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Abstract 

 We describe SmartMail, a prototype system for 
automatically identifying action items (tasks) in 
email messages. SmartMail presents the user with 
a task-focused summary of a message. The 
summary consists of a list of action items extracted 
from the message. The user can add these action 
items to their “to do” list. 

1 Introduction 

Email for many users has evolved from a mere 
communication system to a means of organizing 
workflow, storing information and tracking tasks 
(i.e. “to do” items) (Bellotti et al., 2003; Cadiz et 
al., 2001). Tools available in email clients for 
managing this information are often cumbersome 
or even so difficult to discover that users are not 
aware that the functionality exists. For example, in 
one email client, Microsoft Outlook, a user must 
switch views and fill in a form in order to create a 
task corresponding to the current email message. 
By automatically identifying tasks that occur in the 
body of an email message, we hope to simplify the 
use of email as a tool for task creation and 
management. 

In this paper we describe SmartMail, a prototype 
system that automatically identifies tasks in email, 
reformulates them, and presents them to the user in 
a convenient interface to facilitate adding them to a 
“to do” list.  

SmartMail performs a superficial analysis of an 
email message to distinguish the header, message 
body (containing the new message content), and 
forwarded sections. 1  SmartMail breaks the 

                                                                 
1  This simple division into header, message body, and 
forwarded sections was sufficient for the corpus of email 
messages we considered. Messages containing original 
messages interleaved with new content were extremely 

message body into sentences, then determines 
the speech act of each sentence in the message 
body by consulting a machine-learned classifier. 
If the sentence is classified as a task, SmartMail 
performs additional linguistic processing to 
reformulate the sentence as a task description. 
This task description is then presented to the 
user. 

2 Data 

We collected a corpus of 15,741 email 
messages. The messages were divided into 
training, development test and blind test. The 
training set contained 106,700 sentences in 
message bodies from 14,535 messages. To 
avoid overtraining to individual writing styles, 
we limited the number of messages from a 
given sender to 50. To ensure that our 
evaluations are indicative of performance on 
messages from previously unencountered 
senders, we selected messages from 3,098 
senders, assigning all messages from a given 
sender to either the training or the test sets. 

Three human annotators labeled the message 
body sentences, selecting one tag from the 
following set: Salutation, Chit-chat (i.e., social 
discussion unrelated to the main purpose of the 
message), Task, Meeting (i.e., a proposal to 
meet), Promise, Farewell, various components 
of an email signature (Sig_Name, Sig_Title, 
Sig_Affiliation, Sig_Location, Sig_Phone, 
Sig_Email, Sig_URL, Sig_Other), and the 
default category “None of the above”. The set of 
tags can be considered a set of application-
specific speech acts analogous to the rather 
particular tags used in the Verbmobil project, 
such as “Suggest_exclude_date” and 

                                                                                                 
uncommon in our corpus. Most senders were using 
Microsoft Outlook, which places the insertion point for 
new content at the top of the message. 



“Motivate_appointment” (Warnke et al., 1997; 
Mast et al., 1996) or the form-based tags of Stolcke 
et al. (1998). 

All three annotators independently labeled 
sentences in a separate set of 146 messages not 
included in the training, development or blind test 
sets. We measured inter-annotator agreement for 
the assignment of tags to sentences in the message 
bodies using Cohen’s Kappa. Annotator 1 and 
annotator 2 measured 85.8%; annotator 1 and 
annotator 3 measured 82.6%; annotator 2 and 
annotator 3 measured 82.3%. We consider this 
level of inter-annotator agreement good for a novel 
set of application-specific tags. 

The development test and blind test sets of 
messages were tagged by all three annotators, and 
the majority tag for each sentence was taken. If any 
sentence did not have a majority tag, the entire 
message was discarded, leaving a total of 507 
messages in the development test set and 699 
messages in the blind test set. 

The set of tags was intended for a series of 
related experiments concerning linguistic 
processing of email. For example, greetings and 
chit-chat could be omitted from messages 
displayed on cell phones, or the components of an 
email signature could be extracted and stored in a 
contact database. In the current paper we focus 
exclusively on the identification of tasks. 

