
 Task-focused Summarization of Email

Simon Corston-Oliver, Eric Ringger, Michael Gamon and Richard Campbell
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
{simonco, ringger, mgamon, richcamp}@microsoft.com

Abstract

 We describe SmartMail, a prototype system for
automatically identifying action items (tasks) in
email messages. SmartMail presents the user with
a task-focused summary of a message. The
summary consists of a list of action items extracted
from the message. The user can add these action
items to their “to do” list.

1 Introduction

Email for many users has evolved from a mere
communication system to a means of organizing
workflow, storing information and tracking tasks
(i.e. “to do” items) (Bellotti et al., 2003; Cadiz et
al., 2001). Tools available in email clients for
managing this information are often cumbersome
or even so difficult to discover that users are not
aware that the functionality exists. For example, in
one email client, Microsoft Outlook, a user must
switch views and fill in a form in order to create a
task corresponding to the current email message.
By automatically identifying tasks that occur in the
body of an email message, we hope to simplify the
use of email as a tool for task creation and
management.

In this paper we describe SmartMail, a prototype
system that automatically identifies tasks in email,
reformulates them, and presents them to the user in
a convenient interface to facilitate adding them to a
“to do” list.

SmartMail performs a superficial analysis of an
email message to distinguish the header, message
body (containing the new message content), and
forwarded sections. 1 SmartMail breaks the

1 This simple division into header, message body, and
forwarded sections was sufficient for the corpus of email
messages we considered. Messages containing original
messages interleaved with new content were extremely

message body into sentences, then determines
the speech act of each sentence in the message
body by consulting a machine-learned classifier.
If the sentence is classified as a task, SmartMail
performs additional linguistic processing to
reformulate the sentence as a task description.
This task description is then presented to the
user.

2 Data

We collected a corpus of 15,741 email
messages. The messages were divided into
training, development test and blind test. The
training set contained 106,700 sentences in
message bodies from 14,535 messages. To
avoid overtraining to individual writing styles,
we limited the number of messages from a
given sender to 50. To ensure that our
evaluations are indicative of performance on
messages from previously unencountered
senders, we selected messages from 3,098
senders, assigning all messages from a given
sender to either the training or the test sets.

Three human annotators labeled the message
body sentences, selecting one tag from the
following set: Salutation, Chit-chat (i.e., social
discussion unrelated to the main purpose of the
message), Task, Meeting (i.e., a proposal to
meet), Promise, Farewell, various components
of an email signature (Sig_Name, Sig_Title,
Sig_Affiliation, Sig_Location, Sig_Phone,
Sig_Email, Sig_URL, Sig_Other), and the
default category “None of the above”. The set of
tags can be considered a set of application-
specific speech acts analogous to the rather
particular tags used in the Verbmobil project,
such as “Suggest_exclude_date” and

uncommon in our corpus. Most senders were using
Microsoft Outlook, which places the insertion point for
new content at the top of the message.

“Motivate_appointment” (Warnke et al., 1997;
Mast et al., 1996) or the form-based tags of Stolcke
et al. (1998).

All three annotators independently labeled
sentences in a separate set of 146 messages not
included in the training, development or blind test
sets. We measured inter-annotator agreement for
the assignment of tags to sentences in the message
bodies using Cohen’s Kappa. Annotator 1 and
annotator 2 measured 85.8%; annotator 1 and
annotator 3 measured 82.6%; annotator 2 and
annotator 3 measured 82.3%. We consider this
level of inter-annotator agreement good for a novel
set of application-specific tags.

The development test and blind test sets of
messages were tagged by all three annotators, and
the majority tag for each sentence was taken. If any
sentence did not have a majority tag, the entire
message was discarded, leaving a total of 507
messages in the development test set and 699
messages in the blind test set.

The set of tags was intended for a series of
related experiments concerning linguistic
processing of email. For example, greetings and
chit-chat could be omitted from messages
displayed on cell phones, or the components of an
email signature could be extracted and stored in a
contact database. In the current paper we focus
exclusively on the identification of tasks.

Annotators were instructed to mark a sentence
as containing a task if it looked like an appropriate
item to add to an on-going “to do” list. By this
criterion, simple factual questions would not
usually be annotated as tasks; merely responding
with an answer fulfills any obligation. Annotators
were instructed to consider the context of an entire
message when deciding whether formulaic endings
to email such as Let me know if you have any
questions were to be interpreted as mere social
convention or as actual requests for review and
comment. The following are examples of actual
sentences annotated as tasks in our data:

Since Max uses a pseudo-
random number generator, you
could possibly generate the
same sequence of numbers to
select the same cases.

