
Solving Logic Puzzles: From Robust Processing to Precise
Semantics

Iddo Lev,∗ Bill MacCartney,∗ Christopher D. Manning,∗† and Roger Levy†

∗ Department of Computer Science † Department of Linguistics
Stanford University Stanford University

Stanford, CA 94305-9040, USA Stanford, CA 94305-2150, USA
{iddolev|wcmac|manning}@cs.stanford.edu rog@stanford.edu

Abstract

This paper presents intial work on a system that
bridges from robust, broad-coverage natural lan-
guage processing to precise semantics and auto-
mated reasoning, focusing on solving logic puzzles
drawn from sources such as the Law School Admis-
sion Test (LSAT) and the analytic section of the
Graduate Record Exam (GRE). We highlight key
challenges, and discuss the representations and per-
formance of the prototype system.

1 Introduction

Traditional approaches to natural language un-
derstanding (Woods, 1973; Warren and Pereira,
1982; Alshawi, 1992) provided a good account
of mapping from surface forms to semantic rep-
resentations, when confined to a very limited
vocabulary, syntax, and world model, and re-
sulting low levels of syntactic/semantic ambi-
guity. It is, however, difficult to scale these
methods to unrestricted, general-domain natu-
ral language input because of the overwhelming
problems of grammar coverage, unknown words,
unresolvable ambiguities, and incomplete do-
main knowledge. Recent work in NLP has
consequently focused on more robust, broad-
coverage techniques, but with the effect of
overall shallower levels of processing. Thus,
state-of-the-art work on probabilistic parsing
(e.g., (Collins, 1999)) provides a good solution
to robust, broad coverage parsing with auto-
matic and frequently successful ambiguity reso-
lution, but has largely ignored issues of semantic
interpretation. The field of Question Answering
(Pasca and Harabagiu, 2001; Moldovan et al.,
2003) focuses on simple-fact queries. And so-
called semantic parsing (Gildea and Jurafsky,
2002) provides as end output only a flat clas-
sification of semantic arguments of predicates,
ignoring much of the semantic content, such as
quantifiers.

A major research question that remains unan-
swered is whether there are methods for get-

ting from a robust “parse-anything” statisti-
cal parser to a semantic representation precise
enough for knowledge representation and auto-
mated reasoning, without falling afoul of the
same problems that stymied the broad appli-
cation of traditional approaches. This paper
presents initial work on a system that addresses
this question. The chosen task is solving logic
puzzles of the sort found in the Law School Ad-
mission Test (LSAT) and the old analytic sec-
tion of the Graduate Record Exam (GRE) (see
Figure 1 for a typical example). The system in-
tegrates statistical parsing, “on-the-fly” combi-
natorial synthesis of semantic forms, scope- and
reference-resolution, and precise semantic repre-
sentations that support the inference required
for solving the puzzles. Our work comple-
ments research in semantic parsing and TREC-
style Question Answering by emphasizing com-
plex yet robust inference over general-domain
NL texts given relatively minimal lexical and
knowledge-base resources.

1.1 Why Logic Puzzles?

Logic puzzles have a number of attractive char-
acteristics as a target domain for research plac-
ing a premium on precise inference.

First, whereas for humans the language un-
derstanding part of logic puzzles is trivial but
the reasoning is difficult, for computers it is
clearly the reverse. It is straightforward for a
computer to solve a formalized puzzle, so the
research effort is on the NLP parts rather than
a difficult back-end AI problem. Moreover, only
a small core of world knowledge (prominently,
temporal and spatial entailments) is typically
crucial to solving the task.

Second, the texts employ everyday language:
there are no domain-restrictions on syntactic
and semantic constructions, and the situations
described by the texts are diverse.

Third, and most crucial, answers to puzzle
questions never explicitly appear in the text and

Preamble: Six sculptures – C, D, E, F, G, and H
– are to be exhibited in rooms 1, 2, and 3 of an art
gallery. The exhibition conforms to the following
conditions:

(1) Sculptures C and E may not be exhibited in

the same room.

(2) Sculptures D and G must be exhibited in the

same room.

