due to space restrictions, we
cannot discuss all these approaches in detail. We
will focus on the close domain of morphology.

Approaches to the induction of morphology as
presented in e.g. Schone and Jurafsky (2001) or
Goldsmith (2001) show that the morphological

1 See Batchelder (1998) for a discussion of these

aspects.

properties of a small subset of languages can be
induced with high accuracy, most of the existing
approaches are motivated by applied or
engineering concerns, and thus make assumptions
that are less cognitively plausible: a. Large corpora
are processed all at once, though unsupervised
incremental induction of grammars is rather the
approach that would be relevant from a
psycholinguistic perspective; b. Arbitrary decisions
about selections of sets of elements are made,
based on frequency or frequency profile rank,2
though such decisions should rather be derived or
avoided in general.

However, the most important aspects missing in
these approaches, however, are the link to different
linguistic levels and the support of a general
learning model that makes predictions about how
knowledge is induced on different linguistic levels
and what the dependencies between information at
these levels are. Further, there is no study focusing
on the type of supervision that might be necessary
for the guidance of different algorithm types
towards grammars that resemble theoretical and
empirical facts about language acquisition, and
processing and the final knowledge of language.

While many theoretical models of language
acquisition use innateness as a crutch to avoid
outstanding difficulties, both on the general and
abstract level of I-language as well as the more
detailed level of E-language, (see, among others,
Lightfoot (1999) and Fodor and Teller (2000),
there is also significant research being done which
shows that children take advantage of statistical
regularities in the input for use in the language-
learning task (see Batchelder (1997) and related
references within).

In language acquisition theories the dominant
view is that knowledge of one linguistic level is
bootstrapped from knowledge of one, or even
several different levels. Just to mention such
approaches: Grimshaw (1981), and Pinker (1984)

2 Just to mention some of the arbitrary decisions
made in various approaches, e.g. Mintz (1996) selects a
small set of all words, the most frequent words, to
induce word types via clustering ; Schone and Jurafsky
(2001) select words with frequency higher than 5 to
induce morphological segmentation.

9

assume that semantic properties are used to
bootstrap syntactic knowledge, and Mazuka (1998)
suggested that prosodic properties of language
establish a bias for specific syntactic properties,
e.g. headedness or branching direction of
constituents. However, these approaches are based
on conceptual considerations and psycholinguistc
empirical grounds, the formal models and
computational experiments are missing. It is
unclear how the induction processes across
linguistic domains might work algorithmically, and
the quantitative experiments on large scale data are
missing.

As for algorithmic approaches to cross-level
induction, the best example of an initial attempt to
exploit cues from one level to induce properties of
another is presented in Déjean (1998), where
morphological cues are identified for induction of
syntactic structure. Along these lines, we will
argue for a model of statistical cue-based learning,
introducing a view on bootstrapping as proposed in
Elghamry (2004), and Elghamry and Ćavar (2004),
that relies on identification of elementary cues in
the language input and incremental induction and
further cue identification across all linguistic
levels.

1.1 Cue-based learning

Presupposing input driven learning, it has been
shown in the literature that initial segmenations
into words (or word-like units) is possible with
unsupervised methods (e.g. Brent and Cartwright
(1996)), that induction of morphology is possible
(e.g. Goldsmith (2001), Schone and Jurafsky
(2001)) and even the induction of syntactic
structures (e.g. Van Zaanen (2001)). As mentioned
earlier, the main drawback of these approaches is
the lack of incrementality, certain arbitrary
decisions about the properties of elements taken
into account, and the lack of integration into a
general model of bootstrapping across linguistic
levels.

As proposed in Elghamry (2004), cues are
elementary language units that can be identified at
each linguistic level, dependent or independent of
prior induction processes. That is, intrinsic
properties of elements like segments, syllables,
morphemes, words, phrases etc. are the ones
available for induction procedures. Intrinsic
properties are for example the frequency of these
units, their size, and the number of other units they
are build of. Extrinsic properties are taken into
account as well, where extrinsic stands for
distributional properties, the context, relations to
other units of the same type on one, as well as
across linguistic levels. In this model, extrinsic and
intrinsic properties of elementary language units

are the cues that are used for grammar induction
only.

