
Hybrid Text Summarization: Combining External Relevance Meas-
ures with Structural Analysis

Gian Lorenzo Thione, Martin van den Berg, Livia Polanyi and Chris Culy
FX Palo Alto Laboratory

3400 Hillview Ave, Bldg. 4
Palo Alto, CA 94304

{thione|vdberg|polanyi|culy}@fxpal.com

Abstract

In this paper, a novel linguistically advanced text
summarization system is described for reducing
the minimum size of highly readable variable -
sized summaries of digitized text documents pro-
duced by text summarization methods that use
discourse analysis to rank sentences for inclusion
in the final summary. The basic algorithm used in
FXPAL’s PALSUMM text summarization sys-
tem combines text structure methods that pre-
serve readability and correct reference resolution
with statistical methods to reduce overall sum-
mary length while promoting the inclusion of
important material.

1 Introduction

In this paper, we present algorithms to address the
shortcomings of both purely structural and purely
statistical methods of sentence extraction summa-
rization. We present the PALSUMM hybrid sum-
marization algorithms that use structural methods
based on discourse parsing to construct a repre-
sentation of the text, apply conventional statistical
methods to identify salient information (See dis-
cussion and references in Marcu 2003) and then
construct a partial discourse tree that includes the
information identified as most salient along with
the text at all nodes dominating that salient infor-
mation. Optionally, sentence compression tech-
niques are applied to the resulting summary to
further compress text length (Grefenstette, 1998;
Knight and Marcu, 2002).

The novelty of our approach lies in combining
text structural methods with sentence extraction
methods which evaluate relevance on the basis of
external factors such as lexical frequency or lexi-

cal field information in the specific document, in
related or documents in general or, alternatively
by matching lexical items in a query against lexi-
cal items in a document. The sentences selected
by the external oracle are then providing context
for anaphora resolution and reference interpreta-
tion through inclusion of hierarchically superordi-
nate information from the structural tree.

2 The PALSUMM System

PALSUMM summarization algorithms operate on
data structures generated by FX Palo Alto’s Lin-
guistic Discourse Analysis System (LIDAS).
LIDAS is a computational discourse parser im-
plementing the Unified Linguistic Discourse
Model (U-LDM). A description of the LIDAS
system and the U-LDM as well as a summary of
an article from the New Yorker are described in
earlier work (Polanyi et al, 2004a, b, Thione
2004). Due to space limitations we can only
sketch the main points of the system here.

The LIDAS parser itself is purely symbolic. It
parses a text discourse segment by discourse seg-
ment to construct a tree that captures discourse
continuity and accessibility relations between the
segments. The tree identifies what discourse con-
stituents are available for further development and
what information given by discourse constituents
is available to be referred to. We use the fact that
the resulting tree encodes (semantic) accessibility
relations between the segments, and not rhetorical
relations, to guarantee that the pruning algorithm
used to summarize preserve antecedents for ana-
phors thus fostering readability.

The basic units of this theory (Basic Discourse
Unit or BDUs) are the syntactic reflexes of lin-
guistically realized minimal semantic unit of

meaning1 or functions, interpreted relative to the
context given by the preceding discourse. To iden-
tify the BDUs in a text, LIDAS relies on the
Xerox Linguistic Environment to parse sentences
from a text (Maxwell and Kaplan, 1989). After
sentential parsing is complete, the XLE sentence
parse trees are segmented into BDUs using a set
of robust sentence and discourse level rules de-
scribed in detail in Polanyi et al 2004a, b. After
parsing, BDUs (which need not be contiguous) are
recombined into one or more discourse trees cor-
responding to (parts of) the sentence, called BDU-
trees.