(3) If sculptures E and F are exhibited in the same

room, no other sculpture may be exhibited in that

room.

(4) At least one sculpture must be exhibited in each

room, and no more than three sculptures may be

exhibited in any room.

Question 1: If sculpture D is exhibited in room
3 and sculptures E and F are exhibited in room 1,
which of the following may be true?

(A) Sculpture C is exhibited in room 1.
(B) No more than 2 sculptures are exhibited in
room 3.
(C) Sculptures F and H are exhibited in the same
room.
(D) Three sculptures are exhibited in room 2.
(E) Sculpture G is exhibited in room 2.

Question 2: If sculptures C and G are exhibited
in room 1, which of the following may NOT be a
complete list of the sculpture(s) exhibited in room
2?

(A) Sculpture D (B) Sculptures E and H (C). . .

Adapted from (Weber, 1999).
Figure 1: Example of a Puzzle Text

must be logically inferred from it, so there is
very little opportunity to use existing superficial
analysis methods of information-extraction and
question-answering as a substitute for deep un-
derstanding. A prerequisite for successful infer-
ence is precise understanding of semantic phe-
nomena like modals and quantifiers, in contrast
with much current NLP work that just ignores
such items. We believe that representations
with a well-defined model-theoretic semantics
are required.

Finally, the task has a clear evaluation metric
because the puzzle texts are designed to yield
exactly one correct answer to each multiple-
choice question. Moreover, the domain is an-
other example of “found test material” in the
sense of (Hirschman et al., 1999): puzzle texts
were developed with a goal independent of the
evaluation of natural language processing sys-
tems, and so provide a more realistic evaluation
framework than specially-designed tests such as
TREC QA.

While our current system is not a real world
application, we believe that the methods being
developed could be used in applications such as
a computerized office assistant that must under-
stand requests such as: “Put each file contain-
ing a task description in a different directory.”

2 System Overview

This section explains the languages we use to
represent the content of a puzzle. Computing
the representations from a text is a complex pro-
cess with several stages, as shown in Figure 2.
Most of the stages are independent of the puz-

zles domain. Section 3 reviews the main chal-
lenges in this process, and later sections outline
the various processing stages. More details of
some of these stages can be found at (Stanford
NLP Group, 2004).

2.1 First-Order Logic (FOL)

An obvious way of solving logic puzzles is to
use off-the-shelf FOL reasoners, such as theo-
rem provers and model builders. Although most
GRE logic puzzles can also be cast as constraint-
satisfaction problems (CSPs), FOL representa-
tions are more general and more broadly ap-
plicable to other domains, and they are closer
to the natural language semantics. GRE logic
puzzles have finite small domains, so it is prac-
ticable to use FOL reasoners.

The ultimate representation of the content of
a puzzle is therefore written in FOL. For ex-
ample, the representation for the first part of
constraint (4) in Figure 1 is: ∀x.room(x) →
∃y.sculpture(y)∧ exhibit(y, x). (The treatment
of the modal ‘must’ is explained in §9.2).

2.2 Semantic Logic (SL)

Representing the meaning of natural language
texts in FOL is not straightforward because
human languages employ events, plural enti-
ties, modal operations, and complex numeric
expressions. We therefore use an intermedi-
ate representation, written in Semantic Logic
(SL), which is intended to be a general-purpose
semantic representation language. SL extends
FOL with event and group variables, the modal
operators ¤ (necessarily) and ♦ (possibly), and
Generalized Quantifiers (Barwise and Cooper,

statistical
parser

combinatorial
semantics

scope
resolution

reference
resolution

plurality
disambig.

lex.
sem.

info gaps
filler

text parse trees URs DL formulas SL formulas

answer
reasoning

module

to
FOL

FOL formulas

specific to
logic puzzles

general

Figure 2: System Overview

1981) Q(type, var, restrictor, body), where type
can be ∀, ∃, at-least(n), etc. To continue the ex-
ample, the intermediate representation for the
constraint is:
¤Q(∀, x1, room(x1), Q(≥1, x2, sculpture(x2),