As shown in Elghamry (2004) and Elghamry and
Ćavar (2004), there are efficient ways to identify a
kernel set of such units in an unsupervised fashion
without any arbitrary decision where to cut the set
of elements and on the basis of what kind of
features. They present an algorithm that selects the
set of kernel cues on the lexical and syntactic level,
as the smallest set of words that co-occurs with all
other words. Using this set of words it is possible
to cluster the lexical inventory into open and
closed class words, as well as to identify the
subclasses of nouns and verbs in the open class.
The direction of the selectional preferences of the
language is derived as an average of point-wise
Mutual Information on each side of the identified
cues and types, which is a self-supervision aspect
that biases the search direction for a specific
language. This resulting information is understood
as derivation of secondary cues, which then can be
used to induce selectional properties of verbs
(frames), as shown in Elghamry (2004).

The general claim thus is:
• Cues can be identified in an unsupervised

fashion in the input.
• These cues can be used to induce properties of

the target grammar.
• These properties represent cues that can be

used to induce further cues, and so on.
The hypothesis is that this snowball effect can

reduce the search space of the target grammar
incrementally. The main research questions are
now, to what extend do different algorithms
provide cues for other linguistic levels and what
kind of information do they require as supervision
in the system, in order to gain the highest accuracy
at each linguistic level, and how does the linguistic
information of one level contribute to the
information on another.

In the following, the architectural considerations
of such a computational model are discussed,
resulting in an example implementation that is
applied to morphology induction, where
morphological properties are understood to
represent cues for lexical clustering as well as
syntactic structure, and vice versa, similar to the
ideas formulated in Déjean (1998), among others.

1.2 Incremental Induction Architecture

The basic architectural principle we presuppose
is incrementality, where incrementally utterances
are processed. The basic language unit is an
utterance, with clear prosodic breaks before and
after. The induction algorithm consumes such
utterances and breaks them into basic linguistic
units, generating for each step hypotheses about

10

the linguistic structure of each utterance, based on
the grammar built so far and statistical properties
of the single linguistic units. Here we presuppose a
successful segmentation into words, i.e. feeding
the system utterances with unambiguous word
boundaries. We implemented the following
pipeline architecture:

The GEN module consumes input and generates

hypotheses about its structural descriptions (SD).
EVAL consumes a set of SDs and selects the set of
best SDs to be added to the knowledge base. The
knowledge base is a component that not only stores
SDs but also organizes them into optimal
representations, here morphology grammars.

All three modules are modular, containing a set
of algorithms that are organized in a specific
fashion. Our intention is to provide a general
platform that can serve for the evaluation and
comparison of different approaches at every level
of the induction process. Thus, the system is
designed to be more general, applicable to the
problem of segmentation, as well as type and
grammar induction.

We assume for the input to consist of an
alphabet: a non-empty set A of n symbols {s1, s2,...
sn}. A word w is a non-empty list of symbols w =
[s1,s2,... sn], with s∈A. The corpus is a non-empty
list C of words C = [w1,w2,... wn].

In the following, the individual modules for the
morphology induction task are described in detail.

1.2.1 GEN
For the morphology task GEN is compiled from a

set of basically two algorithms. One algorithm is a
variant of Alignment Based Learning (ABL), as
described in Van Zaanen (2001).

The basic ideas in ABL go back to concepts of
substitutability and/or complementarity, as
discussed in Harris (1961). The concept of
substitutability generally applies to central part of
the induction procedure itself, i.e. substitutable
elements (e.g. substrings, words, structures) are
assumed to be of the same type (represented e.g.
with the same symbol).

The advantage of ABL for grammar induction is
its constraining characteristics with respect to the
set of hypotheses about potential structural
properties of a given input. While a brute-force
method would generate all possible structural

representations for the input in a first order
explosion and subsequently filter out irrelevant
hypotheses, ABL reduces the set of possible SDs
from the outset to the ones that are motivated by
previous experience/input or a pre-existing
grammar.

Such constraining characteristics make ABL
attractive from a cognitive point of view, both
because hopefully the computational complexity is
reduced on account of the smaller set of potential
hypotheses, and also because learning of new
items, rules, or structural properties is related to a
general learning strategy and previous experience
only. The approaches that are based on a brute-
force first order explosion of all possible
hypotheses with subsequent filtering of relevant or
irrelevant structures are both memory-intensive
and require more computational effort.

