
Annotating Multiple Types of Biomedical Entities:  
A Single Word Classification Approach 

Chih Lee, Wen-Juan Hou and Hsin-Hsi Chen 
Natural Language Processing Laboratory 

Department of Computer Science and Information Engineering 
National Taiwan University  

1 Roosevelt Road, Section 4, Taipei, Taiwan, 106 
{clee, wjhou}@nlg.csie.ntu.edu.tw, hh_chen@csie.ntu.edu.tw 

 

Abstract 

Named entity recognition is a fundamental 
task in biomedical data mining.  Multiple -class 
annotation is more challenging than single -
class annotation.  In this paper, we took a 
single word classification approach to dealing 
with the multiple -class annotation problem 
using Support Vector Machines (SVMs).  
Word attributes, results of existing 
gene/protein name taggers, context, and other 
information are important features for 
classification.  During training, the size of 
training data and the distribution of named 
entities are considered.  The preliminary 
results showed that the approach might be 
feasible when more training data is used to 
alleviate the data imbalance problem. 

1 Introduction 

The volumn of on-line material in the biomedical 
field has been growing steadily for more than 20 
years.  Several attempts have been made to mine 
knowledge from biomedical documents, such as 
identifying gene/protein names, recognizing 
protein interactions, and capturing specific 
relations in databases.  Among these, named entity 
recognition is a fundamental step to mine 
knowledge from biological articles. 

Previous approaches on biological named entity 
extraction can be classified into two types – rule-
based (Fukuda et al., 1998; Olsson et al., 2002; 
Tanabe and Wilbur, 2002) and corpus-based 
(Collier et al., 2000; Chang et al., 2004).  Yapex 
(Olsson et al., 2002) implemented some heuristic 
steps described by Fukuda, et al., and applied 
filters and knowledge bases to remove false alarms.  
Syntactic information obtained from the parser was 
incorporated as well.  GAPSCORE (Chang et al., 
2004) scored words on the basis of statistical 
models that quantified their appearance, 
morphology and context.  The models includes 
Naive Bayes (Manning and Schutze, 1999), 
Maximum Entropy (Ratnaparkhi, 1998) and 

Support Vector Machines (Burges, 1998).  
GAPSCORE also used Brill’s tagger (Brill, 1994) 
to get the POS tag to filter out some words that are 
clearly not gene or protein names.  Efforts have 
been made (Hou and Chen, 2002, 2003; Tsuruoka 
and Tsujii, 2003) to improve the performance.  The 
nature of classification makes it possible to 
integrate existing approaches by extracting good 
features from them.  Several works employing 
SVM classifier have been done (Kazama et al., 
2002; Lee et al., 2003; Takeuchi and Collier, 2003; 
Yamamoto et al., 2003), and will be discussed 
further in the rest of this paper. 

Collocation denotes two or more words having 
strong relationships (Manning and Schutze, 1999).  
Hou and Chen (2003) showed that protein/gene 
collocates are capable of assisting existing 
protein/gene taggers.  In this paper, we addressed 
this task as a multi-class classification problem 
with SVMs and extended the idea of collocation to 
generate features at word and pattern level in our 
method.  Existing protein/gene recognizers were 
used to perform feature extraction as well. 

The rest of this paper is organized as follows.  
The methods used in this study are introduced in 
Section 2.  The experimental results are shown and 
discussed in Section 3.  Finally, Section 4 
concludes the remarks and lists some future works. 

2 Methods  

Most of the works in the past on recognizing 
named entities in the biomedical domain focused 
on identifying a single type of entities like protein 
and/or gene names.  It is obviously more 
challenging to annotate multiple types of named 
entities simultaneously.  Intuitively, one can 
develop a specific recognizer for each type of 
named entities, run the recognizers one by one to 
annotate all types of named entities, and merge the 
results.  The problem results from the boundary 
decision and the annotation conflicts.  Instead of 
constructing five individual recognizers, we 
regarded the multiple -class annotation as a 
classification problem, and tried to learn a 

80



classifier capable of identifying all the five types of 
named entities. 

Before classification, we have to decide the unit 
of classification.  Since it is difficult to correctly 
mark the boundary of a name to be identified, the 
simplest way is to consider an individual word as 
an instance and assign a type to it.  After the type 
assignment, continuous words of the same type 
will be marked as a complete named entity of that 
type.  The feature extraction process will be 
described in the following subsections. 