∃e.exhibit(e) ∧ subj(e, x2) ∧ in(e, x1)))

2.3 Non-determinism

Although logic puzzles are carefully designed
to reduce ambiguities to ensure that there
is exactly one correct answer per question,
there are still many ambiguities in the analy-
sis, such as multiple possibilities for syntactic
structures, pronominal reference, and quantifier
scope. Each module ranks possible output rep-
resentations; in the event that a later stage re-
veals an earlier choice to be wrong (it may be
inconsistent with the rest of the puzzle, or lead
to a non-unique correct answer to a question),
the system backtracks and chooses the next-best
output representation for the earlier stage.

3 Challenges

3.1 Combinatorial Semantics

The challenge of combinatorial semantics is to
be able to assign exactly one semantic repre-
sentation to each word and sub-phrase regard-
less of its surrounding context, and to combine
these representations in a systematic way until
the representation for the entire sentence is ob-
tained. There are many linguistic constructions
in the puzzles whose compositional analysis is
difficult, such as a large variety of noun-phrase
structures (e.g., “Every sculpture must be ex-
hibited in a different room”) and ellipses (e.g.,
“Brian saw a taller man than Carl [did]”).

3.2 Scope Ambiguities

A sentence has a scope ambiguity when quan-
tifiers and other operators in the sentence can
have more than one relative scope. E.g., in con-
straint (4) of Figure 1, “each room” outscopes
“at least one sculpture”, but in other contexts,
the reverse scoping is possible. The challenge

is to find, out of all the possible scopings, the
appropriate one, to understand the text as the
writer intended.

3.3 Reference Resolution

The puzzle texts contain a wide variety of
anaphoric expressions, including pronouns, defi-
nite descriptions, and anaphoric adjectives. The
challenge is to identify the possible antecedents
that these expressions refer to, and to select
the correct ones. The problem is complicated
by the fact that anaphoric expressions interact
with quantifiers and may not refer to any par-
ticular context element. E.g., the anaphoric ex-
pressions in “Sculptures C and E are exhibited
in the same room” and in “Each man saw a dif-
ferent woman” interact with sets ({C, E} and
the set of all men, respectively).

3.4 Plurality Disambiguation

Sentences that include plural entities are po-
tentially ambiguous between different readings:
distributive, collective, cumulative, and combi-
nations of these. For example, sentence 1 in
Figure 1 says (among other things) that each
of the six sculptures is displayed in one of the
three rooms – the group of sculptures and the
group of rooms behave differently here. Plu-
rality is a thorny topic which interacts in com-
plex ways with other semantic issues, including
quantification and reference.

3.5 Lexical Semantics

The meaning of open-category words is often
irrelevant to solving a puzzle. For example,
the meaning of “exhibited”, “sculpture”, and
“room” can be ignored because it is enough to
understand that the first is a binary relation
that holds between elements of groups described
by the second and third words.1 This observa-

1The meanings are still important for the implicit
knowledge that a sculpture cannot be exhibited in more
than one room. However, such knowledge can be
guessed, as explained in §8.

tion provides the potential for a general system
that solves logic puzzles.

Of course, in many cases, the particular
meaning of open-category words and other ex-
pressions is crucial to the solution. An example
is provided in question 2 of Figure 1: the sys-
tem has to understand what “a complete list”
means. Therefore, to finalize the meaning com-
puted for a sentence, such expressions should be
expanded to their explicit meaning. Although
there are many such cases and their analysis is
difficult, we anticipate that it will be possible to
develop a relatively compact library of critical
puzzle text expressions. We may also be able
to use existing resources such as WordNet and
FrameNet.

3.6 Information Gaps

Natural language texts invariably assume some
knowledge implicitly. E.g., Figure 1 does not ex-
plicitly specify that a sculpture may not be ex-
hibited in more than one room at the same time.
Humans know this implicit information, but a
computer reasoning from texts must be given
it explicitly. Filling these information gaps is
a serious challenge; representation and acquisi-
tion of the necessary background knowledge are
very hard AI problems. Fortunately, the puz-
zles domain allows us to tackle this issue, as
explained in §8.