The algorithm is not supposed to make any
assumptions about types of morphemes. There is
no expectation, including use of notions like stem,
prefix, or suffix. We assume only linear sequences.
The properties of single morphemes, being stems
or suffixes, should be a side effect of their
statistical properties (including their frequency and
co-occurrence patterns, as will be explained in the
following), and their alignment in the corpus, or
rather within words.

There are no rules about language built-in, such
as what a morpheme must contain or how frequent
it should be. All of this knowledge is induced
statistically.

In the ABL Hypotheses Generation, a given
word in the utterance is checked against
morphemes in the grammar. If an existing
morpheme LEX aligns with the input word INP, a
hypothesis is generated suggesting a
morphological boundary at the alignment
positions:

INP (speaks) + LEX (speak) = HYP [speak, s]
Another design criterion for the algorithm is

complete language independence. It should be able
to identify morphological structures of Indo-
European type of languages, as well as
agglutinative languages (e.g. Japanese and
Turkish) and polysynthetic languages like some
Bantu dialects or American Indian languages. In
order to guarantee this behavior, we extended the
Alignment Based hypothesis generation with a
pattern identifier that extracts patterns of character
sequences of the types:

1. A — B — A
2. A — B — A — B
3. A — B — A — C

This component is realized with cascaded
regular expressions that are able to identify and

11

return the substrings that correspond to the
repeating sequences.3

All possible alignments for the existing grammar
at the current state, are collected in a hypothesis
list and sent to the EVAL component, described in
the following. A hypothesis is defined as a tuple:

H = <w, f, g>, with w the input word, f its
frequency in C, and g a list of substrings that
represent a linear list of morphemes in w, g = [
m1, m2, ... mn].

1.2.2 EVAL
EVAL is a voting based algorithm that subsumes

a set of independent algorithms that judge the list
of SDs from the GEN component, using statistical
and information theoretic criteria. The specific
algorithms are grouped into memory and usability
oriented constraints.

Taken as a whole, the system assumes two (often
competing) cognitive considerations. The first of
these forms a class of what we term “time-based”
constraints on learning. These constraints are
concerned with the processing time required of a
system to make sense of items in an input stream,
whereby “time” is understood to mean the number
of steps required to generate or parse SDs rather
than the actual temporal duration of the process.
To that end, they seek to minimize the amount of
structure assigned to an utterance, which is to say
they prefer to deal with as few rules as possible.
The second of these cognitive considerations forms
a class of “memory-based” constraints. Here, we
are talking about constraints that seek to minimize
the amount of memory space required to store an
utterance by maximizing the efficiency of the
storage process. In the specific case of our model,
which deals with morphological structure, this
means that the memory-based constraints search
the input string for regularities (in the form of
repeated substrings) that then need only be stored
once (as a pointer) rather than each time they are
found. In the extreme case, the time-based
constraints prefer storing the input “as is”, without
any processing at all, where the memory-based
constraints prefer a rule for every character, as this
would assign maximum structure to the input.
Parsable information falls out of the tension
between these two conflicting constraints, which
can then be applied to organize the input into
potential syntactic categories. These can then be

3 This addition might be understood to be a sort of

supervision in the system. However, as shown in recent
research on human cognitive abilities, and especially on
the ability to identify patterns in the speech signal by
very young infants (Marcus et al, 1999) shows that we
can assume such an ability to be part of the cognitive
abilities, maybe not even language specific

used to set the parameters for the internal adult
parsing system.

Each algorithm is weighted. In the current
implementation these weights are set manually. In
future studies we hope to use the weighting for
self-supervision.4 Each algorithm assigns a
numerical rank to each hypothesis multiplied with
the corresponding weight, a real number between 0
and 1.

On the one hand, our main interest lies in the
comparison of the different algorithms and a
possible interaction or dependency between them.
Also, we expect the different algorithms to be of
varying importance for different types of
languages.
Mutual Information (MI)

For the purpose of this experiment we use a
variant of standard Mutual Information (MI), see
e.g. MacKay (2003). Information theory tells us
that the presence of a given morpheme restricts the
possibilities of the occurrence of morphemes to the
left and right, thus lowering the amount of bits
needed to store its neighbors. Thus we should be
able to calculate the amount of bits needed by a
morpheme to predict its right and left neighbors
respectively. To calculate this, we have designed a
variant of mutual information that is concerned
with a single direction of information.

