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Abstract . ) . .
Figure 1: An overview of our architecture for word
GAMBL is a word expert approach to WSD in sense disambiguation.

which each word expert is trained using memory- —— = s i e
based learning. Joint feature selection and algo-
rithm parameter optimization are achieved with a
genetic algorithm (GA). We use a cascaded Classi o
fier approach in which the GA optimizes local con- ‘
text features and the output of a separate keywore—_-
classifier (rather than also optimizing the keyword| = ™
features together with the local context features). A
further innovation on earlier versions of memory-
based WSD is the use of grammatical relation and

chunk features. This paper presents the architectur&novvS a choice between different statistical and

of the system briefly, and discusses its performancgsormation-theoretic feature and value weighting
on the English lexical sample and all words tasks inpethods, different neighborhood size and weighting

SENSEVAL-3. parameters, etc., that should be optimized for each

word expert independently. See (Daelemans et al.,
1 Memory-Based WSD 2003b) for more information. It has been claimed,
We interpret WSD as a classification task distributece.g. in (Daelemans et al., 1999), that lazy learn-
over word experts: given an ambiguous word andng has the right bias for learning natural language
its context as input features, a classifier specialize@irocessing tasks as it makes possible learning from
on that word assigns the contextually appropriateatypical and low-frequency events that are usually
sense to it. For each word-lemma—POS-tag combidiscarded by eager learning methods.

nation, a separate classifier is trained. Informationy . .iocture.  Previous work on memory-based

about the words immediately surrounding the aM3ysD includes work from Ng and Lee (1996), Veen-

blgtj_ous ;vorsl (the IOC?I tc%ntextc)l, as Well(ljas mf?r' tra et al. (2000), Hoste et al. (2002) and Mihalcea
mation about sense-related words in a wider conte 002). The current design of our WSD system is

(keywords) are provided as information Sources1argely based on Hoste et al. (2002).

coded in a feature vector. To train the word ex- . . . .
perts, memory-based learning (MBL) is used, an in- Figure 1 gives an overview of the design of our

stance of théazvlearning paradiam: all contexts in WSD system: the training text is first linguistically

) zy 9p gm. - analyzed. For each word-lemma—POS-tag combi-
which an ambiguous word occurs in the training text__ . e : I
ation, we check if it (i) is in our sense lexicon, (ii)

are k_e_pt I memory and abstra_ctlon only occurs a as more than one sense and (iii) has a frequency in
classification time by extrapolating a class from the,

A 4 . the training text above a certain threshold. For all
most similar item(s) in memory to the new test item.

This contrasts witleagerlearning methods such as combinations maiching these three condit_ions, we
decision lists which abstract from the training datatr‘r.jIln a word expert modgle. To all combinations
at training time and forget about the examples them\-N'th only one sense, or with more SENses and a fre-

? quency below the threshold, we assign the default
selves. For our experiments, we use the MBL al-

) . : 1 . sense, which is respectively the only or most fre-
gorithms implemented imimMBL*. This software quent sense in WordNet.

We usedTimMBL version 5.0.0, which is available from The word expert mo_qule consists of two ca_scaded
http://ilk.kub.nl memory-based classifiers: the sense predicted by
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the first classifier is used as a feature in the secon
classifier. The first classifier is trained on keywords

second one is trained on the prediction of the first p*j:la:g; prediton ofcesifer 13 p';fuag;
and on the local context of the ambiguous word-!| opimizion o aaifor 18 optimization

lemma—POS-tag combination. |
In the remainder of this paper, we will describe
the feature construction process from the availablé
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Eigure 2. The word expert module for the lexical

selected according to a statistical criterion, and thgample task.