2.1 Feature Extraction 

The first step in classification is to extract 
informative and useful features to represent an 
instance to be classified.  In our work, one word is 
represented by the attributes carried per se, the 
attributes contributed by two surrounding words, 
and other contextual information.  The details are 
as follows. 

2.1.1 Word Attributes 
The word “attribute” is sometimes used 
interchangeably with “feature”, but in this article 
they denote two different concepts.  Features are 
those used to represent a classification instance, 
and the information enclosed in the features is not 
necessarily contributed by the word itself.  
Attributes are defined to be the information that 
can be derived from the word alone in this paper. 

The attributes assigned to each word are whether 
it is part of a gene/protein name, whether it is part 
of a species name, whether it is part of a tissue 
name, whether it is a stop word, whether it is a 
number, whether it is punctuation, and the part of 
speech of this word.  Instead of using a lexicon for 
gene/protein name annotation, we employed two 
gene/protein name taggers, Yapex and 
GAPSCORE, to do this job.  As for part of speech 
tagging, Brill’s part of speech tagger was adopted. 

2.1.2 Context Information Preparation 
Contextual information has been shown helpful in 
annotating gene/protein names, and therefore two 
strategies for extracting contextual information at 
different levels are used.  One is the usual practice 
at a word level, and the other is at a pattern level.  
Since the training data released in the beginning 
does not define the abstract boundary, we have to 
assume that sentences are independent of each 
other, and the contextual information extraction 
was thus limited to be within a sentence. 

For contextual information extraction at word 
level (Hou and Chen, 2003), collocates along with 
4 statistics including frequency, the average and 
standard error of distance between word and entity 
and t-test score, were extracted.  The frequency 
and t-test score were normalized to [0, 1].  Five 

lists of collocates were obtained for cell-line, cell-
type, DNA, RNA, and protein, respectively. 

As for contextual information extraction at 
pattern level, we first gathered a list of words 
constituting a specific type of named entities.  
Then a hierarchical clustering with cutoff threshold 
was performed on the words. Edit distance was 
adopted as the measure of dissimilarity (see Figure 
1). Afterwards, common substrings were obtained 
to form the list of patterns.  With a list of patterns 
at hand, we estimated the pattern distribution, the 
occurrence frequencies at and around the current 
position, given the type of word at the current 
position.  Figure 2 showed an example of the 
estimated distribution.  The average KL-
Divergence between any two distributions was 
computed to discriminate the power of each pattern.  
The formula is as follows: 

1 1,

1
( || )

( 1)

n n

i j
i j j i

D p p
n n = = ≠− ∑ ∑ , where pi and pj 

are the distributions of a pattern given the word at 
position 0 being type i and j, respectively. 

 
Figure 1: Example of common substring extraction 

 
Figure 2: Pattern distributions given the type of 

word at position 0 

2.2 Constructing Training Data 

For each word in a sentence, the attributes of the 
word and the two adjacent words are put into the 
feature vector.  Then, the left five and the right five 
words are searched for previously extracted 
collocates.  The 15 variables thus added are shown 
below. 

5

5, 0

( | )i
i i

Freq w type
=− ≠
∑

 
5

5, 0

_ ( | )i
i i

t test score w type
=− ≠

−∑  

81



5

, ,
5, 0

ˆ?( | , )
i iw type w type

i i

f i µ σ
=− ≠
∑ , where f is the pdf of 

normal distribution, type is one of the five types, wi 
denotes the surrounding words,

,
ˆ

itypewµ and 
,

ˆ
itypewσ are 

the maximum likelihood estimates of mean and 
standard deviation for wi given the type. Next, the 
left three and right three words along with the 
current word are searched for patterns, adding 6 
variables to the feature vector. 

3

3

Prob ( | )
wi

p
i p P

i type
=− ∈
∑ ∑ , where type is one of the 

six types including ‘O’, 
iwP is the set of patterns 

matching wi, Prob p  denotes the pmf for pattern p.  
Finally, the type of the previous word is added to 
the feature vector, mimicking the concept of a 
stochastic model. 

2.3 Classification 

Support Vector Machines classification with radial 
basis kernel was adopted in this task, and the 
package LIBSVM – A Library for Support Vector 
Machines (Hsu et al., 2003) was used for training 
and prediction. The penalty coefficient C in 
optimization and gamma in kernel function were 
tuned using a script provided in this package. 

