
Carsim: A System to Visualize Written Road Accident Reports as Animated
3D Scenes

Richard Johansson David Williams Anders Berglund Pierre Nugues
LUCAS, Department of Computer Science, Lund University

Box 118
SE-221 00 Lund, Sweden

{richard, pierre}@cs.lth.se, {d98dw, d98ab}@efd.lth.se

Abstract

This paper describes a system to create animated
3D scenes of car accidents from reports written in
Swedish. The system has been developed using
news reports of varying size and complexity. The
text-to-scene conversion process consists of two
stages. An information extraction module creates
a structured representation of the accident and a vi-
sual simulator generates and animates the scene.

We first describe the overall structure of the text-
to-scene conversion and the structure of the repre-
sentation. We then explain the information extrac-
tion and visualization modules. We show snapshots
of the car animation output and we conclude with
the results we obtained.

1 Text-to-Scene Conversion

As noted by Michel Denis, language and images are
two different representation modes whose cooper-
ation is needed in many forms of cognitive opera-
tions. The description of physical events, mathe-
matical theorems, or structures of any kind using
language is sometimes difficult to understand. Im-
ages and graphics can then help understand ideas or
situations and realize their complexity. They have
an indisputable capacity to represent and to commu-
nicate knowledge and are an effective means to rep-
resent and explain things, see (Kosslyn, 1983; Tufte,
1997; Denis, 1991).

Narratives of a car accidents, for instance, often
make use of space descriptions, movements, and
directions that are sometimes difficult to grasp for
most readers. We believe that forming consistent
mental images are necessary to understand them
properly. However, some people have difficulties in
imagining situations and may need visual aids pre-
designed by professional analysts.

In this paper, we will describe Carsim, a text-to-
scene converter that automates the generation of im-
ages from texts.

2 Related Work

The conversion of natural language texts into graph-
ics has been investigated in a few projects. NALIG
(Adorni et al., 1984; Manzo et al., 1986) is an early
example of them that was aimed at recreating static
2D scenes. One of its major goals was to study rela-
tionships between space and prepositions. NALIG
considered simple phrases in Italian of the type sub-
ject, preposition, object that in spite of their simplic-
ity can have ambiguous interpretations. From what
is described in the papers, NALIG has not been ex-
tended to process sentences and even less to texts.

WordsEye (Coyne and Sproat, 2001) is an im-
pressive system that recreates 3D animated scenes
from short descriptions. The number of 3D objects
WordsEye uses – 12,000 – gives an idea of its am-
bition. WordsEye integrates resources such as the
Collins’ dependency parser and the WordNet lexical
database. The narratives cited as examples resemble
imaginary fairy tales and WordsEye does not seem
to address real world stories.

CogViSys is a last example that started with the
idea of generating texts from a sequence of video
images. The authors found that it could also be
useful to reverse the process and generate synthetic
video sequences from texts. The logic engine be-
hind the text-to-scene converter (Arens et al., 2002)
is based on the Discourse Representation Theory.
The system is limited to the visualization of single
vehicle maneuvers at an intersection as the one de-
scribed in this two-sentence narrative: A car came
from Kriegstrasse. It turned left at the intersection.
The authors give no further details on the text cor-
pus and no precise description of the results.

3 Carsim

Carsim (Egges et al., 2001; Dupuy et al., 2001) is
a program that analyzes texts describing car acci-
dents and visualizes them in a 3D environment. It
has been developed using real-world texts.

The Carsim architecture is divided into two parts
that communicate using a formal representation of



Input Text

Linguistic
Component

Formal
Description

Visualizer
Component

Output
Animation

Figure 1: The Carsim architecture.

the accident. Carsim’s first part is a linguistic mod-
ule that extracts information from the report and fills
the frame slots. The second part is a virtual scene
generator that takes the structured representation as
input, creates the visual entities, and animates them
(Figure 1).

