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Abstract

In this paper, we report the adaptation of a
named entity recognition (NER) system to the
biomedical domain in order to participate in
the “Shared Task Bio-Entity Recognition”.
The system is originally developed for Ger-
man NER that shares characteristics with the
biomedical task. To facilitate adaptability, the
system is knowledge-poor and utilizes unla-
beled data. Investigating the adaptability of the
single components and the enhancements nec-
essary, we get insights into the task of bio-
entity recognition.

1 Introduction

NER describes the detection and classification of
proper names into predefined categories. Beside
the distinction between rule-based and automati-
cally trained systems, the approaches can be classi-
fied according to the amount of domain- and/or
linguistic knowledge they incorporate.

In order to build an efficient and easy to adapt
system, we developed a knowledge-poor approach
that is successful for German person names
(Rossler, 2004). German NER shares some char-
acteristics with bio-entity recognition such as the
unreliable capitalization of names, the resulting
difficulties of boundary detection and the entailed
treatment of homonymic and polysemic items. We
believe that the process of adaptation is able to
sketch out some interesting aspects of the biomedi-
cal domain.

In Section 2 we introduce the design guidelines
and the underlying model of our knowledge-poor
approach to NER. In Section 3 we describe the
adaptation of the system and the modifications and
enhancements involved. Section 4 introduces a
three-level model to observe word forms that al-
lows further improvements based on discourse
units and the utilization of unlabeled data. These
techniques were successfully applied to German
person names, i.e. they led to more than 10 points
increase in f-score, thus exhibiting state of the art
performance. However, they completely failed on
the bio-entity task. We will discuss what the failure
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of this technique reveals about the bio-entity task.
Section 5 presents and discusses the final evalua-
tion, while Section 6 contains some concluding
remarks.

2 A knowledge-poor approach to NER

The optimal practice in NER yields efficient and
highly reliable results based only on cheaply avail-
able resources like an annotated corpus of reason-
able size and non-annotated data. Approaches rich
in handcrafted knowledge or dependent on other
language technology tools suffer from several
limitations: They are laborious to maintain and to
adapt to new domains, especially with respect to
the creation and evaluation of the domain-sensitive
lists of NEs. Furthermore, the application of addi-
tional tools like part-of-speech tagger, syntactic
chunker etc. increases processing time, and it is not
clear at the moment whether such tools facilitate
the task without additional adaptations to the new
domain. In order to build an efficient and easy to
adapt system, we developed a knowledge-poor
approach. We refrain from

e any additional linguistic tools like morpho-
logical analyser, part of speech tagger or
syntactic chunker;

e any handcrafted linguistic resources like
dictionaries;

e any handcrafted knowledge providing lists
like gazetteers, lists of NEs or lists of trigger
words.

From a linguistic point of view, NEs are phe-
nomena located at the phrase-level. Nevertheless,
for the sake of straightforwardness, we restrict our
model to single words. To overcome the knowl-
edge sparseness, the so-called three-level model of
word form observance was developed and success-
fully applied to German person names (Rdssler,
2004). In Section 4 we discuss our attempts to
apply this model to the biomedical domain.

The approach is based on linear SVM classifiers.
SVM (Vapnik, 1995) is a powerful machine
learning algorithm for binary classification able to
handle large numbers of parameters efficiently. It
is common within the NLP community to use
SVMs with non-linear kernels. Takeuchi and Col-



lier (2003) successfully applied a polynomial ker-
nel function for biomedical NER. Beside the good
classifier capabilities of non-linear kernels, they
are very expensive in terms of processing time for
training and applying. Therefore, we favor linear
SVMst not suffering from these limitations.

Instead of using surface words in combination
with morphological analyses and/or handcrafted
suffix and prefix lists, we represent words with a
set of positional character n-grams. Using the
training data, this set is compiled by extracting the
last uni- and bigram, three trigrams from the end,
and three trigrams from the beginning of every
word. All the entries occurring less than four times
are removed. Table 1 contains an example of this
feature set f3. The representation is capable of
capturing simple morphological regularities of NEs
and the context words surrounding them. Addi-
tionally, we use deterministic word-surface fea-
tures (feature set f1) commonly used in NER (see
Bykel et al., 1997), indexing, for instance, whether
a word form is capitalized, consists of numbers,
contains capitals, etc. We also consider word
length and map it to one dimension (feature set f2).
To capture the context of the word to classify, we
set a six-word window, consisting of the three
preceding, the current, and the two succeeding
words. All the features mentioned in Table 1 are
extracted for all words of the defined window.

f1 | Word-surface feature like e.g. "4-digit number”,
”"ATCG-sequence”, "Uppercase only” etc.

f2 | Character-based word length

f3 | Sub-word form representation with positional
character n-grams. "Hammer” is represented as:
r” "er”, "mer” at the end, "ham?” at first, amm”
at second, “mme” at next to last position.

f4 | Probabilites of all classes if higher than zero,
calculated by the second-order Markov Model.

