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ABSTRACT 
In this paper, we present a named entity 
recognition system in the biomedical domain, 
called PowerBioNE. In order to deal with the 
special phenomena in the biomedical domain, 
various evidential features are proposed and 
integrated through a Hidden Markov Model 
(HMM). In addition, a Support Vector Machine 
(SVM) plus sigmoid is proposed to resolve the 
data sparseness problem in our system. Finally, 
we present two post-processing modules to deal 
with the cascaded entity name and abbreviation 
phenomena. Evaluation shows that our system 
achieves the F-measure of 69.1 and 71.2 on the 23 
classes of GENIA V1.1 and V3.0 respectively. In 
particular, our system achieves the F-measure of 
77.8 on the “protein” class of GENIA V3.0. It 
shows that our system outperforms the best 
published system on GENIA V1.1 and V3.0. 

1. INTRODUCTION 
With an overwhelming amount of textual 
information in molecular biology and biomedicine, 
there is a need for effective and efficient literature 
mining and knowledge discovery that can help 
biologists to gather and make use of the knowledge 
encoded in text documents. In order to make 
organized and structured information available, 
automatically recognizing biomedical entity names 
becomes critical and is important for protein-
protein interaction extraction, pathway 
construction, automatic database curation, etc. 

Such a task, called named entity recognition, 
has been well developed in the Information 
Extraction literature (MUC-6; MUC-7). In MUC, 
the task of named entity recognition is to recognize 
the names of persons, locations, organizations, etc. 
in the newswire domain. In the biomedical domain, 
we care about entities like gene, protein, virus, etc. 
In recent years, many explorations have been done 
to port existing named entity recognition systems 
into the biomedical domain (Kazama et al 2002; 
Lee et al 2003; Shen et al 2003; Zhou et al 2004). 
However, few of them have achieved satisfactory 
performance due to the special characteristics in 

the biomedical domain, such as long and 
descriptive naming conventions, conjunctive and 
disjunctive structure, causal naming convention 
and rapidly emerging new biomedical names, 
abbreviation, and cascaded construction. On all 
accounts, we can say that the entity names in the 
biomedical domain are much more complex than 
those in the newswire domain.  

In this paper, we present a named entity 
recognition system in the biomedical domain, 
called PowerBioNE. In order to deal with the 
special phenomena in the biomedical domain, 
various evidential features are proposed and 
integrated effectively and efficiently through a 
Hidden Markov Model (HMM). In addition, a 
Support Vector Machine (SVM) plus sigmoid is 
proposed to resolve the data sparseness problem in 
our system. Finally, we present two post-
processing modules to deal with the cascaded 
entity name and abbreviation phenomena to further 
improve the performance.  

All of our experiments are done on the GENIA 
corpus, which is the largest annotated corpus in the 
molecular biology domain available to public 
(Ohta et al. 2002).  In our experiments, two 
versions are used: 1) Genia V1.1 which contains     
670 MEDLINE abstracts of 123K words; 2) Genia 
V3.0 which is a superset of GENIA V1.1 and 
contains 2000 MEDLINE abstracts of 360K words. 
The annotation of biomedical entities is based on 
the GENIA ontology (Ohta et al. 2002), which 
includes 23 distinct classes: multi-cell, mono-cell, 
virus, body part, tissue, cell type, cell component, 
organism, cell line, other artificial source, protein, 
peptide, amino acid monomer, DNA, RNA, poly 
nucleotide, nucleotide, lipid, carbohydrate, other 
organic compound, inorganic, atom and other. 

