
Event-Based Extractive Summarization

Elena Filatova
Department of Computer Science

Columbia University
New York, NY 10027, USA

filatova@cs.columbia.edu

Vasileios Hatzivassiloglou
Center for Computational Learning Systems

Columbia University
New York, NY 10027, USA
vh@cs.columbia.edu

Abstract
Most approaches to extractive summarization define
a set of features upon which selection of sentences
is based, using algorithms independent of the fea-
tures themselves. We propose a new set of features
based on low-level, atomic events that describe rela-
tionships between important actors in a document or
set of documents. We investigate the effect this new
feature has on extractive summarization, compared
with a baseline feature set consisting of the words
in the input documents, and with state-of-the-art
summarization systems. Our experimental results
indicate that not only the event-based features of-
fer an improvement in summary quality over words
as features, but that this effect is more pronounced
for more sophisticated summarization methods that
avoid redundancy in the output.

1 Introduction
The main goal of extractive summarization can be
concisely formulated as extracting from the input
pieces of text which contain the information about
the most important concepts mentioned in the input
text or texts. This definition conceals a lot of impor-
tant issues that should be taken into consideration
in the process of summary construction. First, it is
necessary to identify the important concepts which
should be described in the summary. When those
important concepts are identified then the process
of summarization can be presented as:

1. Break the input text into textual units (sen-
tences, paragraphs, etc.).

2. See what concepts each textual unit covers.

3. Choose a particular textual unit for the output
according to the concepts present in all textual
units.

4. Continue choosing textual units until reaching
the desired length of the summary.

Some current summarization systems add a clus-
tering step, substituting the analysis of all the textual

units by the analysis of representative units from
each cluster. Clustering is helpful for avoiding rep-
etitions in the summary.

In this paper we propose a new representation
for concepts and correspondingly a new feature on
which summarization can be based. We adapt the
algorithm we proposed earlier (Filatova and Hatzi-
vassiloglou, 2003) for assigning to each sentence
a list of low-level, atomic events. These events
capture information about important named entities
for the input text or texts, and the relationships be-
tween these named entities. We also discuss a gen-
eral model which treats summarization as a three-
component problem, involving the identification of
the textual units into which the input text should
be broken and which are later used as the con-
stituent parts of the final summary, the textual fea-
tures which are associated with the important con-
cepts described in the input text, and the appropri-
ate algorithm for selecting the textual units to be in-
cluded into the summary.

We focus on the latter two of those steps and ex-
plore interdependencies between the choice of fea-
tures (step 2) and selection algorithm (step 3). We
experimentally test our hypothesis that event-based
features are helpful for summarization by compar-
ing the performance of three sentence selection al-
gorithms when we use such features versus the case
where we use another, widely used set of textual
features: the words in the input texts, weighted by
their tf*idf scores. The results establish that for
the majority of document sets in our test collection,
events outperform tf*idf for all algorithms consid-
ered. Furthermore, we show that this benefit is more
pronounced when the selection algorithm includes
steps to address potential repetition of information
in the output summary.

2 General Summarization Model
Many summarization systems (e.g., (Teufel and
Moens, 1997; McKeown et al., 1999; Lin and Hovy,
2000)) include two levels of analysis: the sentence
level, where every textual unit is scored according to



c1 c2 c3 c4 c5

t1 1 1 0 1 1
t2 1 0 0 1 0
t3 0 1 0 0 1
t4 1 0 1 1 1

Table 1: Matrix for Summarization Model

the concepts or features it covers, and the text level,
where, before being added to the final output, tex-
tual units are compared to each other on the basis of
those features.

In Section 1 we presented a four-step pipeline
for extractive summarization; existing summariza-
tion systems largely follow this pipeline, although
they introduce different approaches for every step
in it. We suggest a model that describes the extrac-
tive summarization task in general terms. Consider
the matrix in Table 1.

Rows of this matrix represent all textual units into
which the input text is divided. Columns represent
the concepts discovered for the input text. Every
concept is either absent or present in a given textual
unit. Each concept ci has also an associated weight
wi indicating the importance of this concept. These
weights can be used for scoring the textual units.

Thus, the input text and the important informa-
tion in it is mapped onto an m×n matrix. Using the
above matrix it is possible to formulate the extrac-
tive summarization problem as extracting the mini-
mal amount of textual units which cover all the con-
cepts that are interesting or important. To account
for the cost of long summaries, we can constrain the
total length of the summary, or balance it against the
total weight of covered concepts.