3.7 Presuppositions and Implicatures

In addition to its semantic meaning, a natural
language text conveys two other kinds of con-
tent.

Presuppositions are pieces of information as-
sumed in a sentence. Anaphoric expressions
bear presuppositions about the existence of en-
tities in the context; the answer choice “Sculp-
tures C and E” conveys the meaning {C, E},
but has the presupposition sculpture(C) ∧
sculpture(E); and a question of the form A →
B, such as question 1 in Figure 1, presupposes
that A is consistent with the preamble.

Implicatures are pieces of information sug-
gested by the very fact of saying, or not say-
ing, something. Two maxims of (Grice, 1989)
dictate that each sentence should be both con-
sistent and informative (i.e. not entailed) with
respect to its predecessors. Another maxim dic-
tates saying as much as required, and hence the
sentence “No more than three sculptures may be
exhibited in any room” carries the implicature
that in some possible solution, three sculptures
are indeed exhibited in the same room.

Systematic calculation of presuppositions and
implicatures has been given less attention in
NLP and is less understood than the calcula-
tion of meaning. Yet computing and verifying
them can provide valuable hints to the system
whether it understood the meaning of the text
correctly.

4 Morpho-Syntactic Analysis

While traditional hand-built grammars often in-
clude a rich semantics, we have found their
coverage inadequate for the logic puzzles task.
For example, the English Resource Grammar
(Copestake and Flickinger, 2000) fails to parse
any of the sentences in Figure 1 for lack of cover-
age of some words and of several different syn-
tactic structures; and parsable simplified ver-
sions of the text produce dozens of unranked
parse trees. For this reason, we use a broad-
coverage statistical parser (Klein and Manning,
2003) trained on the Penn Treebank. In addi-
tion to robustness, treebank-trained statistical
parsers have the benefit of extensive research
on accurate ambiguity resolution. Qualitatively,
we have found that the output of the parser on
logic puzzles is quite good (see §10). After pars-
ing, each word in the resulting parse trees is
converted to base form by a stemmer.

A few tree-transformation rules are applied
on the parse trees to make them more conve-
nient for combinatorial semantics. Most of them
are general, e.g. imposing a binary branching
structure on verb phrases, and grouping expres-
sions like “more than”. A few of them correct
some parsing errors, such as nouns marked as
names and vice-versa. There is growing aware-
ness in the probabilistic parsing literature that
mismatches between training and test set genre
can degrade parse accuracy, and that small
amounts of correct-genre data can be more im-
portant than large amounts of wrong-genre data
(Gildea, 2001); we have found corroborating ev-
idence in misparsings of noun phrases common
in puzzle texts, such as “Sculptures C and E”,
which do not appear in the Wall Street Journal
corpus. Depending on the severity of this prob-
lem, we may hand-annotate a small amount of
puzzle texts to include in parser training data.

5 Combinatorial Semantics

Work in NLP has shifted from hand-built gram-
mars that need to cover explicitly every sen-
tence structure and that break down on unex-
pected inputs to more robust statistical parsing.

However, grammars that involve precise seman-
tics are still largely hand-built (e.g. (Carpenter,
1998; Copestake and Flickinger, 2000)). We aim
at extending the robustness trend to the seman-
tics. We start with the compositional semantics
framework of (Blackburn and Bos, 2000; Bos,
2001) and modify it to achieve greater robust-
ness and coverage.2

One difference is that our lexicon is kept
very small and includes only a few words with
special semantic entries (like pronouns, con-
nectives, and numbers). Open-category words
come with their part-of-speech information in
the parse trees (e.g. (NN dog)), so their seman-
tics can be obtained using generic semantic tem-
plates (but cf. §3.5).

In classic rule-to-rule systems of semantics
like (Blackburn and Bos, 2000), each syntactic
rule has a separate semantic combination rule,
and so the system completely fails on unseen
syntactic structures. The main distinguishing
goal of our approach is to develop a more robust
process that does not need to explicitly specify
how to cover every bit of every sentence. The
system incorporates a few initial ideas in this
direction.