Annotators were instructed to mark a sentence 
as containing a task if it looked like an appropriate 
item to add to an on-going “to do” list. By this 
criterion, simple factual questions would not 
usually be annotated as tasks; merely responding 
with an answer fulfills any obligation. Annotators 
were instructed to consider the context of an entire 
message when deciding whether formulaic endings 
to email such as Let me know if you have any 
questions were to be interpreted as mere social 
convention or as actual requests for review and 
comment. The following are examples of actual 
sentences annotated as tasks in our data: 

Since Max uses a pseudo-
random number generator, you 
could possibly generate the 
same sequence of numbers to 
select the same cases. 
 
Sorry, yes, you would have to 
retrain. 
 
An even fast [sic] thing 
would be to assign your own 
ID as a categorical feature. 
 

Michael, it’d be great if 
you could add some stuff re 
MSRDPS. 
 
Could you please remote 
desktop in and try running 
it on my machine. 
 
If CDDG has its own notion 
of what makes for good 
responses, then we should 
use that. 
 

3 Features 

Each sentence in the message body is described 
by a vector of approximately 53,000 features. 
The features are of three types: properties of the 
message (such as the number of addressees, the 
total size of the message, and the number of 
forwarded sections in the email thread), 
superficial features and linguistic features. 

The superficial features include word 
unigrams, bigrams and trigrams as well as 
counts of special punctuation symbols (e.g. @, 
/, #), whether the sentence contains words with 
so-called “camel caps” (e.g., SmartMail), 
whether the sentence appears to contain the 
sender’s name or initials, and whether the 
sentence contains one of the addressees’ names. 

The linguistic features were obtained by 
analyzing the given sentence using the NLPWin 
system (Heidorn 2000). The linguistic features 
include abstract lexical features, such as part-of-
speech bigrams and trigrams, and structural 
features that characterize the constituent 
structure in the form of context-free phrase 
structure rewrites (e.g., DECL:NP-VERB-NP; 
i.e., a declarative sentence consisting of a noun 
phrase followed by a verb and another noun 
phrase). Deeper linguistic analysis yielded 
features that describe part-of-speech 
information coupled with grammatical relations 
(e.g., Verb-Subject-Noun indicating a nominal 
subject of a verb) and features of the logical 
form analysis such as transitivity, tense and 
mood. 
 

4 Results 

We trained support vector machines (SVMs) 
(Vapnik, 1995) using an implementation of the 
sequential minimal optimization algorithm 
(Platt, 1999). We trained linear SVMs, which 



have proven effective in text categorization with 
large feature vectors (Joachims, 1998; Dumais et 
al., 1998).  
Figure 1 illustrates the precision-recall curve for 
the SVM classifier trained to distinguish tasks vs. 
non-tasks measured on the blind test set. 

We conducted feature ablation experiments on 
the development test set to assess the contribution 
of categories of features to overall classification 
performance. In particular we were interested in 
the role of linguistic analysis features compared to 
using only surface features. Within the linguistic 
features, we distinguished deep linguistic features 
(phrase structure features and semantic features) 
from POS n-gram features. We conducted 
experiments with three feature sets: 

1. all features (message level features + word 
unigram, bigram and trigram  

2. features + POS bigram and trigram 
features + linguistic analysis features) 

3. no deep linguistic features (no phrase 
structure or semantic features) 

4. no linguistic features at all (no deep 
linguistic features and no POS n-gram 
features) 

Based on these experiments on the development 
test set, we chose the feature set used for our run-
time applications.  
 

Figure 1 shows final results for these feature 
sets on the blind test set: for recall between 
approximately 0.2 and 0.4 and between 
approximately 0.5 and 0.6 the use of all features 
produces the best results. The distinction 
between the “no linguistic features” and “no 
deep linguistic features” scenarios is negligible; 
word n-grams appear to be highly predictive. 
Based on these results, we expect that for 
languages where we do not have an NLPWin 
parser, we can safely exclude the deeper 
linguistic features and still expect good 
classifier performance. 