2. FEATURES 
In order to deal with the special phenomena in the 
biomedical domain, various evidential features are 
explored. 
• Word Formation Pattern (FWFP): The purpose 
of this feature is to capture capitalization, 
digitalization and other word formation 
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information. This feature has been widely used in 
the biomedical domain (Kazama et al 2002; Shen 
et al 2003; Zhou et al 2004). In this paper, the 
same feature as in Shen et al 2003 is used. 
• Morphological Pattern (FMP): Morphological 
information, such as prefix and suffix, is 
considered as an important cue for terminology 
identification and has been widely applied in the 
biomedical domain (Kazama et al 2002; Lee et al 
2003; Shen et al 2003; Zhou et al 2004).  Same as 
Shen et al 2003, we use a statistical method to get 
the most useful prefixes/suffixes from the training 
data.  
• Part-of-Speech (FPOS): Since many of the 
words in biomedical entity names are in lowercase, 
capitalization information in the biomedical 
domain is not as evidential as that in the newswire 
domain. Moreover, many biomedical entity names 
are descriptive and very long. Therefore, POS may 
provide useful evidence about the boundaries of 
biomedical entity names. 
• Head Noun Trigger (FHEAD): The head noun, 
which is the major noun of a noun phrase, often 
describes the function or the property of the noun 
phrase. In this paper, we automatically extract 
unigram and bigram head nouns from the training 
data, and rank them by frequency. For each entity 
class, we select 50% of top ranked head nouns as 
head noun triggers.  Table 1 shows some of the 
examples.  

Table 1: Examples of auto-generated head nouns 
Class Unigram  bigram  

interleukin activator protein 
interferon binding protein 

PROTEIN 

kinase cell receptor 
DNA X chromosome 
cDNA binding motif 

DNA 

chromosome promoter element 

• Name Alias Feature (FALIAS): Besides the 
above widely used features, we also propose a 
novel name alias feature. The intuition behind this 
feature is the name alias phenomenon that relevant 
entities will be referred to in many ways 
throughout a given text and thus success of named 
entity recognition is conditional on success at 
determining when one noun phrase refers to the 
very same entity as another noun phrase.  

During decoding, the entity names already 
recognized from the previous sentences of the 
document are stored in a list. When the system 
encounters an entity name candidate (e.g. a word 
with a special word formation pattern), a name 
alias algorithm (similar to Schwartz et al 2003) is 
invoked to first dynamically determine whether the 
entity name candidate might be alias for a 

previously recognized name in the recognized list. 
This is done by checking whether all the characters 
in the entity name candidate exist in a recognized 
entity name in the same order and whether the first 
character in the entity name candidate is same as 
the first character in the recognized name. For a 
relevant work, please see Jacquemin (2001). The 
name alias feature FALIAS is represented as 
ENTITYnLm (L indicates the locality of the name 
alias phenomenon). Here ENTITY indicates the 
class of the recognized entity name and n indicates 
the number of the words in the recognized entity 
name while m indicates the number of the words in 
the recognized entity name from which the name 
alias candidate is formed.  For example, when the 
decoding process encounters the word “TCF”, the 
word “TCF” is proposed as an entity name 
candidate and the name alias algorithm is invoked 
to check if the word “TCF” is an alias of a 
recognized named entity. If “T cell Factor” is a 
“Protein” name recognized earlier in the 
document, the word “TCF” is determined as an 
alias of “T cell Factor” with the name alias feature 
Protein3L3 by taking the three initial letters of the 
three-word “protein” name “T cell Factor”. 

3. METHODS 
3.1 Hidden Markov Model 

Given above various features, the key problem is 
how to effectively and efficiently integrate them 
together and find the optimal resolution to 
biomedical named entity recognition. Here, we use 
the Hidden Markov Model (HMM) as described in 
Zhou et al 2002.  A HMM is a model where a 
sequence of outputs is generated in addition to the 
Markov state sequence. It is a latent variable model 
in the sense that only the output sequence is 
observed while the state sequence remains 
“hidden”. 

Given an observation sequence O , 
the purpose of a HMM is to find the most likely 
state sequence S  that maximizes 
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The second term in Equation (1) is the mutual 
information between S  and . In order to 
simplify the computation of this term, we assume 
mutual information independence:  
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That is, an individual tag is only dependent on the 
output sequence O  and independent on other tags 
in the tag sequence S . This assumption is 
reasonable because the dependence among the tags 
in the tag sequence S  has already been captured 
by the first term in Equation (1).  Applying the 
assumption (2) to Equation (1), we have: 
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From Equation (3), we can see that: 
• The first term can be computed by applying 
chain rules. In ngram modeling (Chen et al 1996), 
each tag is assumed to be dependent on the N-1 
previous tags.  
• The second term is the summation of log 
probabilities of all the individual tags. 
• The third term corresponds to the “lexical” 
component (dictionary) of the tagger.   