First, role and argument-structure informa-
tion for verbs is expensive to obtain and unre-
liable anyway in natural texts. So to deal with
verbs and VPs robustly, their semantics in our
system exports only an event variable rather
than variables for the subject, the direct object,
etc. VP modifiers (such as PPs and ADVPs)
combine to the VP by being applied on the ex-
ported event variable. NP modifiers (including
the sentence subject) are combined to the event
variable through generic roles: subj, np1, np2,
etc. The resulting generic representations are
suitable in the puzzles domain because usually
only the relation between objects is important
and not their particular roles in the relation.
This is true for other tasks as well, including
some broad-coverage question answering.

All NPs are analyzed as generalized quanti-
fiers, but a robust compositional analysis for
the internal semantics of NPs remains a serious
challenge. For example, the NP “three rooms”
should be analyzed as Q(num(3), x, room(x), ..),
but the word “three” by itself does not con-
tribute the quantifier – compare with “at least
three rooms” Q(≥3, x, room(x), ..). Yet another
case is “the three rooms” (which presupposes

2Our system uses a reimplementation in Lisp rather
than their Prolog code.

a group g such that g ⊆ room ∧ |g| = 3). The
system currently handles a number of NP struc-
tures by scanning the NP left-to-right to iden-
tify important elements. This may make it eas-
ier than a strictly compositional analysis to ex-
tend the coverage to additional cases.

All other cases are handled by a flexible com-
bination process. In case of a single child, its
semantics is copied to its parent. With more
children, all combinations of applying the se-
mantics of one child to its siblings are tried,
until an application does not raise a type er-
ror (variables are typed to support type check-
ing). This makes it easier to extend the coverage
to new grammatical constructs, because usually
only the lexical entry needs to be specified, and
the combination process takes care to apply it
correctly in the parse tree.

6 Scope Resolution

One way of dealing with scope ambiguities is by
using underspecified representations (URs). A
UR is a meta-language construct, describing a
set of object-language formulas.3 It describes
the pieces shared by these formulas, but possi-
bly underspecifies how they combine with each
other. A UR can then be resolved to the specific
readings it implicitly describes.

We use an extension of Hole Semantics
(Blackburn and Bos, 2000)4 for expressing URs
and calculating them from parse trees (modulo
the modifications in §5). There are several ad-
vantages to this approach. First, it supports
the calculation of just one UR per sentence in
a combinatorial process that visits each node of
the parse tree once. This contrasts with ap-
proaches such as Categorial Grammars (Car-
penter, 1998), which produce explicitly all the
scopings by using type raising rules for different
combinations of scope, and require scanning the
entire parse tree once per scoping.

Second, the framework supports the expres-
sion of scoping constraints between different
parts of the final formula. Thus it is possible
to express hierarchical relations that must exist
between certain quantifiers, avoiding the prob-
lems of naive approaches such as Cooper stor-
age (Cooper, 1983). The expression of scoping
constraints is not limited to quantifiers and is
applicable to all other operators as well. More-
over, it is possible to express scope islands by

3In our case, DL formulas – see footnote 6.
4The approach is similar to MRS (Copestake et al.,

2003).

constraining all the parts of a subformula to be
outscoped by a particular node.

Another advantage is that URs support ef-
ficient elimination of logically-equivalent read-
ings. Enumerating all scopings and using
a theorem-prover to determine logical equiva-
lences requires O(n2) comparisons for n scop-
ings. Instead, filtering methods (Chaves, 2003)
can add tests to the UR-resolution process,
disallowing certain combinations of operators.
Thus, only one ordering of identical quantifiers
is allowed, so “A man saw a woman” yields
only one of its two equivalent scopings. We also
filter ∀¤ and ∃♦ combinations, allowing only
the equivalent ¤∀ and ♦∃. However, numeric
quantifiers are not filtered (the two scopings of
“Three boys saw three films” are not equiva-
lent). Such filtering can result in substantial
speed-ups for sentences with a few quantifiers
(see (Chaves, 2003) for some numbers).