For each BDU-tree, one BDU, normally the
main clause of a sentence or a compound unit of
discourse directly derived from it, is designated as
the Main-BDU (M-BDU) and is represented by
the root node of the BDU-tree. The entire BDU-
tree is attached as a unit to the emerging Open
Right Tree representation of the structure of the
discourse by relating syntactic, semantic and lexi-
cal information in the M-BDU (and preposed ad-
verbial modifiers, clauses and “cue” words) to
information available in nodes along the right
edge of the tree using formal linguistic discourse
attachment rules involving relationships among
semantic, syntactic and lexical information to
compute both the site of attachment and the at-
tachment relation.

Although a full discussion of these rules lies
beyond the scope of this paper, Table 1 sketches
some simple principles which are both language
and domain independent.2

These rules are weighted and ordered in appli-
cation, and multiple rules may “vote” for the same
or different attachment points and discourse rela-
tions. The precise relationships among the rules
remains a subject for future research.

The U-LDM is similar in form to RST, but its
primitives are rather different. Whereas RST takes
rhetorical relations as primitives, the LDM takes
its primitives from syntactic structure. The ontol-
ogy of LDM relations has three top relations: co-
ordination, subordination and n-ary.

1 We understand a minimum unit of Meaning to communicate information
about not more than one “event” or state of affairs in a “possible world” of
some type (roughly event -type predicates); while a minimal Functional unit
encodes information about how previously occurring (or possibly subsequent)
utterances relate structurally, semantically, interactionally or rhetorically to
other units in the discourse or context in which the discourse takes place
(Greetings, discourse PUSH/POP markers, connectives etc. are all Functional
segments).
2 One reviewer remarked, quite correctly: “how a sentence is attached to the
emerging representation of the structure of the discourse … is the heart of the
algorithm”. This issue is discussed in detail in Polanyi et al., 2004a,b ; Thione
et al. 2004.

Evidence attachment is a subordination
Syntactic promotion: If the subject of an M-BDU
co-refers with the object of the AP.
Sub-cases: If the subject of the M-BDU refers to a
sub-case of the subject of the AP. Sub-cases include
subsets (all children /some children), sub-types (peo-
ple/children), etc.
Verbal properties: If the tense, aspect, modality or
genericity of the verbs are different.

Evidence attachment is a coordination
Narrative: If the verbs express events.
Lists: If the subjects are synonyms/antonyms and/or
the syntactic structures of M-BDU and AP are suffi-
ciently similar.

Table 1: Some simple examples of dis-
course principles

Coordinations express a symmetric relation-

ship between the children, including: lists, narra-
tives, etc. Subordinations express an asymmetric
relationship between children, including: elabora-
tions, interruptions, etc. Finally, n-aries include a
number of cases where the structure is defined by
specific language constructions. Note that these
constructions are not arbitrary, and often follow
from (sentence) syntactic constructions. Examples
include scope setting operators and units (when
john comes, he will be happy), and more or less
fixed forms like greetings and question-answer
pairs, etc. It is the practice to also consider genre-
specific structures (e.g. “a paper consists of a title,
an abstract, an introduction, some sections, a con-
clusion, and references”) to be n-aries.

Because to characterize the large structure of
the discourse we only need to refer to coordina-
tions, subordinations and n-aries, it is often
claimed that the number of relations in the LDM
is much smaller than in RST, even though strictly
speaking this depends on which versions of LDM
and RST one compares. The real difference be-
tween the two theories lies in the rather different
origins of the rules.

All non-terminal nodes in U-LDM trees are
first class citizens and contain, in addition to a
node label, content and context information inher-
ited from child nodes. Under RST only terminal
nodes have content; non-terminal nodes that rep-
resent the relationships obtaining among spans of
the text longer than one sentence are labeled for
the relationship between daughter nodes only.

As in Summarist (Hovy and Lin, 1999), once
the source text has been parsed and a discourse
tree incrementally constructed, text summarization

algorithms are applied to the resulting tree. How-
ever, the difference between constructing a
semantic rather than a rhetorical representation of
the text accounts for how PALSUMM summaries
preserve readability and reference resolution: be-
cause the entire analysis involves matching se-
mantically defined contextual units to the
appropriate contexts available on the tree, nodes
that structurally dominate other nodes necessarily
contain the information needed to contextually
interpret the dominated units.