4 A Corpus of Traffic Accident
Descriptions

As development and test sets, we have collected ap-
proximately 200 reports of road accidents from vari-
ous Swedish newspapers. The task of analyzing the
news reports is made more complex by their vari-
ability in style and length. The size of the texts
ranges from a couple of sentences to more than a
page. The amount of details is overwhelming in
some reports, while in others most of the informa-
tion is implicit. The complexity of the accidents de-
scribed ranges from simple accidents with only one
vehicle to multiple collisions with several partici-
pating vehicles and complex movements.

Although our work has concentrated on the press
clippings, we also have access to accident reports
from the STRADA database (Swedish TRaffic Ac-
cident Data Acquisition) of Vägverket, the Swedish
traffic authority. STRADA registers nearly all the
accidents that occur in Sweden (Karlberg, 2003).
(All the accidents where there are casualties.) Af-
ter an accident, the victims describe the location
and conditions of it in a standardized form col-
lected in hospitals. The corresponding reports are
transcribed in a computer-readable format in the
STRADA database. This source contains two kinds
of reports: the narratives written by the victims of
the accident and their transcriptions by traffic ex-
perts. The original texts contain spelling mistakes,
abbreviations, and grammatical errors. The tran-
scriptions often simplify, interpret the original texts,
and contain jargon.

The next text is an excerpt from our development
corpus. This report is an example of a press wire
describing an accident.

En dödsolycka inträffade inatt söder
om Vissefjärda på riksväg 28. Det var en
bil med två personer i som kom av vägen i
en vänsterkurva och körde i hög hastighet

in i en gran. Passageraren, som var född
-84, dog. Föraren som var 21 år gam-
mal vårdas på sjukhus med svåra skador.
Polisen misstänker att bilen de färdades i,
en ny Saab, var stulen i Emmaboda och
det ska under dagen undersökas.

Sveriges Radio, November 9, 2002

A fatal accident took place tonight south
of Vissefjärda on Road 28. A car carry-
ing two persons departed from the road
in a left-hand curve and crashed at a high
speed into a spruce. The passenger, who
was born in 1984, died. The driver, who
was 21 years old, is severely injured and
is taken care of in a hospital. The police
suspects that the car they were traveling
in, a new Saab, was stolen in Emmaboda
and will investigate it today.

The text above, our translation.

5 Knowledge Representation
The Carsim language processing module reduces
the text content to a formal representation that out-
lines what happened and enables a conversion to a
symbolic scene. It uses information extraction tech-
niques to map a text onto a structure that consists of
three main elements:

• A scene object, which describes the static pa-
rameters of the environment, such as weather,
light, and road configuration.

• A list of road objects, for example cars, trucks,
and trees, and their associated sequences of
movements.

• A list of collisions between road objects.

The structure of the formalism, which sets the
limit of what information can be expressed, was de-
signed with the help of traffic safety experts at the
Department of Traffic and Road at Lund University.
It contains the information necessary to reproduce
and animate the accident entities in our visualiza-
tion model. We used an iterative process to design
it. We started from a first incomplete model (Dupuy
et al., 2001) and we manually constructed the rep-
resentation of about 50 texts until we had reached a
sufficient degree of expressivity.

The representation we use is a typical example of
frames à la Minsky, where the objects in the rep-
resentation consist of a number of attribute/values
slots which are to be filled by the information ex-
traction module. Each object in the representation



Figure 2: Representation of the accident in the ex-
ample above.

belongs to a concept in a domain ontology we have
developed. The concepts are ordered in an inheri-
tance hierarchy.

Figure 2 shows how Carsim’s graphical user in-
terface presents the representation of the accident
in the example above. The scene element contains
the location of the accident and the configuration of
roads, in this case a left-hand bend. The list of road
objects contains one car and one tree. The event
chain for the car describes the movements: the car
leaves the road. Finally, the collision list describes
one collision between the car and the tree.

6 The Information Extraction Module
The information extraction subsystem fills the frame
slots. Its processing flow consists in analyzing the
text linguistically using the word groups obtained
from the linguistic modules and a sequence of se-
mantic modules. The information extraction sub-
system uses the literal content of certain phrases it
finds in the text or infers the environment and the
actions.