This is calculated in the following way. For
every morpheme y that occurs to the right of x we
sum the point-wise MI between x and y, but we
relativize the point-wise MI by the probability that
y follows x, given that x occurs. This then gives us
the expectation of the amount of information that x
tells us about which morpheme will be to its right.
Note that p(<xy>) is the probability of the bigram
<xy> occurring and is not equal to p(<yx>) which
is the probability of the bigram <yx> occurring.

We calculate the MI on the right side of x∈G by:

p(< xy >| x)lg
p(< xy >)
p(x)p(y)y∈{<xY >}

∑

and the MI on the left of x∈G respectively by:

p(< yx >| x)lg
p(< yx >)
p(y) p(x)y∈{<Yx>)

∑

One way we use this as a metric, is by summing
up the left and right MI for each morpheme in a

4 One possible way to self-supervise the weights in
this architecture is by taking into account the revisions
subsequent components make when they optimize the
grammar. If rules or hypotheses have to be removed
from the grammar due to general optimization
constraints on the grammars as such, the weight of the
responsible algorithm can be lowered, decreasing its
general value in the system on the long run. The
relevant evaluations with this approach are not yet
finished.

12

hypothesis. We then look for the hypothesis that
results in the maximal value of this sum. The
tendency for this to favor hypotheses with many
morphemes is countered by our criterion of
favoring hypotheses that have fewer morphemes,
discussed later.

Another way to use the left and right MI is in
judging the quality of morpheme boundaries. In a
good boundary, the morpheme on the left side
should have high right MI and the morpheme on
the right should have high left MI. Unfortunately,
MI is not reliable in the beginning because of the
low frequency of morphemes. However, as the
lexicon is extended during the induction procedure,
reliable frequencies are bootstrapping this
segmentation evaluation.
Minimum Description Length (DL)

The principle of Minimum Description Length
(MDL), as used in recent work on grammar
induction and unsupervised language acquisition,
e.g. Goldsmith (2001) and De Marcken (1996),
explains the grammar induction process as an
iterative minimization procedure of the grammar
size, where the smaller grammar corresponds to the
best grammar for the given data/corpus.

The description length metric, as we use it here,
tells us how many bits of information would be
required to store a word given a hypothesis of the
morpheme boundaries, using the so far generated
grammar. For each morpheme in the hypothesis
that doesn't occur in the grammar we need to store
the string representing the morpheme. For
morphemes that do occur in our grammar we just
need to store a pointer to that morphemes entry in
the grammar. We use a simplified calculation,
taken from Goldsmith (2001), of the cost of storing
a string that takes the number of bits of
information required to store a letter of the
alphabet and multiply it by the length of the string.

lg(len(alphabet))* len(morpheme)
We have two different methods of calculating

the cost of the pointer. The first assigns a variable
the cost based on the frequency of the morpheme
that it is pointing to. So first we calculate the
frequency rank of the morpheme being pointed to,
(e.g. the most frequent has rank 1, the second rank
2, etc.). We then calculate:

floor(lg(freq_ rank) −1)
to get a number of bits similar to the way Morse

code assigns lengths to various letters.
The second is simpler and only calculates the

entropy of the grammar of morphemes and uses
this as the cost of all pointers to the grammar. The
entropy equation is as follows:

p(x)lg
1

p(x)x∈G
∑

The second equation doesn't give variable
pointer lengths, but it is preferred since it doesn't
carry the heavy computational burden of
calculating the frequency rank.

We calculate the description length for each GEN
hypothesis only,5 by summing up the cost of each
morpheme in the hypothesis. Those with low
description lengths are favored.
Relative Entropy (RE)

We are using RE as a measure for the cost of
adding a hypothesis to the existing grammar. We
look for hypotheses that when added to the
grammar will result in a low divergence from the
original grammar.

We calculate RE as a variant of the Kullback-
Leibler Divergence, see MacKay (2003). Given
grammar G1, the grammar generated so far, and G2
the grammar with the extension generated for the
new input increment, P(X) is the probability mass
function (pmf) for grammar G2, and Q(X) the pmf
for grammar G1:

P(x)lg
P(x)
Q(x)x∈X

∑

Note that with every new iteration a new element
can appear, that is not part of G1. Our variant of RE
takes this into account by calculating the costs for
such a new element x to be the point-wise entropy
of this element in P(X), summing up over all new
elements:

P(x)lg
1

P(x)x∈X
∑

These two sums then form the RE between the
original grammar and the new grammar with the
addition of the hypothesis. Hypotheses with low
RE are favored.