Sorry, yes, you would have to
retrain.

An even fast [sic] thing
would be to assign your own
ID as a categorical feature.

Michael, it’d be great if
you could add some stuff re
MSRDPS.

Could you please remote
desktop in and try running
it on my machine.

If CDDG has its own notion
of what makes for good
responses, then we should
use that.

3 Features

Each sentence in the message body is described
by a vector of approximately 53,000 features.
The features are of three types: properties of the
message (such as the number of addressees, the
total size of the message, and the number of
forwarded sections in the email thread),
superficial features and linguistic features.

The superficial features include word
unigrams, bigrams and trigrams as well as
counts of special punctuation symbols (e.g. @,
/, #), whether the sentence contains words with
so-called “camel caps” (e.g., SmartMail),
whether the sentence appears to contain the
sender’s name or initials, and whether the
sentence contains one of the addressees’ names.

The linguistic features were obtained by
analyzing the given sentence using the NLPWin
system (Heidorn 2000). The linguistic features
include abstract lexical features, such as part-of-
speech bigrams and trigrams, and structural
features that characterize the constituent
structure in the form of context-free phrase
structure rewrites (e.g., DECL:NP-VERB-NP;
i.e., a declarative sentence consisting of a noun
phrase followed by a verb and another noun
phrase). Deeper linguistic analysis yielded
features that describe part-of-speech
information coupled with grammatical relations
(e.g., Verb-Subject-Noun indicating a nominal
subject of a verb) and features of the logical
form analysis such as transitivity, tense and
mood.

4 Results

We trained support vector machines (SVMs)
(Vapnik, 1995) using an implementation of the
sequential minimal optimization algorithm
(Platt, 1999). We trained linear SVMs, which

have proven effective in text categorization with
large feature vectors (Joachims, 1998; Dumais et
al., 1998).
Figure 1 illustrates the precision-recall curve for
the SVM classifier trained to distinguish tasks vs.
non-tasks measured on the blind test set.

We conducted feature ablation experiments on
the development test set to assess the contribution
of categories of features to overall classification
performance. In particular we were interested in
the role of linguistic analysis features compared to
using only surface features. Within the linguistic
features, we distinguished deep linguistic features
(phrase structure features and semantic features)
from POS n-gram features. We conducted
experiments with three feature sets:

1. all features (message level features + word
unigram, bigram and trigram

2. features + POS bigram and trigram
features + linguistic analysis features)

3. no deep linguistic features (no phrase
structure or semantic features)

4. no linguistic features at all (no deep
linguistic features and no POS n-gram
features)

Based on these experiments on the development
test set, we chose the feature set used for our run-
time applications.

Figure 1 shows final results for these feature
sets on the blind test set: for recall between
approximately 0.2 and 0.4 and between
approximately 0.5 and 0.6 the use of all features
produces the best results. The distinction
between the “no linguistic features” and “no
deep linguistic features” scenarios is negligible;
word n-grams appear to be highly predictive.
Based on these results, we expect that for
languages where we do not have an NLPWin
parser, we can safely exclude the deeper
linguistic features and still expect good
classifier performance.

Figure 2 illustrates the accuracy of
distinguishing messages that contain tasks from
those that do not, using all features. A message
was marked as containing a task if it contained
at least one sentence classified as a task. Since
only one task has to be found in order for the
entire message to be classified as containing a
task, accuracy is substantially higher than on a
per-sentence basis. In section 6, we discuss the
scenarios motivating the distinction between
sentence classification and message
classification.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

P
re

ci
si

on

All features

No deep linguistic features

No linguistic features

Figure 1: Precision-Recall curves for ablation experiments

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

P
re

ci
si

o
n

Per sentence

Per message

Figure 2: Precision-Recall curves comparing message classification and sentence classification

5 Reformulation of Tasks

SmartMail performs post-processing of sentences
identified as containing a task to reformulate them
as task-like imperatives. The process of
reformulation involves four distinct knowledge-
engineered steps:

1. Produce a logical form (LF) for the
extracted sentence (Campbell and Suzuki,
2001). The nodes of the LF correspond to
syntactic constituents. Edges in the LF
represent semantic and deep syntactic
relations among nodes. Nodes bear
semantic features such as tense, number
and mood.

2. Identify the clause in the logical form that
contains the task; this may be the entire
sentence or a subpart. We consider such
linguistic properties as whether the clause
is imperative, whether its subject is second
person, and whether modality words such
as please or a modal verb are used. All
parts of the logical form not subsumed by
the task clause are pruned.