The idea behind the model is that it tries to 
assign each output an appropriate tag (state), which 
contains boundary and class information.  For 
example, “TCF 1 binds stronger than NF kB to 
TCEd DNA”. The tag assigned to token “TCF” 
should indicate that it is at the beginning of an 
entity name and it belongs to the “Protein” class; 
and the tag assigned to token “binds” should 
indicate that it does not belong to an entity name.  
Here, the Viterbi algorithm (Viterbi 1967) is 
implemented to find the most likely tag sequence.  

The problem with the above HMM lies in the 
data sparseness problem raised by P  in the 
third term of Equation (3). Ideally, we would have 
sufficient training data for every event whose 
conditional probability we wish to calculate. 
Unfortunately, there is rarely enough training data 
to compute accurate probabilities when decoding 
on new data. Generally, two smoothing approaches 
(Chen et al 1996) are applied to resolve this 
problem: linear interpolation and back-off. 
However, these two approaches only work well 
when the number of different information sources 
is limited. When a few features and/or a long 

context are considered, the number of different 
information sources is exponential. In this paper, a 
Support Vector Machine (SVM) plus sigmoid is 
proposed to resolve this problem in our system. 
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3.2 Support Vector Machine plus Sigmoid 

Support Vector Machines (SVMs) are a popular 
machine learning approach first presented by 
Vapnik (1995). Based on the structural risk 
minimization of statistical learning theory, SVMs 
seek an optimal separating hyper-plane to divide 
the training examples into two classes and make 
decisions based on support vectors which are 
selected as the only effective examples in the 
training set. However, SVMs produce an un-
calibrated value that is not probability. That is, the 
unthresholded output of an SVM can be 
represented as 
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To map the SVM output into the probability, we 
train an additional sigmoid model(Platt 1999): 
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Basically, SVMs are binary classifiers. 
Therefore, we must extend SVMs to multi-class 
(e.g. K) classifiers. For efficiency, we apply the 
one vs. others strategy, which builds K classifiers 
so as to separate one class from all others, instead 
of the pairwise strategy, which builds K*(K-1)/2 
classifiers considering all pairs of classes. 
Moreover, we only apply the simple linear kernel, 
although other kernels (e.g. polynomial kernel) and 
pairwise strategy can have better performance. 
Finally, for each state s , there is one sigmoid 

. Therefore, the sigmoid outputs are 
normalized to get a probability distribution using 
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3.3 Post-Processing 

Two post-processing modules, namely cascaded 
entity name resolution and abbreviation resolution, 
are applied in our system to further improve the 
performance. 

Cascaded Entity Name Resolution 
It is found (Shen et al 2003) that 16.57% of entity 
names in GENIA V3.0 have cascaded 
constructions, e.g.  

<RNA><DNA>CIITA</DNA> mRNA</RNA>.   
Therefore, it is important to resolve such 
phenomenon.  

Here, a pattern-based module is proposed to 
resolve the cascaded entity names while the above 
HMM is applied to recognize embedded entity 
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names and non-cascaded entity names. In the 
GENIA corpus, we find that there are six useful 
patterns of cascaded entity name constructions: 
• <ENTITY> := <ENTITY> + head noun, e.g. 

<PROTEIN> binding motif <DNA> 
• <ENTITY> := <ENTITY>  + <ENTITY>, e.g. 

<LIPID> <PROTEIN> <PROTEIN> 
• <ENTITY> := modifier + <ENTITY>, e.g.          

anti <Protein> <Protein> 
• <ENTITY> := <ENTITY>  + word + 

<ENTITY>, e.g. 
<VIRUS> infected 

<MULTICELL> <MULTICELL > 
• <ENTITY> :=  modifier + <ENTITY> + head 

noun 
• <ENTITY> := <ENTITY> +  <ENTITY>  + 

head noun 
In our experiments, all the rules of above six 

patterns are extracted from the cascaded entity 
names in the training data to deal with the 
cascaded entity name phenomenon. 

Abbreviation Resolution 
While the name alias feature is useful to detect the 
inter-sentential name alias phenomenon, it is 
unable to identify the inner-sentential name alias 
phenomenon: the inner-sentential abbreviation.  
Such abbreviations widely occur in the biomedical 
domain.   