We use a pipeline of modules in the first stages
of the natural language processing chain. The
tasks consists of tokenizing, part-of-speech tagging,
splitting into sentences, detecting the noun groups,
clause boundaries, and domain-specific multiwords.
We use the Granska part-of-speech tagger (Carl-
berger and Kann, 1999) and Ejerhed’s algorithm
(Ejerhed, 1996) to detect clause boundaries.

6.1 Named Entity Recognition
Carsim uses a domain-specific named entity recog-
nition module, which detects names of persons,
places, roads, and car makes (Persson and Daniels-
son, 2004).

The recognition is based on a small database of
2,500 entries containing person names, city and re-

gion names, and car names. It applies a cascade
of regular expressions that takes into account the
morphology of Swedish proper noun formation and
the road nomenclature. The recall/precision perfor-
mance of the detector is 0.89/0.97.

6.2 Finding the Participants
The system uses the detected noun groups to iden-
tify the physical objects, which are involved in the
accident. It extracts the headword of each group and
associates it to an entity in the ontology. We used
parts of the Swedish WordNet as a resource to de-
velop this dictionary (Åke Viberg et al., 2002).

We track the entities along the text with a sim-
ple coreference resolution algorithm. It assumes
that each definite expression corefers with the last
sortally consistent (according to the ontology) en-
tity which was mentioned. Indefinite expressions
are assumed to be references to previously unmen-
tioned entities. This is similar to the algorithm men-
tioned in (Appelt and Israel, 1999). Although this
approach is relatively simple, we get reasonable re-
sults with it and could use it as a baseline when in-
vestigating other approaches.

Figure 3 shows an excerpt from a text with the
annotation of the participants as well as their coref-
erences.

Olyckan inträffade när [bilen]1 som de fem
färdades i körde om [en annan personbil]2 . När
[den]1 svängde tillbaka in framför [den omkörda
bilen]2 fick [den]1 sladd och for med sidan rakt
mot fronten på [den mötande lastbilen]3 .

The accident took place when [the car]1 where the
five people were traveling overtook [another car]2.
When [it]1 pulled in front of [the overtaken car]2,
[it]1 skidded and hit with its side the front of [the
facing truck]3.

Figure 3: A sentence where references to road ob-
jects have been marked.

6.3 Resolution of Metonymy
Use of metonymy, such as alternation between the
driver and his vehicle, is frequent in the Swedish
press clippings. An improper resolution of it intro-
duces errors in the templates and in the visualiza-
tion. It can create independently moving graphic
entities i.e. the vehicle and its driver, that should be
represented as one single object, a moving vehicle,
or stand together.

We detect the metonymic relations between
drivers and their vehicles. We use either cue phrases



like lastbilschauffören (‘the truck driver’) or the lo-
cation or instrument semantic roles in phrases like
Mannen som färdades i lastbilen (‘The man who
was traveling in the truck’). We then apply con-
straints on the detected events and directions to ex-
clude wrong candidates. For example, given the
phrase Mannen krockade med en traktor (‘The man
collided with a tractor’), we know that the man can-
not be the driver of the tractor.

We do not yet handle the metonymic relations be-
tween parts of vehicles and the vehicles themselves.
They are less frequent in the texts we have exam-
ined.

6.4 Marking Up the Events

Events in car accident reports correspond to vehicle
motions and collisions. We detect them to be able
to visualize and animate the scene actions. To carry
out the detection, we created a dictionary of words
– nouns and verbs – depicting vehicle activity and
maneuvers. We use these words to anchor the event
identification as well as the semantic roles of the
dependents to determine the event arguments.

6.4.1 Detecting the Semantic Roles
Figure 4 shows a sentence that we translated from
our corpus of news texts, where the groups have
been marked up and labeled with semantic roles.

[En personbil]Actor körde [vid femtiden]T ime

[på torsdagseftermiddagen]T ime [in i ett rad-
hus]V ictim [i ett äldreboende]Loc [på Alvägen]Loc

[i Enebyberg]Loc [norr om Stockholm]Loc .