3. Transform the task portion of the LF to
exclude extraneous words (e.g. please,
must, could), extraneous subordinate
clauses, adverbial modifiers, and vocative
phrases. We replace certain deictic
elements (i.e., words or phrases whose
denotation varies according to the writer or
the time and place of utterance) with non-
deictic expressions. For example, first

person pronouns are replaced by either the
name of the sender of the email or by a
third person pronoun, if such a pronoun
would unambiguously refer to the sender.
Similarly, a temporal expression such as
Thursday, which may refer to a different
date depending on the week in which it is
written, is replaced by an absolute date
(e.g., 4/1/2004).

4. Pass the transformed LF to a sentence
realization module to yield a string
(Aikawa et al., 2001).

Below we illustrate the reformulation of tasks with
some examples from our corpus.

Example 1:
On the H-1 visa issue, I am
positive that you need to go
to the Embassy in London to
get your visa stamped into
your passport.
Reformulation:
Go to the Embassy in London to
get your visa stamped into
your passport.

In this example, the embedded sentential

complement, that is, the part of the sentence
following positive, is selected as the part of the
sentence containing the task, because of the modal
verb need and the second person subject; only that
part of the sentence gets reformulated. The modal
verb and the second person subject are deleted to
form an imperative sentence.

Example 2:
Can you please send me the
follow up information for the
demo(s) listed in this Email
ASAP.
Reformulation:
Send Kendall the follow up
information for the demo
listed in this Email ASAP.

In this example, the whole sentence is selected

as containing the task (modal verb, second person
subject); modal elements including please are
deleted along with the second person subject to
form an imperative. In addition, the first person
pronoun me is replaced by a reference to the
sender, Kendall in this instance.

Example 3:
I've been Wednesday at the
lecture on Amalgam you gave in
the 113/1021 Room (which I
really liked), and I've been
wondering how feasible would
it be to use Amalgam for
learning requirements or code
corpus structures and rules
(and eventually rephrase them
in some way).
Reformulation:
On June 5, 2002 Pablo wrote:
‘I've been Wednesday at the
lecture on Amalgam you gave in
the 113/1021 Room (which I
really liked), and I've been
wondering how feasible would
it be to use Amalgam for
learning requirements or code
corpus structures and rules
(and eventually rephrase them
in some way).'

This example illustrates what happens when

NLPWin is unable to produce a spanning parse and
hence a coherent LF; in this case NLPWin
misanalyzed the clause following wondering as a
main clause, instead of correctly analyzing it as a
complement clause. SmartMail’s back-off strategy
for non-spanning parses is to enclose the entire
original sentence in quotes, prefixed with a matrix
sentence indicating the date and the name of the
sender.

6 Task-Focused Summarization

We have considered several scenarios for
presenting the tasks that SmartMail identifies.
Under the most radical scenario, SmartMail would
automatically add extracted tasks to the user’s “to
do” list. This scenario has received a fairly
negative reception when we have suggested it to
potential users of a prototype. From an application
perspective, this scenario is “fail hard”; i.e.,
classification errors might result in garbage being
added to the “to do” list, with the result that the
user would have to manually remove items. Since
our goal is to reduce the workload on the user, this
outcome would seem to violate the maxim “First,
do no harm”.

Figure 3 and Figure 4 illustrate several ideas for

presenting tasks to the user of Microsoft Outlook.
Messages that contain tasks are flagged, using the
existing flag icons in Outlook for proof of concept.
Users can sort mail to see all messages containing
tasks. This visualization amounts to summarizing
the message down to one bit, i.e., +/- Task, and is
conceptually equivalent to performing document
classification.

The right-hand pane in Figure 3 is magnified as
Figure 4 and shows two more visualizations. At the
top of the pane, the tasks that have been identified
are presented in one place, with a check box beside
them. Checking the box adds the task to the Tasks
or “to do” list, with a link back to the original
message. This presentation is “fail soft”: the user
can ignore incorrectly classified tasks, or tasks that
were correctly identified but which the user does
not care to add to the “to do” list. This list of tasks
amounts to a task-focused summary of the
document. This summary is intended to be read as
a series of disconnected sentences, thus side-
stepping the issue of producing a coherent text
from a series of extracted sentences. In the event
that users prefer to view these extracted sentences
as a coherent text, it may prove desirable to
attempt to improve the textual cohesion by using
anaphoric links, cue phrases and so on.

Finally, Figure 3 also shows tasks highlighted in
context in the message, allowing the user to skim
the document and read the surrounding text.

In the prototype we allow the user to vary the
precision and recall of the classifier by adjusting a
slider (not illustrated here) that sets the probability
threshold on the probability of Task.