In our system, we present an effective and 
efficient algorithm to recognize the inner-sentential 
abbreviations more accurately by mapping them to 
their full expanded forms. In the GENIA corpus, 
we observe that the expanded form and its 
abbreviation often occur together via parentheses. 
Generally, there are two patterns: “expanded form 
(abbreviation)” and “abbreviation (expanded 
form)”.  

Our algorithm is based on the fact that it is 
much harder to classify an abbreviation than its 
expanded form. Generally, the expanded form is 
more evidential than its abbreviation to determine 
its class.  The algorithm works as follows: Given a 
sentence with parentheses, we use a similar 
algorithm as in Schwartz et al 2003 to determine 
whether it is an abbreviation with parentheses. This 
is done by starting from the end of both the 
abbreviation and the expanded form, moving from 
right to left and trying to find the shortest 
expanded form that matches the abbreviation. Any 
character in the expanded form can match a 
character in the abbreviation with one exception: 
the match of the character at the beginning of the 
abbreviation must match the first alphabetic 
character of the first word in the expanded form. If 
yes, we remove the abbreviation and the 
parentheses from the sentence. After the sentence 

is processed, we restore the abbreviation with 
parentheses to its original position in the sentence.  
Then, the abbreviation is classified as the same 
class of the expanded form, if the expanded form is 
recognized as an entity name. In the meanwhile, 
we also adjust the boundaries of the expanded form 
according to the abbreviation, if necessary. Finally, 
the expanded form and its abbreviation are stored 
in the recognized list of biomedical entity names 
from the document to help the resolution of 
forthcoming occurrences of the same abbreviation 
in the document. 

4. EXPERIMENTS AND EVALUATION 
We evaluate our PowerBioNE system on GENIA 
V1.1 and GENIA V3.0 using precision/recall/F-
measure. For each evaluation, we select 20% of the 
corpus as the held-out test data and the remaining 
80% as the training data. All the experimentations 
are done 5 times and the evaluations are averaged 
over the held-out test data. For cascaded entity 
name resolution, an average of 59 and 97 rules are 
extracted from the cascaded entity names in the 
training data of GENIA V1.1 and V3.0 
respectively. For POS, all the POS taggers are 
trained on the training data with POS imported 
from the corresponding GENIA V3.02p with POS 
annotated. 

Table 2 shows the performance of our system 
on GENIA V1.1 and GENIA V3.0, and the 
comparison with that of the best reported system 
(Shen et al 2003). It shows that our system 
achieves the F-measure of 69.1 on GENIA V1.1 
and the F-measure of 71.2 on GENIA V3.0 
respectively, without help of any dictionaries. It 
also shows that our system outperforms Shen et al 
(2003) by 6.9 in F-measure on GENIA V1.1 and 
4.6 in F-measure on GENIA V3.0. This is largely 
due to the superiority of the SVM plus sigmoid in 
our system (improvement of 3.7 in F-measure on 
GENIA V3.0) over the back-off approach in Shen 
et al (2003) and the novel name alias feature 
(improvement of 1.2 in F-measure on GENIA 
V3.0). Finally, evaluation also shows that the 
cascaded entity name resolution and the 
abbreviation resolution contribute 3.4 and 2.1 
respectively in F-measure on GENIA V3.0. 

Table 2: Performance of our PowerBioNE system  
Performance P R F 

Shen et al on GENIA V3.0 66.5 66.6 66.6
Shen et al  on GENIA V1.1 63.1 61.2 62.2
Our system on GENIA V3.0 72.7 69.8 71.2
Our system on GENIA V1.1 70.4 67.9 69.1
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Table 3: Performance of different entity classes on 
GENIA V3.0 
Entity 
Class 

Number of instances in 
the training data 

F 

Cell Type 6034 81.8 
Lipid 1602 68.6 
Multi-Cell 1463 78.1 
Protein 21380 77.8 
DNA 7538 70.8 
Cell Line 3216 68.5 
RNA 695 56.2 
Virus 873 67.2 