The constructed training data contains 492,551 
instances, which is too large for training.  Also, the 
training data is extremely unbalanced (see Table 1) 
and this is a known problem in SVMs 
classification.  Therefore, we performed stratified 
sampling to form a smaller and balanced data set 
for training. 

Type # of instances (words) 
cell-type 15,466 
DNA 25,307 
cell-line 11,217 
RNA 2,481 
protein 55,117 
O 382,963 

Table 1: Number of instances for each type 

3 Results and Discussion 

Since there is a huge amount of training instances 
and we do not have enough time to tune the 
parameters and train a model with all the training 
instances available, we first randomly selected one 
tenth and one fourth of the complete training data.  
The results, as we expected, showed that model 
trained with more instances performed better (see 
Table 2).  However, we noticed that the 
performances vary among the 6 types and one of 

the possible causes is the imbalance of training 
data among classes (see Table 1). Therefore we 
decided to balance the training data. 

First, the training data was constructed to 
comprise equal number of instances from each 
class.  However, it didn’t perform well and lots of 
type ‘O’ words were misclassified, indicating that 
using only less than 1% of type ‘O’ training 
instances is not sufficient to train a good model.  
Thus two more models were trained to see if the 
performance can be enhanced.  One model has 
slightly more type ‘O’ instances than the equally 
balanced one, and the other model has the ratio 
among classes being 4:8:4:1:8:16.  The results 
showed increase in recall but drop in precision. 

Kazama et al. (2002) addressed the data 
imbalance problem and sped up the training 
process by splitting the type ‘O’ instances into sub-
classes using part-of-speech information.  However, 
we missed their work while we were doing this 
task, and hence didn’t have the chance to use and 
extend this idea. 

After carefully examining the classification 
results, we found that many of the ‘DNA’ 
instances were classified as ‘protein’ and many of 
the ‘protein’ instances were classified as ‘DNA’.  
For example, 904 out of 2,845 ‘DNA’ instances 
were categorized as ‘protein’ under ‘model 1/4’.  
The reason may be that Yapex and GAPSCORE do 
not distinguish gene name from protein names.  
Even humans don’t do very well at this 
(Krauthammer et al., 2002). 

We originally planned to verify the contribution 
of each type of features. For example, how much 
noise was introduced by using existing taggers 
instead of lexicons. This would have helped gain 
more insights into the proposed features. 

4 Conclusion and Future work 

This paper presented the preliminary results of our 
study.  We introduced the use of existing taggers 
and presented a way to collect common substrings 
shared by entities.  Due to lack of time, the models 
were not well tuned against the two parameters – C 
and gamma, influencing the capabilities of the 
models.  Further, not all of the training instances 
provided were used to train the model, and it will 
be interesting and worthwhile to investigate.  How 
to deal with data imbalance is another important 
issue.  By solving this problem, further evaluation 
of feature effectiveness would be facilitated.  We 
believe there is much left for our approach to 
improve and it may perform better if more time is 
given. 

82



References  

E. Brill. 1994. Some Advances in Transformation-
Based Part of Speech Tagging. Proceedings of 
the National Conference on Artificial 
Intelligence. AAAI Press; 722-727. 

C. Burges. 1998. A Tutorial on Support Vector 
Machines for Pattern Recognition. Data Mining 
and Knowledge Discovery, 2: 121-167. 

J.T. Chang, H. Schutze and R.B. Altman. 2004. 
GAPSCORE: Finding Gene and Protein Names 
One Word at a Time. Bioinformatics, 20(2): 216-
225. 

N. Collier, C. Nobata and J.I. Tsujii. 2000. 
Extracting the Names of Genes and Gene 
Products with a Hidden Markov Model. 
Proceedings of 18 th International Conference on 
Computational Linguistics, 201-207. 

K. Fukuda, T. Tsunoda, A. Tamura and T. Takagi. 
1998. Toward Information Extraction: 
Identifying Protein Names from Biological 
Papers. Proceedings of Pacific Symposium on 
Biocomputing, 707-718. 

W.J. Hou and H.H. Chen 2002. Extracting 
Biological Keywords from Scientific Text. 
Proceedings of 13 th International Conference on 
Genome Informatics; 571-573. 