Figure 3 and Figure 4 illustrate a convention that

we observed in a handful of emails: proper names

occur as section headings. These names have scope
over the tasks enumerated beneath them, i.e. there
is a list of tasks assigned to Matt, a list assigned to
Eric or Mo, and a list assigned to Mo. SmartMail
does not currently detect this explicit assignment
of tasks to individuals.

Important properties of tasks beyond the text of
the message could also be automatically extracted.
For example, the schema for tasks in Outlook
includes a field that specifies the due date of the
task. This field could be filled with date and time
information extracted from the sentence containing
the task. Similarly the content of the sentence
containing the task or inferences about social
relationships of the email interlocutors could be
used to mark the priority of tasks as High, Low, or
Normal in the existing schema.

7 Conclusion

In this paper we have presented aspects of
SmartMail, which provides a task-oriented
summary of email messages. This summary is
produced by identifying the task-related sentences
in the message and then reformulating each task-
related sentence as a brief (usually imperative)

summation of the task. The set of tasks extracted
and reformulated from a given email message is
thus a task-focused summary of that message.

We plan to conduct user studies by distributing
the prototype as an Outlook add-in to volunteers
who would use it to read and process their own
mail over a period of several weeks. We intend to
measure more than the precision and recall of our
classifier by observing how many identified tasks
users actually add to their “to do” list and by
administering qualitative surveys of user
satisfaction.

The ability to reformulate tasks is in principle
separate from the identification of tasks. In our
planned usability study we will distribute variants
of the prototype to determine the effect of
reformulation. Do users prefer to be presented with
the extracted sentences with no additional
processing, the tasks reformulated as described in
Section 5, or an even more radical reformulation to
a telegraphic form consisting of a verb plus object,
such as Send information or Schedule subjects?

Figure 3: Prototype system showing ways of visualizing tasks

Figure 4: Magnified view of prototype system showing message with enumerated tasks

8 Acknowledgements

Many of the ideas presented here were formulated
in discussion with Bob Atkinson, Dave Reed and
Malcolm Pearson. Our thanks go to Jeff
Stevenson, Margaret Salome and Kevin Gaughen
for annotating the data.

References

Aikawa, Takako, Maite Melero, Lee Schwartz and
Andi Wu. 2001. Multilingual natural language
generation. EAMT.

Bellotti, Victoria, Nicolas Ducheneaut, Mark
Howard , Ian Smith. 2003. Taking email to
task: the design and evaluation of a task
management centered email tool. Proceedings
of the conference on human factors in
computing systems, pages 345-352.

Cadiz, J. J., Dabbish, L., Gupta, A., & Venolia, G.
D. 2001. Supporting email workflow. MSR-TR-
2001-88: Microsoft Research.

Campbell, Richard and Hisami Suzuki. 2002.
Language neutral representation of syntactic
structure. Proceedings of SCANALU 2002.

Dumais, Susan, John Platt, David Heckerman,
Mehran Sahami 1998: Inductive learning
algorithms and representations for text
categorization. Proceedings of CIKM-98, pages
148-155.

Heidorn, George. 2000. Intelligent writing
assistance. In R. Dale, H. Moisl and H. Somers,
(eds.), Handbook of Natural Language
Processing. Marcel Dekker.

Joachims, Thorsten. 1998. Text categorization
with support vector machines: Learning with
many relevant features. Proceedings of ECML
1998, pages 137-142.

Mast, M., Kompe, R., Harbeck, S., Kiessling, A.,
Niemann, H., Nöth, E., Schukat-Talamazzini,
E. G. and Warnke., V. 1996. Dialog act
classification with the help of prosody. ICSLP
96.

Platt, John. 1999. Fast training of SVMs using
sequential minimal optimization. In B.
Schoelkopf, C. Burges and A. Smola (eds.)
Advances in Kernel Methods: Support Vector
Learning, pages 185-208, MIT Press,
Cambridge, MA.

Stolcke, A., E. Shriberg, R. Bates, N. Coccaro, D.
Jurafsky, R. Martin, M. Meteer, K. Ries, P.
Taylor and C. Van Ess-Dykema. 1998. Dialog
act modeling for conversational speech.
Proceedings of the AAAI-98 Spring Symposium
on Applying Machine Learning to Discourse
Processing.

Vapnik, V. 1995. The Nature of Statistical
Learning Theory. Springer-Verlag, New York.

Warnke, V., R. Kompe, H. Niemann and E. Nöth.
1997. Integrated dialog act segmentation and
classification using prosodic features and
language models. Proc. European Conf. on
Speech Communication and Technology, vol 1,
pages 207—210.