The presented model can be also used for com-
paring summaries consisting of different textual
units. For example, a summary consisting only of
textual unit t1 renders the same information as the
summary consisting of textual units t2 and t3. Both
these summaries cover the same set of concepts,
namely c1, c2 and c3. We explore properties of
this model in more detail in (Filatova and Hatzivas-
siloglou, 2004).

3 Associating Concepts with Features

Before extracting a summary, it is necessary to de-
fine what concepts in the input text are important
and should be covered by the output text. There is
no exact definition or even agreement between dif-
ferent approaches on what an important concept is.
In order to use the model of Section 2 one has to
approximate the notion of “concept” with some tex-
tual features.

Current summarization approaches use text fea-
tures which give high scores to the textual units that
contain important information, and low scores to
those textual units which are not highly likely to
contain information worth to be included in the final
output.

There exist approaches that deal mainly with lex-
ical features, like tf*idf weighing of words in the
input text(s), words used in the titles and section
headings (Luhn, 1958; Edmundson, 1968), or the
presence or absence of certain cue phrases like sig-
nificant, important, and in conclusion (Kupiec et
al., 1995; Teufel and Moens, 1997). Other sys-
tems exploit the co-occurrence of particular con-
cepts (Barzilay and Elhadad, 1997; Lin and Hovy,
2000) or syntactic constraints between concepts
(McKeown et al., 1999). Concepts do not have to be
directly observable as text snippets—they can rep-
resent abstract properties that particular text units
may or may not satisfy, for example, status as a first
sentence in a paragraph or generally position in the
source text (Baxendale, 1958; Lin and Hovy, 1997).
Some summarization systems assume that the im-
portance of a sentence is derivable from a rhetorical
representation of the source text (Marcu, 1997).

The matrix representation of the previous section
offers a way to formalize the sharing of information
between textual units at the individual feature level.
Thus, this representation is most useful for content-
related concepts that should not be repeated in the
summary. The representation can however handle
independent features such as sentence position by
encoding them separately for each textual unit.

4 Atomic Events

Atomic events link major constituent parts of the
actions described in a text or collection of texts
through the verbs or action nouns labeling the event
itself. The idea behind this technique is that the
major constituent parts of events (participants, lo-
cations, times) are usually realized in text as named
entities. The more important the constituent part,
the more often the corresponding named entity is
mentioned.

Not all the constituent parts of events need to be
represented by named entities. For example, in an
airline crash it is important to report information
about the passengers and the crew. These are not
marked by named entities but are highly likely to be
among the most frequently used nouns. Thus, we
add the top ten most frequent nouns to the list of
named entities.

We use the algorithm for atomic event extraction
proposed in (Filatova and Hatzivassiloglou, 2003).



It involves the following steps:

1. Analyze each input sentence1 one at a time; ig-
nore sentences that do not contain at least two
named entities or frequent nouns.

2. Extract all the possible pairs of named enti-
ties/frequent nouns in the sentence, preserving
their order and all the words in between. We
call such pairs of named entities relations, and
the words in-between the named entities in a
relation connectors.

3. For each relation, count how many times this
relation is used in the input text(s).

4. Keep only connectors that are content verbs
or action nouns, according to WordNet’s (Fell-
baum, 1998) noun hierarchy. For each connec-
tor calculate how many times it is used for the
extracted relation.

After calculating the scores for all relations and
all connectors within each relation, we calculate
their normalized scores The normalized relation
score is the ratio of the count for the current rela-
tion (how many times we see the relation within a
sentence in the input) over the overall count of all
relations. The normalized connector score is the ra-
tio of the count for the current connector (how many
times we see this connector for the current relation)
over the overall count for all connectors for this re-
lation.

Thus, out of the above procedural definition, an
atomic event is a triplet of two named entities (or
frequent nouns) connected by a verb or an action-
denoting noun. To get a score for the atomic event
we multiply the normalized score for the relation by
the normalized score for the connector. The score
indicates how important the triplet is overall.

In the above approach to event detection we do
not address co-reference, neither we merge together
the triplets which describe the same event using
paraphrases, inflected forms and syntactic variants
(e.g., active/passive voice). Our method uses rel-
atively simple extraction techniques and shallow
statistics, but it is fully automatic and can serve as a
first approximation of the events in the input text(s).