Finally, our true goal is determining the cor-
rect relative scoping in context rather than enu-
merating all possibilities. We are developing
a probabilistic scope resolution module that
learns from hand-labeled training examples to
predict the most probable scoping, using fea-
tures such as the quantifiers’ categories and
their positions and grammatical roles in the sen-
tence.5

7 Reference Resolution

SL is not convenient for representing directly
the meaning of referring expressions because (as
in FOL) the extent of a quantifier in a formula
cannot be extended easily to span variables in
subsequent formulas. We therefore use Dis-
course Logic (DL), which is SL extended with
DRSes and α-expressions as in (Blackburn and
Bos, 2000) (which is based on Discourse Repre-
sentation Theory (Kamp and Reyle, 1993) and
its recent extensions for dealing with presuppo-
sitions).6 This approach (like other dynamic se-
mantics approaches) supports the introduction
of entities that can later be referred back to,
and explains when indefinite NPs should be in-

5E.g. there is a strong preference for ‘each’ to take
wide scope, a moderate preference for the first quantifier
in a sentence to take wide scope, and a weak preference
for a quantifier of the grammatical subject to take wide
scope.

6Thus, the URs calculated from parse trees are ac-
tually URs of DL formulas. The scope resolution phase
resolves the URs to explicit DL formulas, and the ref-
erence resolution phase converts these formulas to SL
formulas.

terpreted as existential or universal quantifiers
(such as in the antecedent of conditionals). The
reference resolution framework from (Blackburn
and Bos, 2000) provides a basis for finding all
possible resolutions, but does not specify which
one to choose. We are working on a probabilis-
tic reference-resolution module, which will pick
from the legal resolutions the most probable one
based on features such as: distance, gender, syn-
tactic place and constraints, etc.

8 Filling Information Gaps

To find a unique answer to every question of a
puzzle, background information is required be-
yond the literal meaning of the text. In Ques-
tion 1 of Figure 1, for example, without the con-
straint that a sculpture may not be exhibited in
multiple rooms, answers B, D and E are all cor-
rect. Human readers deduce this implicit con-
straint from their knowledge that sculptures are
physical objects, rooms are locations, and phys-
ical objects can have only one location at any
given time. In principle, such information could
be derived from ontologies. Existing ontologies,
however, have limited coverage, so we also plan
to leverage information about expected puzzle
structures.

Most puzzles we collected are formaliz-
able as constraints on possible tuples of ob-
jects. The crucial information includes: (a)
the object classes; (b) the constants nam-
ing the objects; and (c) the relations used to
link objects, together with their arguments’
classes. For the sculptures puzzle, this infor-
mation is: (a) the classes are sculpture and
room; (b) the constants are C, D, E, F, G, H for
sculpture and 1, 2, 3 for room; (c) the relation
is exhibit(sculpture, room). This information is
obtainable from the parse trees and SL formu-
las.

Within this framework, implicit world knowl-
edge can often be recast as mathematical prop-
erties of relations. The unique location con-
straint on sculptures, for example, is equivalent
to constraining the mapping from sculptures to
rooms to be injective (one-to-one); other cases
exist of constraining mappings to be surjective
(onto) and/or total. Such properties can be ob-
tained from various sources, including cardinal-
ity of object classes, pure lexical semantics, and
even through a systematic search for sets of im-
plicit constraints that, in combination with the
explicitly stated constraints, yield exactly one
answer per question. Figure 3 shows the num-

only object classes
23×6 = 262, 144 models

explicit constraints
2,916 models

implicit constraints
36 = 729 models

explicit and implicit constraints
78 models

Figure 3: Effect of explicit and implicit con-
straints on constraining the number of possible
models

ber of possible models for the sculptures puzzle
as affected by explicit and implicit constraints
in the preamble.

9 Solving the Puzzle

9.1 Expanding the answer choices

The body of a logic puzzle question contains a
(unique) wh-term (typically “which of the fol-
lowing”), a modality (such as “must be true” or
“could be true”), and (possibly) an added condi-
tion. Each answer choice is expanded by substi-
tuting its SL form for the wh-term in the ques-
tion body. For example, the expansion for an-
swer choice (A) of question 1 in Figure 1 would
be the SL form corresponding to: “If sculpture
D is exhibited . . . , then [Sculpture C is exhibited
in room 1] must be true”.