This metric behaves similarly to description
length, that is discussed above, in that both are
calculating the distance between our original
grammar and the grammar with the inclusion of the
new hypothesis. The primary difference is RE also
takes into account how the pmf differs in the two
grammars and that our variation punishes new
morphemes based upon their frequency relative to
the frequency of other morphemes. Our
implementation of MDL does not consider
frequency in this way, which is why we are
including RE as an independent metric.
Further Metrics

In addition to the mentioned metric, we take into
account the following criteria: a. Frequency of

5 We do not calculate the sizes of the grammars with

and without the given hypothesis, just the amount each
given hypothesis would add to the grammar, favoring
the least increase of total grammar size.

13

morpheme boundaries; b. Number of morpheme
boundaries; c. Length of morphemes.

The frequency of morpheme boundaries is given
by the number of hypotheses that contain this
boundary. The basic intuition is that the higher this
number is, i.e. the more alignments are found at a
certain position within a word, the more likely this
position represents a morpheme boundary. We
favor hypotheses with high values for this
criterion.

The number of morpheme boundaries indicates
how many morphemes the word was split into. To
prevent the algorithm from degenerating into the
state where each letter is identified as a morpheme,
we favor hypotheses with low number of
morpheme boundaries.

The length of the morphemes is also taken into
account. We favor hypotheses with long
morphemes to prevent the same degenerate state as
the above criterion.

1.2.3 Linguistic Knowledge
The acquired lexicon is stored in a hypothesis

space which keeps track of the words from the
input and the corresponding hypotheses. The
hypothesis space is defined as a list of hypotheses:

Hypotheses space: S = [H1, H2, ... Hn]
Further, each morpheme that occurred in the SDs

of words in the hypothesis space is kept with its
frequency information, as well as bigrams that
consist of morpheme pairs in the SDs and their
frequency.6

Similar to the specification of signatures in
Goldsmith (2001), we list every morpheme with
the set of morphemes it co-occurs. Signatures are
lists of morphemes. Grammar construction is
performed by replacement of morphemes with a
symbol, if they have equal signatures.

The hypothesis space is virtually divided into
two sections, long term and short term storage.
Long term storage is not revised further, in the
current version of the algorithm. The short term
storage is cyclically cleaned up by eliminating the
signatures with a low likelihood, given the long
term storage.

2 The experimental setting

In the following we discuss the experimental
setting. We used the Brown corpus,7 the child-

6 Due to space restrictions we do not formalize this
further. A complete documentation and the source code
is available at: http://jones.ling.indiana.edu/~abugi/.

7 The Brown Corpus of Standard American English,
consisting of 1,156,329 words from American texts
printed in 1961 organized into 59,503 utterances and
compiled by W.N. Francis and H. Kucera at Brown
University.

oriented speech portion of the CHILDES Peter
corpus,8 and Caesar’s “De Bello Gallico” in Latin.9

From the Brown corpus we used the files ck01 –
ck09, with an average number of 2000 words per
chapter. The total number of words in these files is
18071. The randomly selected portion of “De Bello
Gallico” contained 8300 words. The randomly
selected portion of the Peter corpus contains 58057
words.

The system reads in each file and dumps log
information during runtime that contains the
information for online and offline evaluation, as
described below in detail.

The gold standard for evaluation is based on
human segmentation of the words in the respective
corpora. We create for every word a manual
segmentation for the given corpora, used for online
evaluation of the system for accuracy of hypothesis
generation during runtime. Due to complicated
cases, where linguist are undecided about the
accurate morphological segmentation, a team of 5
linguists was cooperating with this task.

The offline evaluation is based on the grammar
that is generated and dumped during runtime after
each input file is processed. The grammar is
manually annotated by a team of linguists,
indicating for each construction whether it was
segmented correctly and exhaustively. An
additional evaluation criterion was to mark
undecided cases, where even linguists do not
agree. This information was however not used in
the final evaluation.

2.1 Evaluation

We used two methods to evaluate the
performance of the algorithm. The first analyzes
the accuracy of the morphological rules produced
by the algorithm after an increment of n words.
The second looks at how accurately the algorithm
parsed each word that it encountered as it
progressed through the corpus.