One important question is about the 
performance of different entity classes. Table 3 
shows the performance of some of the biomedical 
entity classes on GENIA V3.0. Of particular 
interest, our system achieves the F-measure of 77.8 
on the class “Protein”. It shows that the 
performance varies a lot among different entity 
classes.  One reason may be due to different 
difficulties in recognizing different entity classes. 
Another reason may be due to the different 
numbers of instances in different entity classes. 
Though GENIA V3.0 provides a good basis for 
named entity recognition in the biomedical domain 
and probably the best available, it has clear bias. 
Table 3 shows that, while GENIA V3.0 is of 
enough size for recognizing the major classes, such 
as “Protein”, “Cell Type”, “Cell Line”, “Lipid” 
etc, it is of limited size in recognizing other classes, 
such as  “Virus”.  

5. ERROR ANALYSIS 
In order to further evaluate our system and explore 
possible improvement, we have implemented an 
error analysis. This is done by randomly choosing 
100 errors from our recognition results. During the 
error analysis, we find many errors are due to the 
strict annotation scheme and the annotation 
inconsistence in the GENIA corpus, and can be 
considered acceptable. Therefore, we will also 
examine the acceptable F-measure of our system, 
in particular, the acceptable F-measure on the 
“protein” class.  

All the 100 errors are classified as follows: 
• Left boundary errors (14): It includes the 
errors with correct class identification, correct right 
boundary detection and only wrong left boundary 
detection. We find that most of such errors come 
from the long and descriptive naming convention. 
We also find that 11 of 14 errors are acceptable 
and ignorance of the descriptive words often does 
not make a much difference for the entity names. 
In fact, it is even hard for biologists to decide 

whether the descriptive words should be a part of 
the entity names, such as “normal”, “activated”, 
etc.  In particular, 4 of 14 errors belong to the 
“protein” class. Among them, two errors are 
acceptable, e.g. “classical <PROTEIN>1,25 (OH) 
2D3 receptor</PROTEIN>” => 
“<PROTEIN>classical 1,25 (OH) 2D3 
receptor</PROTEIN>” (with format of 
“annotation in the corpus => identification made 
by our system”), while the other two are 
unacceptable, e.g. “<PROTEIN>viral 
transcription factor</PROTEIN> => viral 
<PROTEIN>transcription factor</PROTEIN>”. 
• Cascaded entity name errors (15): It includes 
the errors caused by the cascaded entity name 
phenomenon. We find that most of such errors 
come from the annotation inconsistence in the 
GENIA corpus: In some cases, only the embedded 
entity names are annotated while in other cases, the 
embedded entity names are not annotated. Our 
system tends to annotate both the embedded entity 
names and the whole entity names. Among them, 
we find that 13 of 16 errors are acceptable.  In 
particular, 2 of 16 errors belong to the “protein” 
class and both are acceptable, e.g. “<DNA>NF 
kappa B binding site</DNA>” => 
“<DNA><PROTEIN>NF kappa B</PROTEIN> 
binding site</DNA>”. 
• Misclassification errors (18): It includes the 
errors with wrong class identification, correct right 
boundary detection and correct left boundary 
detection. We find that this kind of errors mainly 
comes from the sense ambiguity of biomedical 
entity names and is very difficult to disambiguate. 
Among them, 8 errors are related with the “DNA” 
class and 6 errors are related with the “Cell Line” 
and “Cell Type” classes. We also find that only 3 
of 18 errors are acceptable. In particular, there are 
6 errors related to the “protein” class. Finally, we 
find that all the 6 errors are caused by 
misclassification of the “DNA” class to the 
“protein” class and all of them are unacceptable, 
e.g. “<DNA>type I IFN<DNA>” => 
“<PROTEIN>type I IFN</PROTEIN>”.  
• True negative (23): It includes the errors by 
missing the identification of biomedical entity 
names. We find that 16 errors come from the 
“other” class and 10 errors from the “protein” class. 
We also find that the GENIA corpus annotates 
some general noun phrases as biomedical entity 
names, e.g. “protein” in “the protein” and 
“cofactor” in “a cofactor”. Finally, we find that 11 
of 23 errors are acceptable. In particular, 9 of 23 
errors related to the “protein” class. Among them, 
3 errors are acceptable, e.g. “the 
<PROTEIN>protein</PROTEIN> => “the 
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protein”, while the other 6 are unacceptable, e.g. 
“ <PROTEIN>80 kDa</PROTEIN> => “80 kDa”. 
• False positive (15):  It includes the errors by 
wrongly identifying biomedical entity names 
which are not annotated in the GENIA corpus. We 
find that 9 of 15 errors come from the “other” class. 
This suggests that the annotation of the “other” 
class is much lack of consistency and most 
problematic in the GENIA corpus. We also find 
that 7 of 15 errors are acceptable. In particular, 2 of 
15 errors are related to the “protein” class and both 
are acceptable, e.g. “affinity sites”=> 
“<PROTEIN>affinity sites</PROTEIN>”. 
• Miscellaneous (14): It includes all the other 
errors, e.g. combination of the above errors and the 
errors caused by parentheses. We find that only 1 
of 14 errors is acceptable. We also find that, 
among them, 2 errors are related with the “protein” 
class and both are unacceptable, e.g. 
“<PROTEIN>17 amino acid 
epitope</PROTEIN>” => “17 <RNA>amino acid 
epitope</RNA>”. 