9.2 Translating SL to FOL

To translate an SL representation to pure FOL,
we eliminate event variables by replacing an SL
form ∃e.P (e)∧R1(e, t1)∧ ..∧Rn(e, tn) with the
FOL form P (t1, .., tn). An ordering is imposed
on role names to guarantee that arguments are
always used in the same order in relations. Nu-
meric quantifiers are encoded in FOL in the ob-
vious way, e.g., Q(≥2, x, ϕ, ψ) is translated to
∃x1∃x2. x1 6= x2∧ (ϕ∧ψ)[x1/x]∧ (ϕ∧ψ)[x2/x].

Each expanded answer choice contains one
modal operator. Modals are moved outward
of negation as usual, and outward of condition-
als by changing A → ¤B to ¤(A → B) and
A → ♦B to ♦(A∧B). A modal operator in the
outermost scope can then be interpreted as a
directive to the reasoning module to test either
entailment (¤) or consistency (♦) between the
preamble and the expanded answer choice.

9.3 Using FOL reasoners

There are two reasons for using both theo-
rem provers and model builders. First, they
are complementary reasoners: while a theorem

prover is designed to demonstrate the incon-
sistency of a set of FOL formulas, and so can
find the correct answer to “must be true” ques-
tions through proof by contradiction, a model
builder is designed to find a satisfying model,
and is thus suited to finding the correct an-
swer to “could be true” questions.7 Second, a
reasoner may take a very long time to halt on
some queries, but the complementary reasoner
may still be used to answer the query in the
context of a multiple-choice question through
a process of elimination. Thus, if the model
builder is able to show that the negations of four
choices are consistent with the preamble (indi-
cating they are not entailed), then it can be
concluded that the remaining choice is entailed
by the preamble, even if the theorem prover has
not yet found a proof.

We use the Otter 3.3 theorem prover and
the MACE 2.2 model builder (McCune, 1998).8

The reasoning module forks parallel sub-
processes, two per answer choice (one for Otter,
one for MACE). If a reasoner succeeds for an an-
swer choice, the choice is marked as correct or
incorrect, and the dual sub-process is killed. If
all answer-choices but one are marked incorrect,
the remaining choice is marked correct even if
its sub-processes did not yet terminate.

10 Progress

Using the sculptures puzzle (a set of four ques-
tions partly shown in Figure 1) as an initial test
case, we have built a prototype end-to-end sys-
tem. In its present state, the system analyzes
and solves correctly all questions in this puzzle,
except that there is still no understanding of the
phrase “complete list” in question 2. The back-
end reasoning module is finished and works for
any puzzle formalized in FOL+modals. The
probabilistic scope resolution module, trained
on 259 two-quantifier sentences extracted from
122 puzzles and tested on 46 unseen sentences,
attains an accuracy of about 94% over an 82%
linear-order baseline. A preliminary evaluation
on another unseen puzzle shows that on 60%
of the sentences, the parser’s output is accurate
enough to support the subsequent computation
of the semantics, and we expect this to be better
after it is trained on puzzle texts. However, the

7GRE puzzles always deal with finite domains, so a
model builder is guaranteed to halt on consistent sets of
formulas.

8An advantage of using Otter and MACE is that they
are designed to work together, and use the same input
syntax.

system as a whole worked end-to-end on only
one of the unseen sentences in that puzzle; key
losses come from unhandled semantic phenom-
ena (e.g. “only”, “except”, ellipses), unhandled
lexical semantics of words that must be under-
stood (e.g. “complete list”), and unhandled im-
plicit constraint types that need to be filled.