 
 

Figure 2 illustrates the accuracy of 
distinguishing messages that contain tasks from 
those that do not, using all features. A message 
was marked as containing a task if it contained 
at least one sentence classified as a task. Since 
only one task has to be found in order for the 
entire message to be classified as containing a 
task, accuracy is substantially higher than on a 
per-sentence basis. In section 6, we discuss the 
scenarios motivating the distinction between 
sentence classification and message 
classification. 
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Figure 1: Precision-Recall curves for ablation experiments 
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Figure 2: Precision-Recall curves comparing message classification and sentence classification 
 
 

5 Reformulation of Tasks 

SmartMail performs post-processing of sentences 
identified as containing a task to reformulate them 
as task-like imperatives. The process of 
reformulation involves four distinct knowledge-
engineered steps:  

1. Produce a logical form (LF) for the 
extracted sentence (Campbell and Suzuki, 
2001). The nodes of the LF correspond to 
syntactic constituents. Edges in the LF 
represent semantic and deep syntactic 
relations among nodes. Nodes bear 
semantic features such as tense, number 
and mood. 

2. Identify the clause in the logical form that 
contains the task; this may be the entire 
sentence or a subpart. We consider such 
linguistic properties as whether the clause 
is imperative, whether its subject is second 
person, and whether modality words such 
as please or a modal verb are used. All 
parts of the logical form not subsumed by 
the task clause are pruned. 

3. Transform the task portion of the LF to 
exclude extraneous words (e.g. please, 
must, could), extraneous subordinate 
clauses, adverbial modifiers, and vocative 
phrases. We replace certain deictic 
elements (i.e., words or phrases whose 
denotation varies according to the writer or 
the time and place of utterance) with non-
deictic expressions. For example, first 

person pronouns are replaced by either the 
name of the sender of the email or by a 
third person pronoun, if such a pronoun 
would unambiguously refer to the sender. 
Similarly, a temporal expression such as 
Thursday, which may refer to a different 
date depending on the week in which it is 
written, is replaced by an absolute date 
(e.g., 4/1/2004). 

4. Pass the transformed LF to a sentence 
realization module to yield a string 
(Aikawa et al., 2001). 

Below we illustrate the reformulation of tasks with 
some examples from our corpus. 
 

Example 1: 
On the H-1 visa issue, I am 
positive that you need to go 
to the Embassy in London to 
get your visa stamped into 
your passport. 
Reformulation: 
Go to the Embassy in London to 
get your visa stamped into 
your passport. 

 
In this example, the embedded sentential 

complement, that is, the part of the sentence 
following positive, is selected as the part of the 
sentence containing the task, because of the modal 
verb need and the second person subject; only that 
part of the sentence gets reformulated. The modal 
verb and the second person subject are deleted to 
form an imperative sentence. 



 
Example 2: 
Can you please send me the 
follow up information for the 
demo(s) listed in this Email 
ASAP. 
Reformulation: 
Send Kendall the follow up 
information for the demo 
listed in this Email ASAP. 

 
In this example, the whole sentence is selected 

as containing the task (modal verb, second person 
subject); modal elements including please are 
deleted along with the second person subject to 
form an imperative. In addition, the first person 
pronoun me is replaced by a reference to the 
sender, Kendall in this instance. 
 

Example 3: 
I've been Wednesday at the 
lecture on Amalgam you gave in 
the 113/1021 Room (which I 
really liked), and I've been 
wondering how feasible would 
it be to use Amalgam for 
learning requirements or code 
corpus structures and rules 
(and eventually rephrase them 
in some way). 
Reformulation:  
On June 5, 2002 Pablo wrote: 
‘I've been Wednesday at the 
lecture on Amalgam you gave in 
the 113/1021 Room (which I 
really liked), and I've been 
wondering how feasible would 
it be to use Amalgam for 
learning requirements or code 
corpus structures and rules 
(and eventually rephrase them 
in some way).' 

 
This example illustrates what happens when 

NLPWin is unable to produce a spanning parse and 
hence a coherent LF; in this case NLPWin 
misanalyzed the clause following wondering as a 
main clause, instead of correctly analyzing it as a 
complement clause. SmartMail’s back-off strategy 
for non-spanning parses is to enclose the entire 
original sentence in quotes, prefixed with a matrix 
sentence indicating the date and the name of the 
sender. 
 