Our approach to defining events is not the only
one proposed—this is a subject with substantial
work in linguistics, information retrieval, and infor-
mation extraction. In linguistics, events are often
defined at a fine-grained level as a matrix verb or a
single action noun like “war” (Pustejovsky, 2000).
In contrast, recent work in information retrieval

1We earlier showed empirically (Filatova and Hatzivas-
siloglou, 2003) that a description of a single event is usually
bound within one sentence.

within the TDT framework has taken event to mean
essentially “narrowly defined topic for search” (Al-
lan et al., 1998). Finally, for the information extrac-
tion community an event represents a template of re-
lationships between participants, times, and places
(Marsh and Perzanowski, 1997). It may be possible
to use these alternative models of events as a source
of content features.

We earlier established empirically (Filatova and
Hatzivassiloglou, 2003) that this technique for
atomic event extraction is useful for delineating the
major participants and their relationships from a set
of topically related input texts. For example, from a
collection of documents about an airplane crash the
algorithm assigns the highest score to atomic events
that link together the name of the airline, the source
and destination airports and the day when the crash
happened through the verb crashed or its synonyms.
It is thus plausible to explore the usefulness of these
event triplets as the concepts used in the model of
Section 2.

5 Textual Unit Selection

We have formulated the problem of extractive sum-
marization in terms of the matrix model, stating
that mapping concepts present in the input text onto
the textual units out of which the output is con-
structed can be accomplished by extracting the min-
imal amount of textual units which either cover
most of the important concepts. Every time we add
a new textual unit to the output it is possible to judge
what concepts in it are already covered in the final
summary. This observation can be used to avoid re-
dundancy: before adding a candidate textual unit to
the output summary, we check whether it contains
enough new important concepts.

We describe in this section several algorithms
for selecting appropriate textual units for the output
summary. These algorithms differ on whether they
take advantage of the redundancy reduction prop-
erty of our model, and on whether they prioritize im-
portant concepts individually or collectively. They
share, however, a common property: all of them op-
erate independently of the features chosen to repre-
sent important concepts, and thus can be used with
both our event-based features and other feature sets.
The comparison of the results allows us to empir-
ically determine whether event-based features can
help in summarization.

5.1 Static Greedy Algorithm

Our first text unit selection algorithm does not sup-
port any mechanism for avoiding redundant infor-
mation in the summary. Instead, it rates each textual



unit independently. Textual units are included in the
summary if and only if they cover lots of concepts.
More specifically,

1. For every textual unit, calculate the weight of
this textual unit as the sum of the weights of all
the concepts covered by this textual unit.

2. Choose the textual unit with the maximum
weight and add it to the final output.

3. Continue extracting other textual units in order
of total weight till we get the summary of the
desired length.

5.2 Avoiding Redundancy in the Summary

Two popular techniques for avoiding redundancy
in summarization are Maximal Marginal Relevance
(MMR) (Goldstein et al., 2000) and clustering
(McKeown et al., 1999). In MMR the determination
of redundancy is based mainly on the textual over-
lap between the sentence that is about to be added to
the output and the sentences that are already in the
output. Clustering offers an alternative: before start-
ing the selection process, the summarization system
clusters the input textual units. This step allows an-
alyzing one representative unit from each cluster in-
stead of all textual units.

We take advantage of the model matrix of Sec-
tion 2 to explore another way to avoid redundancy.
Rather than making decisions for each textual unit
independently, as in our Static Greedy Algorithm,
we globally select the subset of textual units that
cover the most concepts (i.e., information) present
in the input. Then our task becomes very similar to
a classic theory problem, Maximum Coverage.

Given C , a finite set of weighted elements, a col-
lection T of subsets of C , and a parameter k, the
maximum coverage problem is to find k members
of T such that the total weight of the elements cov-
ered (i.e., belonging to the k members of the solu-
tion) is maximized. This problem is NP-hard, as it
can be reduced to the well-known set cover problem
(Hochbaum, 1997). Thus, we know only approxi-
mation algorithms solving this problem in polyno-
mial time.

Hochbaum (1997) reports that a greedy algorithm
is the best possible polynomial approximation algo-
rithm for this problem. This algorithm iteratively
adds to the solution S the set ti ∈ T that locally
maximizes the increase in the total weight of ele-
ments covered by S ∪ ti. The algorithm gives a so-
lution with weight at least 1/(1 − e) of the optimal
solution’s total weight.