[About five]T ime [on Thursday afternoon]T ime , [a
car]Actor crashed [into a row house]V ictim [in an
old people’s home]Loc [at Alvägen street]Loc [in
Enebyberg]Loc [north of Stockholm]Loc.

Figure 4: A sentence tagged with semantic roles.

Gildea and Jurafsky (2002) describe an algorithm
to label automatically semantic roles in a general
context. They use the semantic frames and associ-
ated roles defined in FrameNet (Baker et al., 1998)
and train their classifier on the FrameNet corpus.
They report a performance of 82 percent.

Carsim uses a classification algorithm similar to
the one described in this paper. However, as there is
no lexical resource such as FrameNet for Swedish
and no widely available parser, we adapted it. Our
classifier uses a more local strategy as well as a dif-
ferent set of attributes.

The analysis starts from the words in our dictio-
nary for which we designed a specific set of frames

and associated roles. The classifier limits the scope
of each event to the clause where it appears. It iden-
tifies the verb and nouns dependents: noun groups,
prepositional groups, and adverbs that it classifies
according to semantic roles.

The attributes of the classifier are:

• Target word: the keyword denoting the event.

• Head word: the head word of the group to be
classified.

• Syntactic class of head word: noun group,
prepositional group, or adverb.

• Voice of the target word: active or passive.

• Domain-specific semantic type: Dynamic ob-
ject, static object, human, place, time, cause,
or speed.

The classifier chooses the role, which maximizes
the estimated probability of a role given the values
of the target, head, and semantic type attributes:

P̂ (r|t, head, sem) =
C(r, t, head, sem)

C(t, head, sem)
.

If a particular combination of target, head, and
semantic type is not found in the training set, the
classifier uses a back-off strategy, taking the other
attributes into account.

We annotated manually a set of 819 examples on
which we trained and tested our classifier. We used
a random subset of 100 texts as a test set and the
rest as a learning set. On the test set, the classi-
fier achieved an accuracy of 90 percent. A classi-
fier based on decision trees built using the ID3 algo-
rithm with gain ratio measure yielded roughly the
same performance.

The value of the semantic type attribute is set us-
ing domain knowledge. Removing this attribute de-
graded the performance of the classifier to 80 per-
cent.

6.4.2 Interpreting the Events
When the events have been detected in the text, they
can be represented and interpreted in the formal de-
scription of the accidents.

We observed that event coreferences are very fre-
quent in longer texts: A same action like a colli-
sion is repeated in several places in the text. As
for metonymy, duplicated events in the template en-
tails a wrong visualization. We solve it through the
unification of as many events as possible, taking
metonymy relations into account, and we remove
the duplicates.



6.5 Time Processing and Event Ordering

In some texts, the order in which events are men-
tioned does not correspond to their chronological
order. To address this issue and order the events cor-
rectly, we developed a module based on the generic
TimeML framework (Pustejovsky et al., 2002). We
use a machine learning approach to annotate the
whole set of events contained in a text and from this
set, we extract events used specifically by the Car-
sim template – the Carsim events.

TimeML has tags for time expressions (today),
“signals” indicating the polarity (not), the modal-
ity (could), temporal prepositions and connectives
such as for, during, before, after, events (crashed,
accident), and tags that indicate relations between
entities. Amongst the relations, the TLINKs are
the most interesting for our purposes. They ex-
press temporal relations between time expressions
and events as well as temporal relations between
pairs of events.

We developed a comprehensive phrase-structure
grammar to detect the time expressions, signals, and
TimeML events and to assign values to the enti-
ties’ attributes. The string den tolfte maj (‘May
12th’) is detected as a time expression with the
attribute value=“YYYY-05-12”. We extended the
TimeML attributes to store the events’ syntactic fea-
tures. They include the part-of-speech annotation
and verb group structure, i.e. auxiliary + participle,
etc.