Table 1: The table shows the feature sets f1-f4
extracted for all words of a 6-word window. Fea-
ture set f4 is described in Section 3.

3 Adapting the System

After adding ATCG sequence (see Shen et al.
2003) and GreekLetter (see Collier et al. 2000) as
domain-specific deterministic word-surface fea-
tures, we ran first experiments on the GENIA
(2003) corpus. While inspecting the results we
noticed that special attention was necessary to
address the correct boundary detection of the enti-

1 All experiments were conducted with the SVMlight
software package, freely available at:
http://svmlight.joachims.org.

93

ties and the transformation of the output of the
SVM-classifiers to the I0B-notation.

A first step to improve the boundary detection is
based on the output of a second-order Markov
Model in order to support the SVMs that are not
optimised to tag linear sequences. We trained TnT
(Brants, 1998), a Markov Model implemented for
POS-tagging on the surface words, and used the
probabilities for all classes as features for the
SVMs (feature set f4 on Table 1).

The second step was implemented within the
post-processing component designed to transform
the output of the SVM-classifiers to the 10B-
notation. In order to facilitate the multi-class out-
put, we set up a total of seven classifiers: Five of
them specific to the five NE-classes and two addi-
tional classifiers assigning a general begin-tag and
a general outside-tag. Although a dynamic pro-
gramming approach to resolve the multi-class issue
for SVMs is an important desideratum, we imple-
mented a simple heuristic as a first step.

To transform the output of the seven classifiers
into the 10B-output, we first applied a simple one-
vs-rest method based on the decision values of the
SVMs. The general begin tag was used to support
the correct detection of the B-tags.

In a second post-processing step, we improved
the results based on a definition of the revisability
of a label assigned with respect to a competing
label. According to this, a label is revisable if the
competing label is among the three best labels and
has a decision value higher than 0.2, or if the value
of the outside-classifier is lower than 0.2, i.e. the
label OUTSIDE is not that confident. A label is
considered to be competing to the current label if it
was assigned to the word before or the word after.

4  Attempting to utilize the three-level model
to the biomedical domain

The three-level model described in Rassler
(2004) is motivated by the fact that lexical re-
sources in the form of named entity lists deal with
surface words, i.e. word forms, thus ignoring the
problems of homonymy and polysemy.

To address this issue, we distinguish three dif-
ferent levels to observe word forms and the se-
mantic labels assigned to them and show how they
are related to and support the NER:

e The local level describes a single occurrence
of a word form. The correct labelling of
these occurrences is the actual task of NER.

e The discourse level describes all occurrences
of a word form within a text unit and the
semantic labels assigned to them. Address-
ing word sense disambiguation, Gale et al.
(1992) introduced the idea of a word sense
located at the discourse-level and observed a



strong one-sense-per-discourse tendency, i.e.
several occurrences of a polysemous word
form have a tendency to belong to the same
semantic class within one discourse. It is
common practice in NER to utilize the dis-
course level to disambiguate items in non-
predictive contexts (see e.g. Mikheev et al.,
1999).

e The corpus level describes all occurrences of
a word form within all texts available for the
application. The larger the corpus, the more
likely a particular word form is seen as
member of two or more semantic classes.

In order to utilize the discourse level, all words
tagged as entity within one MEDLINE abstract are
stored in a dynamic lexicon. Then, the processed
discourse unit is matched against the dynamic lexi-
con in order to detect entities in non-predictive
contexts. To find the correct boundaries the unit is
post-processed as described in Section 3.

To reflect the issues concerning polysemy and
homonymy of lexical resources, we propose so-
phisticated word-form based NE lists, representing
how likely a particular entry will be tagged with a
particular label. These values are specific for a
corpus, i.e. they are located at the corpus level.

To create such resources, we propose a form of
lexical bootstrapping. We assume that the prob-
abilities calculated on the basis of a weak classifier
applied to a large unlabeled corpus are sufficient
for our task. Therefore, we trained classifiers for
all classes and applied them to a 30-million word
corpus extracted from MEDLINE (1999), using the
search term [’blood cell” or "transcription factor™].
This automatically annotated corpus was used to
create a corpus specific lexicon containing about
95,000 word forms. For all these entries, we ex-
tracted the total frequency of being tagged with a
particular label and the relative frequency of being
tagged with a discretized decision value by the
SVM classifiers, i.e. we set five thresholds and
counted how often an item was labelled with a
decision value fulfilling a particular threshold.