W.J. Hou and H.H. Chen. 2003. Enhancing 
Performance of Protein Name Recognizers 
Using Collocation. Proceedings of the ACL 2003 
Workshop on NLP in Biomedicine, 25-32. 

C.W. Hsu, C.C Chang and C.J. Lin. 2003. A 
Practical Guide to Support Vector Classification. 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.h
tml. 

J. Kazama, T. Makino, Y. Ohta and J. Tsujii. 2002. 
Tuning Support Vector Machines for Biomedical 
Named Entity Recognition. Proceedings of the 

ACL 2002 workshop on NLP in the Biomedical 
Domain , 1-8. 

M. Krauthammer, P. Kra, I. Iossifov, S.M. Gomez, 
G. Hripcsak, V. Hatzivassiloglou, C. Friedman 
and A. Rzhetsky. 2002. Of truth and pathways: 
chasing bits of information through myriads of 
articles. Bioinformatics, 18(sup.1):S249-S257. 

K.J. Lee, Y.S. Hwang and H.C. Rim. 2003. Two-
Phase Biomedical NE Recognition based on 
SVMs. Proceedings of the ACL 2003 Workshop 
on NLP in Biomedicine, 33-40. 

C.D. Manning and H. Schutze. 1999. Foundations 
of Statistical Natural Language Processing. MIT 
Press. 

F. Olsson, G. Eriksson, K. Franzen, L. Asker and P. 
Liden. 2002. Notions of Correctness when 
Evaluating Protein Name Taggers. Proceedings 
of the 19th International Conference on 
Computational Linguistics, 765-771. 

A. Ratnaparkrhi. 1998. Maximum Entropy Models 
for Natural Language Ambiguity Resolution. 
PhD Thesis, University of Pennsylvania. 

K. Takeuchi and N. Collier. 2003. Bio-Medical 
Entity Extraction using Support Vector 
Machines. Proceedings of the ACL 2003 
workshop on NLP in Biomedicine, 57-64. 

L. Tanabe and W.J. Wilbur. 2002. Tagging Gene 
and Protein Names in Biomedical Text. 
Bioimformatics, 18(8) : 1124-1132. 

Y. Tsuruoka and J. Tsujii. 2003. Boosting 
Precision and Recall of Dictionary-based Protein 
Name Recognition. Proceedings of the ACL 
2003 Workshop on NLP in Biomedicine, 41-48. 

K. Yamamoto, T. Kudo, A. Konagaya and Y. 
Matsumoto. 2003. Protein Name Tagging for 
Biomedical Annotation in Text. Proceedings of 
the ACL 2003 workshop on NLP in Biomedicine, 
65-72.

 Model 1/10 Model 1/4    
 Recall Prec. F-score Recall Prec. F-score Recall Prec. F-score 

Full (Object) 0.4756 0.4399 0.4571 0.5080 0.4759 0.4914    
Full (protein) 0.5846 0.4392 0.5016 0.6213 0.4614 0.5296    
Full (cell-line) 0.2420 0.2909 0.2642 0.2820 0.3341 0.3059    

Full (DNA) 0.2784 0.3249 0.2998 0.2888 0.4479 0.3512    
Full (cell-type) 0.3863 0.5752 0.4622 0.4196 0.6115 0.4977    

Full (RNA) 0.0085 0.1000 0.0156 0.0000 0.0000 0.0000    
 Model balanced equally Model slightly more ‘O’ Model 4:8:4:1:8:16 

Full (Object) 0.1480 0.0990 0.1186 0.1512 0.1002 0.1206 0.5036 0.3936 0.4419 
Full (protein) 0.1451 0.1533 0.1491 0.1458 0.1527 0.1492 0.5629 0.4280 0.4863 
Full (cell-line) 0.1580 0.0651 0.0922 0.2280 0.0319 0.0560 0.4060 0.2261 0.2904 

Full (DNA) 0.1326 0.0466 0.0690 0.1591 0.0582 0.0852 0.3759 0.2457 0.2972 
Full (cell-type) 0.1650 0.1375 0.1500 0.1494 0.1908 0.1676 0.4701 0.4900 0.4798 

Full (RNA) 0.0932 0.0067 0.0126 0.0169 0.0075 0.0104 0.0593 0.1148 0.0782 

Table 2: Performance of each model (only FULL is shown) 

83