We first apply the PS rules to detect the time ex-
pressions, signals, and events. Let e1, e2, e3, ...,
en be the events in the order they are mentioned
in a text. We then generate TLINKs to relate these
events together using a set of decision trees.

We apply three decision trees on se-
quences of two to four consecutive events
(ei, ei+1, [, ei+2[, ei+3]]), with the constraint
that there is no time expression between them,
as they might change the temporal ordering sub-
stantially. The output of each tree is the temporal
relation holding between the first and last event
of the considered sequence, i.e. respectively:
adjacent pairs (ei, ei+1), pairs separated by one
event (ei, ei+2), and by two events (ei, ei+3). The
possible output values are simultaneous, after,
before, is included, includes, and none. As a result,
each event is linked by TLINKs to the three other
events immediately after and before it.

We built automatically the decision trees using
the ID3 algorithm (Quinlan, 1986). We trained them
on a set of hand-annotated examples, which consists
of 476 events and 1,162 TLINKs.

As a set of features, the decision trees use certain

attributes of the events considered, temporal signals
between them, and some other parameters such as
the number of tokens separating the pair of events
to be linked. The complete list of features with x

ranging from 0 to 1, 0 to 2, and 0 to 3 for each tree
respectively, and their possible values is:

• Eventi+xTense: none, past, present, future,
NOT DETERMINED.

• Eventi+xAspect: progressive, per-
fective, perfective progressive, none,
NOT DETERMINED.

• Eventi+xStructure: NOUN,
VB GR COP INF, VB GR COP FIN,
VB GR MOD INF, VB GR MOD FIN,
VB GR, VB INF, VB FIN.

• temporalSignalInbetween: none, before, after,
later, when, still, several.

• tokenDistance: 1, 2 to 3, 4 to 6, 7 to 10, greater
than 10.

• sentenceDistance: 0, 1, 2, 3, 4, greater than 4.

• punctuationSignDistance: 0, 1, 2, 3, 4, 5,
greater than 5.

The process results in an overgeneration of links.
The reason for doing this is to have a large set of
TLINKs to ensure a fine-grained ordering of the
events. As the generated TLINKs can be conflict-
ing, we assign each of them a score, which is de-
rived from the C4.5 metrics (Quinlan, 1993).

We complement the decision trees with heuris-
tics and hints from the event interpreter that events
are identical. Heuristics represent common-sense
knowledge and are encoded as nine production
rules. An example of them is that an event in the
present tense is after an event in the past tense.
Event identity and heuristics enable to connect
events across the time expressions. The TLINKs
generated by the rules also have a score that is rule
dependent.

When all TLINKs are generated, we resolve tem-
poral loops by removing the TLINK with the lowest
score within the loop. Finally, we extract the Carsim
events from the whole set of TimeML events and we
order them using the relevant TLINKs.

6.6 Detecting the Roads

The configuration of roads is inferred from the in-
formation in the detected events. When one of the
involved vehicles makes a turn, this indicates that
the configuration is probably a crossroads.



Additional information is provided using key-
word spotting in the text. Examples of relevant key-
words are korsning (‘crossing’), ‘rondell’ (‘round-
about’) and kurva (‘bend’), which are very likely
indicators of the road configuration if seen in the
text.

These methods are very simple, but the cases
where they fail are quite rare. During the evalua-
tion described below, we found no text where the
road configuration was misclassified.

7 Evaluation of the Information
Extraction Module

To evaluate the performance of the information ex-
traction component, we applied it to 50 previously
unseen texts, which were collected from newspaper
sources on the web. The size of the texts ranged
from 31 to 459 words. We calculated precision and
recall measures for detection of road objects and for
detection of events. A road object was counted as
correctly detected if there was a corresponding ob-
ject in the text, and the type of the object was cor-
rect. The same criteria apply to the detection of
events, but here we also add the criterion that the
actor (and victim, where this applies) must be cor-
rect. The performance figures are shown in Tables 1
and 2.

Total number of objects in the texts 105
Number of detected objects 110
Number of correctly detected objects 94
Precision 0.85
Recall 0.90
F-measure (β = 1) 0.87

Table 1: Statistics for the detection of road objects
in the test set.