5.3 Adaptive Greedy Algorithm
The greedy algorithm for the maximum coverage
problem is not directly applicable to summariza-
tion, because the formulation of maximum cover-
age assumes that any combination of k sets ti (i.e.,
k sentences) is equally good as long as they cover
the same total weight of concepts. A more realistic
limitation for the summarization task is to aim for a
fixed total length of the summary, rather than a fixed
total number of sentences; this approach has been
adopted in several evaluation efforts, including the
Document Understanding Conferences (DUC). We
consequently modify the greedy algorithm for the
maximum coverage problem to obtain the following
adaptive greedy algorithm for summarization:

1. For each textual unit calculate its weight as the
sum of weights of all concepts it covers.

2. Choose the textual unit with the maximum
weight and add it to the output. Add the con-
cepts covered by this textual unit to the list of
concepts covered in the final output.

3. Recalculate the weights of the textual units:
subtract from each unit’s weight the weight of
all concepts in it that are already covered in the
output.

4. Continue extracting text units in order of their
total weight (going back to step 2) until the
summary is of the desired length.

5.4 Modified Adaptive Greedy Algorithm
The adaptive greedy algorithm described above pri-
oritizes sentences according to the total weight of
concepts they cover. While this is a reasonable ap-
proach, an alternative is to give increased priority to
concepts that are individually important, so that sen-
tences mentioning them have a chance of being in-
cluded in the output even if they don’t contain other
important concepts. We have developed the fol-
lowing variation of our adaptive greedy algorithm,
termed the modified greedy algorithm:

1. For every textual unit calculate its weight as
the sum of weights of all concepts it covers.

2. Consider only those textual units that contain
the concept with the highest weight that has not
yet been covered. Out of these, choose the one
with highest total weight and add it to the final
output. Add the concepts which are covered by
this textual unit to the list of concepts covered
in the final output.

3. Recalculate the weights of the textual units:
subtract from each unit’s weight the weight of
all concepts in it that are already covered in the
output.



4. Continue extracting textual units, going back
to step 2 each time, until we get a summary of
the desired length.

The modified greedy algorithm has the same
mechanism for avoiding redundancy as the adaptive
greedy one, while according a somewhat different
priority to individual sentences (weight of most im-
portant concepts versus just total weight).

6 Experiments
We chose as our input data the document sets
used in the evaluation of multidocument summa-
rization during the first Document Understanding
Conference (DUC), organized by NIST (Harman
and Marcu, 2001). This collection contains 30 test
document sets, each with approximately 10 news
stories on different events; document sets vary sig-
nificantly in their internal coherence. For each doc-
ument set three human-constructed summaries are
provided for each of the target lengths of 50, 100,
200, and 400 words. We selected DUC 2001 be-
cause ideal summaries are available for multiple
lengths.

Concepts and Textual Units Our textual units
are sentences, while the features representing con-
cepts are either atomic events, as described in Sec-
tion 4, or a fairly basic and widely used set of
lexical features, namely the list of words present
in each input text. The algorithm for extracting
event triplets assigns a weight to each such triplet,
while for words we used as weights their tf*idf val-
ues, taking idf values from http://elib.cs.
berkeley.edu/docfreq/.

Evaluation Metric Given the difficulties in com-
ing up with a universally accepted evaluation mea-
sure for summarization, and the fact that obtain-
ing judgments by humans is time-consuming and
labor-intensive, we adopted an automated pro-
cess for comparing system-produced summaries to
“ideal” summaries written by humans. The method,
ROUGE (Lin and Hovy, 2003), is based on n-gram
overlap between the system-produced and ideal
summaries. As such, it is a recall-based measure,
and it requires that the length of the summaries be
controlled to allow meaningful comparisons.

ROUGE can be readily applied to compare the
performance of different systems on the same set
of documents, assuming that ideal summaries are
available for those documents. At the same time,
ROUGE evaluation has not yet been tested exten-
sively, and ROUGE scores are difficult to interpret
as they are not absolute and not comparable across
source document sets.