3 Pruning PALSUMM Trees

Summarization methods based on discourse struc-
ture all rely on assigning a numeric value to all
intermediate and leaf nodes encoding their impor-
tance , based on the labels at the nodes. The dif-
ference between different methods orig inates in
the different ways this importance measure is cal-
culated. Because RST (Marcu, 2000) and U-LDM
trees differ, there are key differences between the
simple pruning methods applied to U-LDM trees
as opposed to RST trees.

Under the U-LDM theory of discourse, the
asymmetric relationship expressed by subordina-
tions implicitly encodes a notion of importance.
The subordinated child elaborates or further quali-
fies the head, or temporarily interrupts the flow of
discourse. Subordinated material is almost always
less important to the main line of the text than
subordinating material: the level of embedding
thus gives a first rough measure of importance of
a unit of discourse.

Our original summarization algorithm, Sym-
Trim, used the level of embedding directly. It
pruned the tree at a given level of embedding, and
generated a summary based on the span of the
remaining tree. The number of possible summary
lengths, however, was restricted to the number of
embedding levels, resulting in a discreet number
of summaries of a fixed length, often ones longer
than desired. This led to a need for more subtle
pruning algorithms.

3.1 Solving the SymTrim Restriction

There are two theoretic problems that underlie the
practical problems of SymTrim. First, across the
board pruning at a fixed level is of limited utility.
If two sections of a document differ significantly
in size, the larger section will have more space for
deeper sub-trees. Consequently, units of equal

importance may occur at deeper levels of larger
sub-trees.

Secondly, no method that relies solely on
purely structural information can determine what
parts of the document contain important informa-
tion. For this an approximation the meaning of the
units is needed. A description of the relationships
among them does not suffice.

We address the first issue by not trimming the
tree at an absolute level, but at a level relative to
the depth of the sub-branch in which a node is
found. We address the second issue by skewing
the pruning level using statistical methods3 as an
oracle to indicate relative importance.

3.2 Score Adjustment and Percolation

We assign every node a relative depth T(l), based
on the local and global structure of the tree branch
to which it belongs, calculated as follows: (1) es-
tablish the absolute depth D(l) of each node, (2)
calculate an embedding branch weight W(l) by
percolating the value of D(l) up from the leaves
according to the percolation algorithm outlined in
Figure 1, (3) assign each node a relative depth T(l)
= 1 – (D(l) – 1) / W(l).4

We also compute a statistical score that ap-
proximates the “semantic importance” of every
node. To do so, we begin by seeding every leaf
node l with a statistical seed S(l) using the MEAD
statistical summarizer. Each segment is scored by
MEAD in the context of the full document, with a
score that mirrors its judgment of the relevance of
that segment for a summary. MEAD’s metrics
include: TF/IDF cosine similarity between a seg-
ment and the document – optionally skewed to-
wards a query entered by the user, the relative
position of a segment within the document, an
adverse score against segments deemed as too
similar to the current summary, and our own im-
plementation of a feature concerning the presence
of certain cue words (Hirschberg and Litman,
1993). After scoring, the values are percolated up
through the tree, as before. During percolation of
both structurally and statistically obtained scores,
the new value of a node that receives a higher
score from a child node is percolated downwards
through all non-subordinated children. Children of

3 We use the publicly available MEAD (Radev et al. 2003). Adopting a sen-
tence extraction approach, it is capable of assigning scores to each and every
sentence. PALSUMM does its own discourse segmentation and sends the
segments to MEAD as if they were sentences. This allows us to assign inde-
pendent scores to discourse segments, thus enabling sub -sentential summariza-
tion (segment-extraction vs. sentence extraction) and yielding more
compressed yet still highly readable summ aries.
4 The expression for T(l) was chosen to assign the top node relative depth 1.

coordinations and n-aries are considered equally
relevant and scored equally, whereas subordinated
children are less relevant then subordinating
ones.5 After percolation we normalize the statisti-
cal scores, dividing by the maximum occurring
value.