Total number of events in the texts 92
Number of detected events 91
Number of correctly detected events 71
Precision 0.78
Recall 0.77
F-measure (β = 1) 0.78

Table 2: Statistics for the detection of events in the
test set.

The system was able to extract or infer all rele-
vant information correctly in 23 of the 50 texts. In
order to find out the causes of the errors, we investi-
gated what simplifications of the texts needed to be

Figure 5: Planning the trajectories.

made to make the system produce a correct analysis.
The result of this investigation is shown in Table 3.

Object coreference 6
Role labeling 5
Metonymy 5
Clause segmentation 3
Representational expressivity 3
Unknown objects 2
Event detection 2
Unknown event 1
Tagger error 1
PP attachment 1

Table 3: Causes of errors.

8 Scene Synthesis and Visualization

The visualizer reads its input from the formal de-
scription. It synthesizes a symbolic 3D scene and
animates the vehicles. We designed the graphic el-
ements in the scene with the help of traffic safety
experts.

The scene generation algorithm positions the
static objects and plans the vehicle motions. It uses
rule-based modules to check the consistency of the
description and to estimate the 3D start and end co-
ordinates of the vehicles.

The visualizer uses a planner to generate the vehi-
cle trajectories. A first module determines the start
and end positions of the vehicles from the initial di-
rections, the configuration of the other objects in the
scene, and the chain of events as if they were no ac-
cident. Then, a second module alters these trajecto-
ries to insert the collisions according to the accident
slots in the accident representation (Figure 5).

This two-step procedure can be justified by the
descriptions found in most reports. The car drivers
generally start the description of their accident as if
it were a normal movement, which is subsequently
been modified by the abnormal conditions of the ac-
cident.

Finally, the temporal module of the planner as-
signs time intervals to all the segments of the trajec-



tories.
Figure 6 shows two screenshots that the Carsim

visualizer produces for the text above. It should be
noted that the graphic representation is intended to
be iconic in order not to convey any meaning which
is not present in the text.

9 Conclusion and Perspectives

We have presented an architecture and a strategy
based on information extraction and a symbolic vi-
sualization that enable to convert real texts into 3D
scenes. We have obtained promising results that val-
idate our approach. They show that the Carsim ar-
chitecture is applicable to Swedish and other lan-
guages. As far as we know, Carsim is the only
text-to-scene conversion system working on non-
invented narratives.

We are currently improving Carsim and we hope
in future work to obtain better results in the reso-
lution of coreferences. We are implementing and
adapting algorithms such as the one described in
(Soon et al., 2001) to handle this. We also intend
to improve the visualizer to handle more complex
scenes and animations.

The current aim of the Carsim project is to visu-
alize the content of a text as accurately as possible,
with no external knowledge. In the future, we would
like to integrate additional knowledge sources in or-
der to make the visualization more realistic and un-
derstandable. Geographical and meteorological in-
formation systems are good examples of this, which
could be helpful to improve the realism. Another
topic, which has been prominent in our discussions
with traffic safety experts, is how to reconcile dif-
ferent narratives that describe a same accident.

In our work on the information extraction mod-
ule, we have concentrated on the extraction of data
which are relevant for the visual reconstruction of
the scene. We believe that the information extrac-
tion component could be interesting in itself to ex-
tract other relevant data, for example casualty statis-
tics or traffic conditions.

Acknowledgements

We are very grateful to Karin Brundell-Freij, Åse
Svensson, and András Várhelyi, traffic safety ex-
perts at LTH, for helping us in the design the Carsim
template and advising us with the 3D graphic repre-
sentation.

This work is partly supported by grant num-
ber 2002-02380 from the Språkteknologi program
of Vinnova, the Swedish Agency of Innovation
Systems.

References

Giovanni Adorni, Mauro Di Manzo, and Fausto
Giunchiglia. 1984. Natural language driven im-
age generation. In Proceedings of COLING 84,
pages 495–500, Stanford, California.