50 100 200 400
events better 53.3% 63.3% 80.0% 80.0%
tf*idf better 23.3% 26.7% 20.0% 20.0%
equal 23.3% 10.0% 0.0% 0.0%

Table 2: Static greedy algorithm, events versus
tf*idf

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

DUC document sets

R
O

U
G

E
 s

co
re

s

events

tf*idf

Figure 1: ROUGE scores for 400-word summaries
for static greedy algorithm, events versus tf*idf

50 100 200 400
events better 53.3% 66.7% 86.7% 80.0%
tf*idf better 23.3% 20.0% 13.3% 20.0%
equal 23.3% 13.3% 0.0% 0.0%

Table 3: Adaptive greedy algorithm, events versus
tf*idf

In our comparison, we used as reference sum-
maries those created by NIST assessors for the DUC
task of generic summarization. The human annota-
tors may not have created the same models if asked
for summaries describing the major events in the in-
put texts instead of generic summaries.

Summary Length For a given set of features and
selection algorithm we get a sorted list of sen-
tences extracted according to that particular algo-
rithm. Then, for each DUC document set we create
four summaries of length 50, 100, 200, and 400. In
all the suggested methods a whole sentence is added
at every step. We extracted exactly 50, 100, 200,
and 400 words out of the top sentences (truncating
the last sentence if necessary).

6.1 Results: Static Greedy Algorithm
In our first experiment we use the static greedy al-
gorithm to create summaries of various lengths. Ta-
ble 2 shows in how many cases out of the 30 docu-
ment sets the summary created according to atomic
events receives a higher or lower ROUGE score
than the summary created according to tf*idf fea-
tures (rows “events better” and “tf*idf better” re-
spectively). Row equal indicates how many of the
30 cases both systems produce results with the same
ROUGE score. We chose to report the number of



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

DUC document sets

R
O

U
G

E
 s

co
re

s

events

tf*idf 

Figure 2: ROUGE scores for 400-word summaries
for adaptive greedy algorithm, events versus tf*idf

times each system is better rather than the average
ROUGE score in each case because ROUGE scores
depend on each particular document set.

It is clear from Table 2 that the summaries cre-
ated using atomic events are better in the majority
of cases than the summaries created using tf*idf.
Figure 1 shows ROUGE scores for 400-word sum-
maries. Although in most cases the performance of
the event-based summarizer is higher than the per-
formance based on tf*idf scores, for some docu-
ment sets tf*idf gives the better scores. This phe-
nomenon can be explained through an additional
analysis of document sets according to their inter-
nal coherence. Atomic event extraction works best
for a collection of documents with well-defined con-
stituent parts of events and where documents are
clustered around one specific major event. For such
document sets atomic events are good features for
basing the summary on. In contrast, some DUC
2001 document sets describe a succession of mul-
tiple events linked in time or of different events of
the same type (e.g., Clarence Thomas’ ascendancy
to the Supreme Court, document set 7 in Figure 1,
or the history of airplane crashes, document set 30
in Figure 1). In such cases, a lot of different par-
ticipants are mentioned with only few common ele-
ments (e.g., Clarence Thomas himself). Thus, most
of the atomic events have similar low weights and
it is difficult to identify those atomic events that can
point out the most important textual units.

6.2 Results: Adaptive Greedy Algorithm

For the second experiment we used the adaptive
greedy algorithm, which accounts for information
overlap across sentences in the summary. As in
the case of the simpler static greedy algorithm, we
observe that events lead to a better performance in
most document sets than tf*idf (Table 3). Table 3
is in fact similar to Table 2, with slightly increased
numbers of document sets for which events receive
higher ROUGE scores for the 100 and 200-word

50 100 200 400
static better 0.0% 3.3% 20.0% 23.3%
adaptive better 10.0% 16.7% 26.6% 40.0%
equal 90.0% 80.0% 53.3% 36.7%

Table 4: Adaptive greedy algorithm versus static
greedy algorithm, using events as features

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

DUC document sets

R
O

U
G

E
 s

co
re

 g
ai

n

adaptive

static

Figure 3: Gain in ROUGE scores (400-word sum-
maries) when using events instead of tf*idf for the
static and adaptive greedy algorithms

50 100 200 400
static better 3.3% 26.7% 43.3% 50.0%
adaptive better 3.3% 13.3% 30.0% 50.0%
equal 93.3% 60.0% 26.7% 0.0%

Table 5: Adaptive greedy algorithm versus static
greedy algorithm, using tf*idf as features

summaries. It is interesting to see that the differ-
ence between the ROUGE scores for the summariz-
ers based on atomic events and tf*idf features be-
comes more distinct when the adaptive greedy al-
gorithm is used; Figure 2 shows this for 400-word
summaries.