The morphological rule analysis looks at each
grammar rule generated by the algorithm and
judges it on the correctness of the rule and the
resulting parse. A grammar rule consists of a stem
and the suffixes and prefixes that can be attached
to it, similar to the signatures used in Goldsmith
(2001). The grammar rule was then marked as to
whether it consisted of legitimate suffixes and
prefixes for that stem, and also as to whether the

8 Documented in L. Bloom (1970) and available at
http://xml.talkbank.org:8888/talkbank/file/CHILDES/E
ng-USA/Bloom70/Peter/.

9 This was taken from the Gutenberg archive at:
http://www.gutenberg.net/etext/10657. The Gutenberg
header and footer were removed for the experimental
run.

14

stem of the rule was a true stem, as opposed to a
stem plus another morpheme that wasn't identified
by the algorithm. The number of rules that were
correct in these two categories were then summed,
and precision and recall figures were calculated for
the trial. The trials described in the graph below
were run on three increasingly large portions of the
general fiction section of the Brown Corpus. The
first trial was run on one randomly chosen chapter,
the second trial on two chapters, and the third on
three chapters. The graph shows the harmonic
average (F-score) of precision and recall.

The second analysis is conducted as the

algorithm is running and examines each parse the
system produces. The algorithm's parses are
compared with the “correct” morphological parse
of the word using the following method to derive a
numerical score for a particular parse. The first
part of the score is the distance in characters
between each morphological boundary in the two
parses, with a score of one point for each character
space. The second part is a penalty of two points
for each morphological boundary that occurs in
one parse and not the other. These scores were
examined within a moving window of words that
progressed through the corpus as the algorithm ran.
The average scores of words in each such window
were calculated as the window advanced. The
purpose of this method was to allow the
performance of the algorithm to be judged at a
given point without prior performance in the
corpus affecting the analysis of the current
window. The following graph shows how the
average performance of the windows of analyzed
words as the algorithm progresses through five
randomly chosen chapters of general fiction in the
Brown Corpus amounting to around 10,000 words.
The window size for the following graph was set to
40 words.

The evaluations on Latin were based on the

initial 4000 words of “De Bello Gallico” in a

pretest. In the very initial phase we reached a
precision of 99.5% and a recall of 13.2%. This is
however the preliminary result for the initial phase
only. We expect that for a larger corpus the recall
will increase much higher, given the rich
morphology of Latin, potentially with negative
consequences for precision.

The results on the Peter corpus are shown in the
following table:

After file precision recall
01 .9957 .8326
01-03 .9968 .8121
01-05 .9972 .8019
01-07 .9911 .7710
01-09 .9912 .7666

We notice a more or less stable precision value
with decreasing recall, due to a higher number of
words. The Peter corpus contains also many very
specific transcriptions and tokens that are indeed
unique, thus it is rather surprising to get such
results at all. The following graphics shows the F-
score for the Peter corpus:

3 Conclusion

The evaluations on two related morphology
systems show that with a restrictive setting of the
parameters in the described algorithm, approx 99%
precision can be reached, with a recall higher than
60% for the portion of the Brown corpus, and even
higher for the Peter corpus.

We are able to identify phases in the generation
of rules that turn out to be for English: a. initially
inflectional morphology on verbs, with the plural
“s” on nouns, and b. subsequently other types of
morphemes. We believe that this phenomenon is
purely driven by the frequency of these
morphemes in the corpora. In the manually
segmented portion of the Brown corpus we
identified on the token level 11.3% inflectional
morphemes, 6.4% derivational morphemes, and
82.1% stems. In average there are twice as many
inflectional morphemes in the corpus, than
derivational.

Given a very strict parameters, focusing on the
description length of the grammar, our system
would need long time till it would discover
prefixes, not to mention infixes. By relaxing the
weight of description length we can inhibit the

15

generation and identification of prefixing rules,
however, to the cost of precision.

Given these results, the inflectional paradigms
can be claimed to be extractable even with an
incremental approach. As such, this means that
central parts of the lexicon can be induced very
early along the time line.