Douglas E. Appelt and David Israel. 1999. In-
troduction to information extraction technology.
Tutorial Prepared for IJCAI-99. Artificial Intelli-
gence Center, SRI International.

Michael Arens, Artur Ottlik, and Hans-Hellmut
Nagel. 2002. Natural language texts for a cogni-
tive vision system. In Frank van Harmelen, edi-
tor, ECAI2002, Proceedings of the 15th European
Conference on Artificial Intelligence, Lyon, July
21-26.

Collin F. Baker, Charles J. Fillmore, and John B.
Lowe. 1998. The Berkeley FrameNet Project. In
Proceedings of COLING-ACL’98, pages 86–90,
Montréal, Canada.

Johan Carlberger and Viggo Kann. 1999. Imple-
menting an efficient part-of-speech tagger. Soft-
ware Practice and Experience, 29:815–832.

Bob Coyne and Richard Sproat. 2001. Wordseye:
An automatic text-to-scene conversion system.
In Proceedings of the Siggraph Conference, Los
Angeles.

Michel Denis. 1991. Imagery and thinking. In Ce-
sare Cornoldi and Mark A. McDaniel, editors,
Imagery and Cognition, pages 103–132. Springer
Verlag.

Sylvain Dupuy, Arjan Egges, Vincent Legendre,
and Pierre Nugues. 2001. Generating a 3D simu-
lation of a car accident from a written descrip-
tion in natural language: The Carsim system.
In Proceedings of The Workshop on Temporal
and Spatial Information Processing, pages 1–8,
Toulouse, July 7. Association for Computational
Linguistics.

Arjan Egges, Anton Nijholt, and Pierre Nugues.
2001. Generating a 3D simulation of a car ac-
cident from a formal description. In Venetia Gi-
agourta and Michael G. Strintzis, editors, Pro-
ceedings of The International Conference on
Augmented, Virtual Environments and Three-
Dimensional Imaging (ICAV3D), pages 220–223,
Mykonos, Greece, May 30-June 01.

Eva Ejerhed. 1996. Finite state segmentation of
discourse into clauses. In Proceedings of the 12th
European Conference on Artificial Intelligence
(ECAI-96) Workshop on Extended Finite State
Models of Language, Budapest, Hungary.

Daniel Gildea and Daniel Jurafsky. 2002. Auto-



Figure 6: Screenshots from the animation of the text above.

matic labeling of semantic roles. Computational
Linguistics, 28(3):245–288.

Nils-Olof Karlberg. 2003. Field results from
STRADA – a traffic accident data system telling
the truth. In ITS World Congress, Madrid, Spain,
November 16-20.

Stephen Michael Kosslyn. 1983. Ghosts in the
Mind’s Machine. Norton, New York.

Mauro Di Manzo, Giovanni Adorni, and Fausto
Giunchiglia. 1986. Reasoning about scene de-
scriptions. IEEE Proceedings – Special Issue on
Natural Language, 74(7):1013–1025.

Lisa Persson and Magnus Danielsson. 2004. Name
extraction in car accident reports for Swedish.
Technical report, LTH, Department of Computer
science, Lund, January.

James Pustejovsky, Roser Saurı́, Andrea Setzer, Rob
Gaizauskas, and Bob Ingria. 2002. TimeML An-
notation Guidelines. Technical report.

John Ross Quinlan. 1986. Induction of decision
trees. Machine Learning, 1(1):81–106.

John Ross Quinlan. 1993. C4.5: Programs for Ma-
chine Learning. Morgan Kauffman.

Åke Viberg, Kerstin Lindmark, Ann Lindvall, and
Ingmarie Mellenius. 2002. The Swedish Word-
Net project. In Proceedings of Euralex 2002,
pages 407–412, Copenhagen.

Wee Meng Soon, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.

Computational Linguistics, 27(4):521–544.
Edward R. Tufte. 1997. Visual Explanations: Im-

ages and Quantities, Evidence and Narrative.
Graphic Press.