As Table 4 shows, the usage of the adaptive
greedy algorithm improves the performance of a
summarizer based on atomic events in comparison
to the static greedy algorithm. In contrast, the re-
verse is true when tf*idf is used (Table 5). Figure 3
shows the change in ROUGE scores that the intro-
duction of the adaptive algorithm offers for 400-
word summaries. This indicates that tf*idf is not
compatible with our information redundancy com-
ponent; a likely explanation is that words are corre-
lated, and the presence of an important word makes
other words in the same sentence also potentially
important, a fact not captured by the tf*idf feature.
Events, on the other hand, exhibit less of a depen-
dence on each other, since each triplet captures a
specific interaction between two entities.

6.3 Results: Modified Greedy Algorithm

In the case of the modified adaptive greedy algo-
rithm we see improvement in performance in com-



50 100 200 400
static better 43.3% 43.3% 36.7% 43.3%
modified better 43.3% 56.7% 63.3% 56.7%
equal 13.3% 0.0% 0.0% 0.0%

Table 6: Modified adaptive greedy algorithm versus
static greedy algorithm, using events as features

50 100 200 400
static better 6.7% 26.7% 36.7% 26.7%
modified better 30.0% 40.0% 56.7% 73.3%
equal 63.3% 33.3% 6.7% 0.0%

Table 7: Modified adaptive greedy algorithm versus
static greedy algorithm, using tf*idf as features

50 100 200 400
events better 56.7% 70.0% 80.0% 66.6%
tf*idf better 33.3% 30.0% 20.0% 33.3%
equal 10.0% 0.0% 0.0% 0.0%

Table 8: Modified adaptive greedy algorithm, events
versus tf*idf

parison with the summarizers using the static greedy
algorithm for both events and tf*idf (Tables 6 and
7). In other words, the prioritization of individ-
ual important concepts addresses the correlation be-
tween words and allows the summarizer to benefit
from redundancy reduction even when using tf*idf
as the features. The modified adaptive algorithm of-
fers a slight improvement in ROUGE scores over
the unmodified adaptive algorithm. Also, as Table 8
makes clear, events remain the better feature choice
over tf*idf.

6.4 Results: Comparison with DUC systems
For our final experiment we used the 30 test doc-
ument sets provided for DUC 2003 competition,
for which the summaries produced by participat-
ing summarization systems were also released. In
DUC 2003 the task was to create summaries only of
length 100.

We calculated ROUGE scores for the released
summaries created by DUC participants and com-
pared them to the scores of our system with atomic
events as features and adaptive greedy algorithm as
the filtering method. In 14 out of 30 cases our sys-
tem outperforms the median of the scores of all the
15 participating systems over that specific document
set. We view this comparison as quite encourag-
ing, as our system does not employ any of the ad-
ditional features (such as sentence position or time
information) used by the best DUC summarization
systems, nor was it adapted to the DUC domain.
Again, the suitability (and relative performance) of
the event-based summarizer varies according to the

type of documents being summarized, indicating
that using our approach for a subset of document
sets is more appropriate. For example, our system
scored below all the other systems for the docu-
ment set about a meteor shower, which included a
lot of background information and no well-defined
constituents of events. On the contrary, our sys-
tem performed better than any DUC system for the
document set describing an abortion-related murder,
where it was clear who was killed and where and
when it happened.

7 Conclusion

We have introduced atomic events as a feature that
can be automatically extracted from text and used
for summarization, and described algorithms that
utilize this feature to select sentences for the sum-
mary while minimizing the overlap of information
in the output. Our experimental results indicate that
events are indeed an effective feature, at least in
comparison with words in the input texts that form
the basis of many of current summarizers’ feature
sets. With all three of our summarization algo-
rithms, we achieved a gain in performance when
using events. This gain was actually more pro-
nounced with the more sophisticated sentence se-
lection methods, establishing that events also ex-
hibit less interdependence than features based di-
rectly on words. The advantage was also larger in
longer summaries.

Our approach to defining and extracting events
can be improved in many ways. We are currently
looking at ways of matching connectors that are
similar in meaning, representing paraphrases of the
same event, and methods for detecting and prioritiz-
ing special event components such as time and loca-
tion phrases. We are also considering merging infor-
mation across many related atomic events to a more
structured representation for each event, and allow-
ing for partial matches between such structures and
input sentences.