The existing signatures for each morpheme can
be used as simple clustering criteria.10 Clustering
will separate dependent (affixes) from independent
morphemes (stems). Their basic distinction is that
affixes will usually have a long signature, i.e.
many elements they co-occur with, as well as a
high frequency, while for stems the opposite is
true.11 Along these lines, morphemes with a similar
signature can be replaced by symbols, expressing
the same type information and compressing the
grammar further. This type information, especially
for rare morphemes is essential in subsequent
induction of syntactic structure. Due to space
limitations, we cannot discuss in detail subsequent
steps in the cross-level induction procedures.
Nevertheless, the model presented here provides an
important pointer to the mechanics of how
grammatical parameters might come to be set.

Additionally, we provide a method by which to
test the roles different statistical algorithms play in
this process. By adjusting the weights of the
contributions made by various constraints, we can
approach an understanding of the optimal ordering
of algorithms that play a role in the computational
framework of language acquisition.

This is but a first step to what we hope will
eventually finish a platform for a detailed study of
various induction algorithms and evaluation
metrics.

References
E. O. Batchelder. 1997. Computational evidence for the

use of frequency information in discovery of the
infant’s first lexicon. PhD dissertation, CUNY.

E. O. Batchelder. 1998. Can a computer really model
cognition? A case study of six computational models
of infant word discovery. In M. A. Gernsbacher and
S. J. Derry, editors, Proceedings of the 20th Annual
Conference of the Cognitive Science Society, pages
120–125. Lawrence Erlbaum, University of
Wisconsin-Madison.

L. Bloom, L. Hood, and P. Lightbown. 1974. Imitation
in language development: If, when and why.
Cognitive Psychology, 6, 380–420.

10 Length of the signature and frequency of each

morpheme are mapped on a feature vector.
11 This way, similar to the clustering of words into

open and closed class on the basis of feature vectors, as
described in Elghamry and Ćavar (2004), the
morphemes can be separated into open and closed class.

M.R. Brent and T.A. Cartwright. 1996. Distributional
regularity and phonotactic constraints are useful for
segmentation. Cognition 61: 93-125.

H. Déjean. 1998. Concepts et algorithmes pour la
découverte des structures formelles des langues.
Doctoral dissertation, Université de Caen Basse
Normandie.

K. Elghamry. 2004. A generalized cue-based approach
to the automatic acquisition of subcategorization
frames. Doctoral dissertation, Indiana University.

K. Elghamry and D. Ćavar. 2004. Bootstrapping cues
for cue-based bootstrapping. Mscr. Indiana
University.

J. Fodor and V. Teller. 2000. Decoding syntactic
parameters: The superparser as oracle. Proceedings of
the Twenty-Second Annual Conference of the
Cognitive Science Society, 136-141.

J. Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics 27(2): 153-198.

Z.S. Harris. 1961. Structural linguistics. University of
Chicago Press. Chicago.

J. Grimshaw. 1981. Form, function, and the language
acquisition device. In C.L. Baker and J.J. McCarthy
(eds.), The Logical Problem of Language Acquisition.
Cambridge, MA: MIT Press.

D.J.C. MacKay. 2003. Information Theory, Inference,
and Learning Algorithms. Cambridge: Cambridge
University Press.

C.G. de Marcken. 1996. Unsupervised Language
Acquisition. Phd dissertation, MIT.

G.F. Marcus, S. Vijayan, S. Bandi Rao, and P.M.
Vishton. 1999. Rule-learning in seven-month-old
infants. Science 283:77-80.

R. Mazuka. 1998. The Development of Language
Processing Strategies: A cross-linguistic study
between Japanese and English. Lawrence Erlbaum.

T.H. Mintz. 1996. The roles of linguistic input and
innate mechanisms in children's acquisition of
grammatical categories. Unpublished doctoral
dissertation, University of Rochester.

S. Pinker. 1984. Language Learnability and Language
Development, Harvard University Press, Cambridge,
MA.

S. Pinker. 1994. The language instinct. New York, NY:
W. Morrow and Co.

P. Schone and D. Jurafsky. 2001. Knowledge-Free
Induction of Inflectional Morphologies. In
Proceedings of NAACL-2001. Pittsburgh, PA, June
2001.

M.M. Van Zaanen and Pieter Adriaans. 2001.
Comparing two unsupervised grammar induction
systems: Alignment-based learning vs. EMILE. Tech.
Rep. TR2001.05, University of Leeds.

M.M. Van Zaanen. 2001. Bootstrapping Structure into
Language: Alignment-Based Learning. Doctoral
dissertation, The University of Leeds.

16