Different summarization algorithms result from
the choice of seeding algorithms and methods of
combining scores. Note that the percolation algo-
rithm in Figure 1 respects structural embedding by
always assigning lower or equal scores to subor-
dinated nodes.

3.3 Pruning Algorithms

In order for summaries to maintain textual coher-
ence and readability, constituents that contain con-
textual or referential information necessary to
interpreting other constituents selected for the
summary must be marked for inclusion. For any
node, this information is available in nodes that
are siblings of the same coordination or n-ary, and
in nodes that dominate it through subordination-
type relations. As long as the score assigned to
nodes respects subordinations as in Figure 1, any
pruning of the tree that excludes constituents
whose final relevance score is smaller than a cho-
sen value is guaranteed to preserve the antece-
dents for the anaphora in the text, preserving well-
formedness of the resulting tree and the readabil-
ity of the summary it yields.

In Table 2 we list four different final score as-
signments, based on the embedding level of the
nodes (L), their percolated statistical score (S) and
the percolated relative depth score (T).

SymTrim F = 1/L
SymTrim-R F =1/T
HybReduce F = 1/L * S

HybReduce-R F = 1/T * S
Table 2: Different scoring algorithms.

5 In a modified percolation scheme, downward percolation is restricted to
preceding siblings in discourse-level coordination nodes. This is a result of the
fact that contextual information necessary to preserve readability and referen-
tial integrity must appear before access.

After scores are calculated and combined, a
relative threshold is computed by sorting the set of
constituent by final score and identifying the cut-
off value that more closely approximates the re-
quest of the user in terms of desired summary
length. Note that the root node will always have
normalized score 1 and will therefore always be
included in a full summary. 6

4 Evaluating PALSUMM

The PALSUMM corpus contains over 300
FXPAL Technical Reports in a wide range of do-
mains. The Reports vary in size from 10 to 30
pages. To evaluate the readability of summaries
and create a baseline for evaluating the SymTrim-
R and HybRduce-R algorithms, we conducted a
small pilot study on five documents selected from
the corpus. The documents were hand-annotated
with their U-LDM discourse structures. The Sym-
Trim-R and HybReduce-R variants were then
automatically applied to these discourse struc-
tures, and the summaries submitted to a panel of
12 non-experts. The panelists were asked to judge
the summaries on a 6-point scale for readability
by answering a set of questions including "How
readable is this summary?" and "Did you get con-
fused at any point in the summary?” The initial
results suggest that the discourse algorithms pro-
duced readable summaries and that the relative
effectiveness of the discourse algorithms varies
according to some still to be determined property
of the documents.

5 Conclusion

Structural sentence extraction systems including
Summarist and PALSUMM that create summaries
by choosing sentences or parts of sentences corre-
sponding to nodes at a given level of depth of a

6 In other applications of the algorithms described here, where the purpose is
not that of retrieving a full summary of a document but rather that of building
the necessary minimal context for interpreting a certain selected discourse
constituent, percolation is only limited to the immediate surrounding context,
where certain relations (usually ad-hoc binaries) constitute a barrier to further
percolation towards upwards constituent.