8 Acknowledgements

We wish to thank Rocco Servedio and Mihalis
Yannakakis for valuable discussions of theoreti-
cal foundations of the set cover problem. We
also thank Kathy McKeown and Noemie Elhadad
for comments on an earlier version. This work
was supported by ARDA under Advanced Question
Answering for Intelligence (AQUAINT) project
MDA908-02-C-0008. Any opinions, findings, or
recommendations are those of the authors.



References

James Allan, Jaime Carbonell, George Dodding-
ton, Jonathan Yamron, and Yiming Yang. 1998.
Topic detection and tracking plot study: Final re-
port. In Proceedings of the DARPA Broadcast
News Transscription Workshop, April.

Regina Barzilay and Michael Elhadad. 1997. Us-
ing lexical chains for text summarization. In Pro-
ceedings of the ACL/EACL 1997 Workshop on
Intelligent Scalable Text Summarizaion, Madrid,
Spain, July.

P. B. Baxendale. 1958. Machine-made index for
technical literature—An experiment. IBM Jour-
nal of Research and Development, 2:354–361.

H. P. Edmundson. 1968. New methods in automatic
extracting. Journal of the Association for Com-
puting Machinary, 23(1):264–285, April.

Christiane Fellbaum, editor. 1998. WordNet: An
Electronic Lexical Database. MIT Press.

Elena Filatova and Vasileios Hatzivassiloglou.
2003. Domain-independent detection, extraction,
and labeling of atomic events. In Proceedings
of RANLP, pages 145–152, Borovetz, Bulgaria,
September.

Elena Filatova and Vasileios Hatzivassiloglou.
2004. A formal model for information selection
in multi-sentence text extraction. In Proceedings
of COLING, Geneva, Switzerland, August.

Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and
Jamie Callan. 2000. Creating and evaluating
multi-document sentence extract summaries. In
Proceedings of the 9th CIKM Conference, pages
165–172.

Donna Harman and Daniel Marcu, editors. 2001.
Proceedings of the Document Understanding
Conference (DUC). NIST, New Orleans, USA,
September.

Dorit S. Hochbaum. 1997. Approximating cov-
ering and packing problems: Set cover, vertex
cover, independent set, and related problems. In
Dorit S. Hochbaum, editor, Approximation Al-
gorithms for NP-hard Problems, pages 94–143.
PWS Publishing Company, Boston, MA.

Julian Kupiec, Jan Pedersen, and Francine Chen.
1995. A trainable document summarizer. In Pro-
ceedings of the 18th ACM SIGIR Conference,
pages 68–73, Seattle, Washington, May.

Chin-Yew Lin and Eduard Hovy. 1997. Identify-
ing topic by position. In Proceedings of the 5th
ANLP Conference, Washington, DC.

Chin-Yew Lin and Eduard Hovy. 2000. The au-
tomated acquisition of topic signatures for text

summarization. In Proceedings of the COLING
Conference, Saarbrücken, Germany, July.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of HLT-
NAACL, Edmonton, Canada, May.

H. P. Luhn. 1958. The automatic creation of lit-
erature abstracts. IBM Journal of Research and
Development, 2(2):159–165, April.

Daniel Marcu. 1997. From discourse struc-
tures to text summaries. In Proceedings of the
ACL/EACL 1997 Workshop on Intelligent Scal-
able Text Summarizaion, pages 82–88, Madrid,
Spain, July.

E. Marsh and D. Perzanowski. 1997. MUC-7 eval-
uation of IE technology: Overview of results. In
Proceedings of MUC-7.

Kathleen R. McKeown, Judith L. Klavans, Vasileios
Hatzivassiloglou, Regina Barzilay, and Eleazar
Eskin. 1999. Towards multidocument sum-
marization by reformulation: Progress and
prospects. In Proceedings of AAAI.

James Pustejovsky, 2000. Events and the Seman-
tics of Opposition, pages 445–482. CSLI Publi-
cations.

Simone Teufel and Marc Moens. 1997. Sentence
extraction as a classification task. In Proceed-
ings of the ACL/EACL 1997 Workshop on Intelli-
gent Scalable Text Summarization, pages 58–65,
Madrid, Spain, July.