information sources (Section 2), the learning andl
optimization approach (Section 3), and the results
(Section 4) and their interpretation.
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tains SemCor (included with WordNet 1.7.1), train-
ing and test data from the English lexical sam- o '
ple (LS) and all words (AW) tasks from previous In our training data we find 3433 word-lemma—
SENSEVAL workshops, the line-, hard- and serve-POS-tag combinations that fulfilled the word expert
corpora, and the example sentences in WordNegriteria: inthe LS test data, these word experts cover
1.7.1. This corpus contains 4.494.909 tokens ofll 57 word-lemma—POS-tag combinations, and in
which 555.269 are sense-tagged words. the AW test data, they cover 596 combinations, or
To this corpus, we add the training data from1448 particular instances (70.95%).
the SENSEVAL-3 English LS task, containing 7860  We will continue with a description of how we
sense-tagged words. For the AW task, we sim-<reate local context feature vectors, and extract key-
ply append the LS training data after conversionwords to create binary feature vectors.
of the verb’s WordSmyth senses to WordNet 1.7.1 B ,
senses. For the LS task, however, we S|igh»[|yLocaI context. The second classifier uses the im-
change the design of the word expert module pemediate local context of a focus word-lemma—-POS-
cause (i) WordSmyth senses are used for the verbd comb!natlon to disambiguate its senses: the fo-
and (i) for some words in the LS task, the sense disCUS word itself, and the three words before and after
tribution in our own training corpus is very different it. For each of these seven words, we include in the
from the distribution in the LS training data — we feature vector the POS-tag and the chunk+relation-
did not want this difference to (heavily) influence @9 assigned to the word by the shallow parser. The
the results. chunk+relation-tag contains information on the ba-
Figure 2 shows the word expert module used irSiC Phrase type of the word (nominal, verbal, prepo-

the LS task: we first generate a sense prediction usiitional), and for nominal phrases also information
ing classifier 1A, trained on our own training data©" the grammatical function (subject or object) of

using context keywords as features. This predic{h€ phrase.
tion becomes an extra feature in classifier 1B, also We set the context window size to 3 for prac-
trained on our own training data but using local con-tical reasons: in the optimization step, we use a
text as information source. Finally, the predictionsgenetic algorithm for feature selection. This algo-
of classifiers 1A and 1B become extra features forithm will determine which features from the con-
classifier 2: this classifier is trained on the LS train-text window will eventually be used in the classifi-
ing data, and uses local context for disambiguatingation step. Increasing the initial context window
senses. size, however, also increases the amount of com-
The test data in the English LS task contains 3944uter time needed for the optimization step. Using a
words to be Sense-tagged (57 unique Word-|emmalal.l'ger context window was computationally not fea-
POS-tag combinations), and in the English AW tasksible.
2041 words (1020 combinations). Training and test Finally, to these local context features, we add the
data are linguistically analyzed: first, we tokenize,prediction of thekeywords-in-contexiiassifier as an
POS-tag, and find chunks and grammatical relationsxtra feature. We will now explain how we extract
in the data with a shallow parser, and then we lemihe keywords and how we generate predictions for
matize the data. These tools were developed locallyour training items.

Y

2 Information sources |




Keywords in context. The first classifier of each bors and nearest neighbor voting schemes, and re-
word expert is trained on information about possi-tain the best result. The testing of one setting is done
ble disambiguating keywords in a context of threewith ten-fold cross-validation.

sentences: the sentence in which the ambiguous For classifier 2, we use a genetic algorithm (GA,
word occurs, the previous sentence, and the followe.g. (Goldberg, 1989)) to do joint parameter opti-
ing sentence. The method we use to extract the keymization and feature selection. We refer to (Daele-
words for each sense is based on the work of Ngnans et al., 2003a) for a discussion of the effect
and Lee (1996). They determine the probability ofof joint parameter optimization and feature selec-
a sense of a focus lemmg given keywordk by di-  tion on accuracy of classifiers for NLP tasks. Joint
viding N 100 (the number of occurrences of a pos-feature selection and parameter optimization is an
sible local context keywor#l with a particular focus optimization problem which involves searching the
word-lemma—POS-tag combinatiarwith a partic-  space of all possible feature subsets and parame-
ular senses) by Ny, (the number of occurrences ter settings to identify the combination that is op-
of a possible local context keywotkdoc with a par-  timal or near-optimal. Since exhaustive search in
ticular focus word-lemma—-POS-tag combination large search spaces is computationally not feasi-
regardless of its sense). In addition, we also takéle in practice, a GA is a more realistic approach
into account the frequency of a possible keyword into search the space. Contrary to traditional hill-

the complete training corpus;.o,: climbing approaches, such as backward selection,
the GA explores different areas of the search space
k) — N kioc 1 1) inparallel.
p(s|k) x ) 1) : :
Nkioe Nicorp For the experiments we use a generational GA