1. For seeding V, each leaf node l is assigned an a priori score V(l).
2. Repeat for each node c0 with children c1 …cn, and relation type R until no values change:

2.1 Percolate or maintain highest score: V(c0) := maxi (V(ci)) , 0=i=n
2.2 Percolate highest score downwards into non-subordinated nodes:

if R is subordination and ci is the head of n: V(ci) := V(c0) if V(ci) < V(c0)
if R is coordination or n-aries: for all i=n, V(ci) := V(c0) if V(ci) < V(c0),

Figure 1: General percolation algorithm. Both statistical seeds (V=S) and structural seeds
(V=T) are percolated according to this algorithm, resulting in values S(n) and T(n) for nodes n.

tree structured representation of the structure of
the text produce excellent summaries that preserve
the style and “flavor” of the original text. How-
ever, the summaries constructed may be longer
than needed, including information that could be
omitted without serious loss of informativity7. The
excessive length results from the top-down nature
of standard structural extraction algorithms which
start by choosing the top context and then includes
every possible sub-context down to a certain level.

In this paper, we have proposed hybrid algo-
rithms which capitalize on the strengths of these
methods while compensating for their limitations
by proposing additional manipulations on the base
trees. In our view, the value of the summarization
methods described here, is the ability to compress
a summary further without substantia l loss of in-
formativity. For summaries, especially those de-
signed for display on various sized devices, the
work presented here constitutes an advance in the
state of the art.

6 Acknowledgements

The authors would like to thank Dr. Sara Bly
(Sara Bly Consulting) who designed and carried
out the evaluation and Dr. Candace Kamm of
FXPAL who provided help and guidance in the
design and organization of the study.

7 References

Gregory Grefenstette. 1998. Producing intelligent
text reduction to provide an audio screening
service for the blind. Working Notes of AAAI
Spring Symposium on Intelligent Text Summa-
rization, Pages 111–118, Stanford.

Julia Hirschberg and Diane Litman. 1993. Empir i-
cal studies on the disambiguation of cue
phrases. Computational Linguistics, 19-3:501-
530.

Ed Hovy and C-Y. Lin. 1999. Automated Text
Summarization in SUMMARIST. In I. Mani
and M. Maybury (eds), Advances in Automated
Text Summarization, pages 81-94, MIT Press,
Cambridge.

Kevin Knight and Daniel Marcu. 2000. Statistics
Based Summarization — Step One: Sentence
Compression. In AAAI-2000 Proceedings,
pages 703-710, Austin TX.

7 Some of this excessive length can be addressed through compressing less
relevant aspects of constituent sentences as in Grefenstette, 1998; Knight and
Marcu, 2002.

Daniel Marcu. 2000. The Theory and Practice of
Discourse Parsing and Summarization. The
MIT Press, Cambridge, MA.

Daniel Marcu. 2003. Automatic abstracting. In
Encyclopedia of Library and Information Sci-
ence, pages 245-256.

John Maxwell and Ronald M. Kaplan. 1989. An
overview of disjunctive constraint satisfaction.
In Proceedings of the International Workshop
on Parsing Technologies. Pittsburgh, PA.

Livia Polanyi, Martin van den Berg, Chris Culy,
Gian Lorenzo Thione, and David Ahn. 2004a.
A rule based approach to discourse parsing. 5th
SigDial Workshop.

Livia Polanyi, Martin van den Berg, Chris Culy,
and Gian Lorenzo Thione 2004b. Sentential
structure and discourse parsing. Discourse An-
notation Workshop, ACL04.

Dragomir Radev, Timothy Allison, Sasha Blair-
Goldensohn, and John Blitzer, Arda Çelebi,
Elliott Drabek, Wai Lam, Danyu Liu, Hong Qi,
Horacio Saggion, Simone Teufel, Michael
Topper, and Adam Winkel. 2003. The MEAD
Multidocument Summarizer.
http://www.summarization.com/mea
d/

Radu Soricut and Daniel Marcu. 2003. Sentence
level discourse parsing using syntactic and lexi-
cal information. In Proceedings of
HLT/NAACL, May 27-June 1, Edmonton, Can-
ada.

Gian Lorenzo Thione, Martin van den Berg, Livia
Polanyi, and Chris Culy. 2004. LiveTree: An
integrated workbench for discourse processing.
Discourse Annotation Workshop, ACL04.