Both techniques completely failed: Neither the
utilization of the discourse-level, nor the lexical
bootstrapping had a positive impact when applied
to the biomedical domain. This raises the question
on the specifics of the biomedical domain.

The utilization of the discourse-level is proved
of value in most NE-tasks, thus the failure within
the biomedical domain is surprising. The one-
sense-per-discourse tendency is obviously weaker
in the biomedical domain, since genes and proteins
can share the same name and be mentioned in the
same abstract. Additionally, the NEs occurring
within the GENIA corpus consist in average of

94

more than two words and seem to be diverse in
their appearance, even within one document. For
almost every word form, even brackets and stop-
words can be a part of an NE, it is a great deal of
work to develop heuristics improving recall with-
out lowering precision dramatically. Moreover, the
method is highly sensitive to precision errors, as it
spreads out elements tagged incorrectly. Further-
more, it is questionable if abstracts — due to their
enormous density and shortness — are appropriate
text units for this method.

The failure of the lexical bootstrapping is more
difficult to interpret since this technique is not that
well-tested. In our experiments, it was successfully
applied to German person names and also had
some positive impact on German organization and
location names. One source of problems can be
seen in the low precision of the classifier used to
create the annotated corpus. We assume that a
high-precision and low-recall classifier will pro-
duce better lexical resources. Another source can
be seen in the complexity and the length of bio-
logical names. The restriction to single words is
probably not appropriate for the bootstrapping
process. For future research, we will investigate
the bootstrapping of external evidence, i.e. we will
not focus on the learning of names, but rather on
the units that indicate the beginning or the end of a
name-class.

5 Evaluation

All the evaluation was conducted on the corpus
made available for the shared task Bio-Entity Rec-
ognition. All configurations were trained on the
2000 abstracts provided, i.e. 500,000 words to train
and we finally evaluated them on the 100,000
words evaluation data. Table 2 shows the scores
for the different classifiers and components in the
first rows, and the performance of the best
configuration evaluated for each NE-class.

On the basis of the scores in Table 2 it is possi-
ble to discuss the impact and values of the different
components of the system.

Using the surface words instead of f3, the sub-
word-form representation with positional character
n-grams leads to a decrease of more than 2 points
in terms of recall and precision.

The f-score of the Markov Model, trained on the
word forms, is almost comparable to the basic
SVM-configuration f1-f3, but the precision of the
SVM is higher.

The post-processing component cannot be ap-
plied to the output of the Markov Model, as the
definition of the revisability is specifically de-
signed for the output of the seven SVM-classifiers.
The post-processing component shows very good
results and leads to an increase of 4 points almost



equal for precision and recall, i.e. the component is
able to address the boundary detection problem by
means of the definition of the revisability of a tag
with regard to a competing tag.
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DNA X | X | X | x| x |57.9]52.6 |55.1
cell type | X | X | x | x | x |62.7]70.6 |66.5
RNA X | X | x| x| x [44.1]495 |46.7
Table 2: Overall scores and scores for each NE

class. See Table 1 for the feature sets f1-f4; post-
Proc refers to the second post-processing compo-
nent described in Section 3.

Combining the basic SVM-configuration f1-f3
with f4, the probabilities calculated by the Markov
Model, leads to a slight increase compared to the
post-processing component. We are convinced that
both the post processing and the Markov Model
cover similar phenomena by supporting the SVM
to detect the correct boundaries.

The combination of all feature sets f1-f4 with the
post-processing leads to a further increase of 1
point, demonstrating the ability of the SVM to
optimize its predictions on heterogeneous knowl-
edge sources.

6  Conclusion

We have demonstrated the adaptation of an NE
tagger originally developed for German to the
biomedical domain. We believe that the process of
adaptation is able to sketch out some interesting
aspects of the new domain.

The names of the biomedical domain have mor-
phological features that can be covered by the sub-
word-form representation with positional character
n-grams.

The failure of the techniques based on the three-
level model indicate that the polysemic and
homonymic items and the complexity of biological
names hamper or even inhibit a further
optimization of models based on simple n-grams of
words. We believe that the consideration of more

2 Instead of the positional character n-grams the sys-
tem is trained on surface words.
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complex units and longer distant phenomena will
lead to further progress in NE-tagging. For the
biomedical domain, the work of Takeuchi and
Collier (2003) demonstrates the successful
incorporation of shallow parsing.

For future research, we plan to address these is-
sues by focusing on learning external evidence, i.e.
triggers and longer-distant phenomena from unla-
beled texts.
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