Words were selected as keywords for a sense if (igplemented in the DeGAlstributed Evaluation

they appeared at least three times in the context o enetic Algorithy framework®. We use the GA

. . In its default settings. The GA optimization is per-
:2%{ (s)(e)qse, and (ip(s|) was higher than or equal formed using 10-fold cross-validation on the avail-

To this collection of local context keywords able training data. The resulting optimal settings are

. X . . then applied to the test data. In the experiments,
we add possible disambiguating content words “Xihe individuals are represented as bit strings (Fig-
tracted from the WordNet sense definitions for each P 9 9

focus word-lemma—POS-tag combination. All the 3). Each individual contains particular values
f]or all algorithm settings and for the selection of the

keywords are rgpre_sented as b|r_\ary featutes, Yeatures. ForimBL , the large majority of these fea-
which the value is 1 if the keyword is present in the : ,
tures control the use of a feature (ignore, or a dis-

three-sentence-context, and O if not. . .
o . tance metric) and are encoded in the chromosome
For each training item in the word experts, we
enerate a keyword-based prediction. First, we spli S ternary aIIeIe_s. At the end of the chromosome,
g ' ' he 5-valued weighting parameter and the 4-valued

the complete set of training items for each word X~ ighbor weiahting parameter are encoded. toaether
pert in ten folds of equal size. We then use nine g ghting p » 109

folds to predict the sense of the remaining fold, af-W'th the k parameter which controls the number of

: . ; neighbors. The latter is encoded as a real value
ter having found an optimal parameter setting for, :

. - A ; which represents the logarithm of the number of
TiIMBL with heuristic optimization on the nine folds. .

; . neighbors.

We repeat this procedure for each fold. Finally, for We will now present the results of our WSD ar-
each training item, we append its keyword-basedchi,[ec,[ure on th% LS and AW test sets
prediction to the local context feature vector. ’

3 Training and optimization 4 Experimental results

In previous work on memory-based WSD (VeenstraEnglish lexical sample task. Table 1 presents the
et al., 2000; Hoste et al., 2002) we showed that optesults of our WSD system for each word in the
timization of features and algorithm parameters for-S task, and our overall score (ttupt column).
each word expert independently contributes considYVe included the results afimeL with default set-
erably to accuracy. For classifier 1 in the AW task,tings (thedefcolumn) and the score of a statistical
and for classifiers 1A and 1B in the LS task, webaseline (thenajcolumn), which assigns the sense

heuristically determine the optimal algorithm pa-—; : _
We would like to thank Bart Naudts for developing the

rqmeter Se_“'”QS: we eXhaus“_ver try _OUt all pos'DeGA environment, and addingmBL to this environment.
sible combinations of (a selection of) distance metwore information on DeGA can be found at:

rics, feature-weightings, number of nearest neigh#ttp:/iwww.islab.ua.ac.be/software




Figure 3. Example individual representing oneTable 2: Classification accuracy per POS in the En-

TIMBL experiment. glish lexical sample task.
. POS | AVG. SENSES| MAJ | DEF | OPT
WFe?Ztri:ﬁg V“‘v:gm‘r’]:f adjectives 74 51.6| 50.3| 54.1
Values 01,2 (01234) (0123) kvalue nouns 6.0 54.2| 56.9 | 66.4
| bl | verbs 5.6 56.5| 64.3| 69.4

10010120110020100111020 3 2 20288721872 e , .
\ || \ Table 3: Classification accuracy in the English all

FeafLres Parameters words task.
| TRAINING | TEST
WORD EXPERT WORDS
with the highest frequency in the training set to the WordNet default ] 56.4
test instances. For comparison, we also list ten-fold TIMBL default 60.89 55.7

cross-validation results (with default and optimized  GA optimized TIMBL 72.50 60.1
settings) of the second classifier on the training set.