From above error analysis, we find that about 
half (46/100) of errors are acceptable and can be 
avoided by flexible annotation scheme (e.g. 
regarding the modifiers in the left boundaries) and 
consistent annotation (e.g. in the annotation of the 
“other” class and the cascaded entity name 
phenomenon). In particular, about one third (9/25) 
of errors are acceptable on the “protein” class. This 
means that the acceptable F-measure can reach 
about 84.4 on the 23 classes of GENIA V3.0. In 
particular, the acceptable F-measure on the 
“protein” class is about 85.8. In addition, this 
performance is achieved without using any extra 
resources (e.g. dictionaries). With help of extra 
resources, we think an acceptable F-measure of 
near 90 can be achieved in the near future. 

6. RELATED WORK 
Previous approaches in biomedical named entity 
recognition typically use some domain specific 
heuristic rules and heavily rely on existing 
dictionaries (Fukuda et al 1998, Proux et al 1998 
and Gaizauskas et al 2000). 

The current trend is to apply machine learning 
approaches in biomedical named entity recognition, 
largely due to the development of the GENIA 
corpus. The typical explorations include Kazama et 
al 2002, Lee et al 2003, Tsuruoka et al 2003, Shen 
et al 2003. Kazama et al 2002 applies SVM and 
incorporates a rich feature set, including word 
feature, POS, prefix feature, suffix feature, 
previous class feature, word cache feature and 
HMM state feature. The experiment on GENIA 
V1.1 shows the F-measure of 54.4. Tsuruoka et al 
2003 applies a dictionary-based approach and a 

naïve Bayes classifier to filter out false positives. It 
only evaluates against the “protein” class in 
GENIA V3.0, and receives the F-measure of 70.2 
with help of a large dictionary. Lee et al 2003 uses 
a two phase SVM-based recognition approach and 
incorporates word formation pattern and part-of-
speech. The evaluation on GENIA V3.0 shows the 
F-measure of 66.5 with help of an entity name 
dictionary. Shen et al 2003 proposes a HMM-based 
approach and two post-processing modules 
(cascaded entity name resolution and abbreviation 
resolution). Evaluation shows the F-measure of 
62.2 and 66.6 on GENIA V1.1 and V3.0 
respectively. 

7. CONCLUSION 
In the paper, we describe our HMM-based named 
entity recognition system in the biomedical domain, 
named PowerBioNE. Various lexical, 
morphological, syntactic, semantic and discourse 
features are incorporated to cope with the special 
phenomena in biomedical named entity recognition. 
In addition, a SVM plus sigmoid is proposed to 
effectively resolve the data sparseness problem. 
Finally, we present two post-processing modules to 
deal with cascaded entity name and abbreviation 
phenomena.  

The main contributions of our work are the 
novel name alias feature in the biomedical domain, 
the SVM plus sigmoid approach in the effective 
resolution of the data sparseness problem in our 
system and its integration with the Hidden Markov 
Model. 

In the near future, we will further improve the 
performance by investigating more on conjunction 
and disjunction construction, the synonym 
phenomenon, and exploration of extra resources 
(e.g. dictionary).  
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