 

6 Task-Focused Summarization 

We have considered several scenarios for 
presenting the tasks that SmartMail identifies. 
Under the most radical scenario, SmartMail would 
automatically add extracted tasks to the user’s “to 
do” list. This scenario has received a fairly 
negative reception when we have suggested it to 
potential users of a prototype. From an application 
perspective, this scenario is “fail hard”; i.e., 
classification errors might result in garbage being 
added to the “to do” list, with the result that the 
user would have to manually remove items. Since 
our goal is to reduce the workload on the user, this 
outcome would seem to violate the maxim “First, 
do no harm”. 

 
Figure 3 and Figure 4 illustrate several ideas for 

presenting tasks to the user of Microsoft Outlook. 
Messages that contain tasks are flagged, using the 
existing flag icons in Outlook for proof of concept. 
Users can sort mail to see all messages containing 
tasks. This visualization amounts to summarizing 
the message down to one bit, i.e., +/- Task, and is 
conceptually equivalent to performing document 
classification. 

The right-hand pane in Figure 3 is magnified as 
Figure 4 and shows two more visualizations. At the 
top of the pane, the tasks that have been identified 
are presented in one place, with a check box beside 
them. Checking the box adds the task to the Tasks 
or “to do” list, with a link back to the original 
message. This presentation is “fail soft”: the user 
can ignore incorrectly classified tasks, or tasks that 
were correctly identified but which the user does 
not care to add to the “to do” list. This list of tasks 
amounts to a task-focused summary of the 
document. This summary is intended to be read as 
a series of disconnected sentences, thus side-
stepping the issue of producing a coherent text 
from a series of extracted sentences. In the event 
that users prefer to view these extracted sentences 
as a coherent text, it may prove desirable to 
attempt to improve the textual cohesion by using 
anaphoric links, cue phrases and so on. 

Finally, Figure 3 also shows tasks highlighted in 
context in the message, allowing the user to skim 
the document and read the surrounding text. 

In the prototype we allow the user to vary the 
precision and recall of the classifier by adjusting a 
slider (not illustrated here) that sets the probability 
threshold on the probability of Task. 

 
Figure 3 and Figure 4 illustrate a convention that 

we observed in a handful of emails: proper names 



occur as section headings. These names have scope 
over the tasks enumerated beneath them, i.e. there 
is a list of tasks assigned to Matt, a list assigned to 
Eric or Mo, and a list assigned to Mo. SmartMail 
does not currently detect this explicit assignment 
of tasks to individuals. 

Important properties of tasks beyond the text of 
the message could also be automatically extracted. 
For example, the schema for tasks in Outlook 
includes a field that specifies the due date of the 
task. This field could be filled with date and time 
information extracted from the sentence containing 
the task. Similarly the content of the sentence 
containing the task or inferences about social 
relationships of the email interlocutors could be 
used to mark the priority of tasks as High, Low, or 
Normal in the existing schema. 

7 Conclusion 

In this paper we have presented aspects of 
SmartMail, which provides a task-oriented 
summary of email messages. This summary is 
produced by identifying the task-related sentences 
in the message and then reformulating each task-
related sentence as a brief (usually imperative) 

summation of the task. The set of tasks extracted 
and reformulated from a given email message is 
thus a task-focused summary of that message. 

We plan to conduct user studies by distributing 
the prototype as an Outlook add-in to volunteers 
who would use it to read and process their own 
mail over a period of several weeks. We intend to 
measure more than the precision and recall of our 
classifier by observing how many identified tasks 
users actually add to their “to do” list and by 
administering qualitative surveys of user 
satisfaction. 

The ability to reformulate tasks is in principle 
separate from the identification of tasks. In our 
planned usability study we will distribute variants 
of the prototype to determine the effect of 
reformulation. Do users prefer to be presented with 
the extracted sentences with no additional 
processing, the tasks reformulated as described in 
Section 5, or an even more radical reformulation to 
a telegraphic form consisting of a verb plus object, 
such as Send information or Schedule subjects? 
 
 

 

 

 

 
 

Figure 3: Prototype system showing ways of visualizing tasks 
 



 
Figure 4: Magnified view of prototype system showing message with enumerated tasks 
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