11 Conclusion and Further Work

The key open problem is identifying sufficiently
robust and general methods for building precise
semantic representations, rather than requiring
hand-built translation rules for a seemingly end-
less list of special phenomena. Immediate fu-
ture work will include extending and generaliz-
ing the system’s coverage of syntax-to-semantics
mappings, incorporating classifiers for suggest-
ing likely coreference resolutions and operator
scopings, and developing methods for calculat-
ing presuppositions and inferences. This work
may be sufficient to give good coverage of the
problem domain, or we may need to develop
new more robust models of syntactic to seman-
tic transductions.

Acknowledgements

Thanks to Kristina Toutanova for useful discus-
sions.

This work was supported in part by the Advanced

Research and Development Activity (ARDA)’s

Advanced Question Answering for Intelligence

(AQUAINT) Program; in part by the Department

of the Navy under grant no. N000140010660, a Mul-

tidisciplinary University Research Initiative on Nat-

ural Language Interaction with Intelligent Tutoring

Systems; and in part by Department of Defense

award no. NBCH-D-03-0010(1) “A Person-Centric

Enduring, Personalized, Cognitive Assistant.”

References

Hiyan Alshawi, editor. 1992. The Core Language
Engine. MIT Press.

J. Barwise and R. Cooper. 1981. Generalized quan-
tifiers and natural language. Linguistics and Phi-
losophy, 4:159–219.

Patrick Blackburn and Johan Bos. 2000. Rep-
resentation and Inference for Natural Language:
A First Course in Computational Semantics.
http://www.comsem.org/.

Johan Bos. 2001. Doris 2001: Underspecification,
resolution and inference for discourse representa-
tion structures. In Blackburn and Kohlhase, edi-
tors, ICoS-3. Inference in Compuational Seman-
tics. Workshop Proceedings.

Bob Carpenter. 1998. Type-Logical Semantics. MIT
Press.

Rui P. Chaves. 2003. Non-redundant scope disam-
biguation in underspecified semantics. In Balder
ten Cate, editor, Proc. of the 8th ESSLLI Student
Session, pages 47–58.

Michael Collins. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania.

Robin Cooper. 1983. Quantification and Syntactic
Theory. Reidel, Dordrecht.

A. Copestake and D. Flickinger. 2000. An open-
source grammar development environment and
broad-coverage english grammar using HPSG. In
Proceedings of LREC.

A. Copestake, D. Flickinger, C. Pol-
lard, and I. Sag. 2003. Minimal re-
cursion semantics: an introduction.
http://lingo.stanford.edu/sag/publications.html.

D. Gildea and D. Jurafsky. 2002. Automatic label-
ing of semantic roles. Computational Linguistics,
28(3):245–288.

Daniel Gildea. 2001. Corpus variation and parser
performance. In Proceedings of EMNLP, pages
167–202.

Paul H. Grice. 1989. Studies in the way of words.
Harvard University Press.

Lynette Hirschman, Marc Light, Eric Breck, and
John D. Burger. 1999. Deep Read: A reading
comprehension system. In Proc. of the 37th An-
nual Meeting of the ACL, pages 325–332.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic. Kluwer, Dordrecht.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proc. of the 41st
Annual Meeting of the ACL, pages 423–430.

W. McCune. 1998. Automatic proofs and counterex-
amples for some ortholattice identities. Informa-
tion Processing Letters, 65:285–291.

Dan I. Moldovan, Christine Clark, Sanda M.
Harabagiu, and Steven J. Maiorano. 2003. CO-
GEX: A logic prover for question answering. In
Proc. of HLT/NAACL, pages 87–93.

Marius Pasca and Sanda M. Harabagiu. 2001. High
performance question/answering. In Proc. of SI-
GIR, pages 366–374.

Stanford NLP Group. 2004. Project website.
http://nlp.stanford.edu/nlkr/.

David Warren and Fernando Pereira. 1982. An effi-
cient easily adaptable system for interpreting nat-
ural language queries. Computational Linguistics,
8(3-4):110–122.

Karl Weber. 1999. The Unofficial Guide to the GRE
Test. ARCO Publishing, 2000 edition.

W. A. Woods. 1973. Progress in natural language
understanding: An application to lunar geology.
In AFIPS Conference Proceedings, volume 42,
pages 441–450.