ALL WORDS

Looking at the overall score, we see thavBL WordNet default ] 62.4
with default settings already outperforms the base- TIMBL default / 62.0
line with 5%, and that the'imMBL classifier opti- GA optimized TIMBL / 65.2

mized with the GA, improves our score even more
with another 7%.

For most words, the improvement after optimiz
tion with the genetic algorithm on the training set,
also holds on the test set, though for 15 words, th

a_predicts for each word to be sense-tagged the sense
that is listed in WordNet as the most frequent one.
él'he first half of the table lists the results when we

optimal setting from the GA does not resultin a bet-ONlY take into account words for which a word ex-
ter score than the default score. For four Words,pert is built. TIMBL with default settmgs cannot
TIMBL and the GA cannot outperform the major- outperform the already strong baseline, but after

ity sense baseline. We do not yet know what cause@pPtimization with the GA We see a 4% improve
TIMBL and the GA to perform badly, but a differ- ment. Unfortunately, this increase is not as high as
ence between the sense distributions in the trainin{:/r'el.getrformanﬁf bOOStLWGt seein thet t?.n:[foc;d. cr%ss-
and test set might be a factor. The distribution of the!&datlon resufts on .e raining set, fisted in the
majority sense in the training setsdurceis 48.4% first column of Table 3: there is a large increase of
while in the test set this distribution increases tolzve a(fjterfthe Oﬁprﬂlzatlon stdep. tis built
62.6%. Forimportantthere is a similar increase: ords Tor which no word expert 1S bullt are
from 38.9% to 47.4%. However, sense distributiontagged with their majority Sense from WordNet.
differences in training and test set cannot be the onl hen we also take these words into account, we see

cause, because factivateandlosethere is no such Similar results:_agaln, defauﬂlv_lsl__ cgnnot_outper-o
difference between the sense distributions. form the baseline, but GA optimization gives a 3%

Finally, Table 2 depicts the fine-grained classifi-"CTC 2S¢

cation accuracies of our system per POS in the LS, conclusion

task, again compared with the accuracies of the maF . h based WSD
jority sense baseline armimMBL with default set- ' OM Prévious research on memory-base '

tings. The classification accuracy for nouns andVe learned that both feature selection, algorithm pa-

verbs is more or less the same as the overall scors@Meter settings, and their interaction, play an im-

Adjectives, however, seem to be the harder to clagPortant role in accuracy, and that good selections

sify for our system: the classification accuracy isand settings do not generalize over diff_er_ent vx_/orql
13% lower than the overall score. This could be re-&Xperts. These should therefore be optimized indi-

lated to the on average higher number of senses fd’ljdya”y' We showed in this paper that using Ge-
the adjectives. netic Algorithms and'iMBL, this complex multiple

optimization problem can nevertheless be achieved,
English all words task. The last column of Ta- even for the AW task in which 3433 word experts
ble 3 presents our results on the AW test set: thénave to be optimized.

results of the classifier optimized with the GA are Compared with our previous system (Hoste et al.,
compared with the results afimpL with default 2002), using chunks and grammatical relations as
settings, and with a majority sense baseline, whicta source of information is an innovation. This in-



Table 1: Classification accuracies for all lemmas in the English lexical sample task.

TRAINING SET TEST SET TRAINING SET TEST SET
LEMMA/POS | DEF OPT MAJ DEF OPT LEMMA/POS | DEF OPT MAJ DEF OPT
provide/v | 84.56 | 94.85 | 85.50 | 88.40 | 92.75 rule/n | 75.44 | 91.23 | 40.00 | 50.00 | 60.00
eat/v | 79.04 | 89.22 | 88.50 | 78.16 | 91.95 image/n | 49.00 | 62.69 | 36.48 | 48.64 | 56.75
remain/v | 85.40 | 95.62 | 78.57 | 82.85 | 88.57 paper/n| 37.95| 54.46 | 25.64 | 38.46 | 55.55
arm/n | 88.67 | 93.20 | 81.95 | 84.21 | 84.96 produce/v| 50.54 | 65.22 | 52.12 | 53.19 | 55.31
plan/v | 67.93 | 78.48 | 82.14 | 75.00 | 83.33 suspend/v| 46.34 | 59.35 | 35.93 | 34.37 | 51.56
add/v | 73.95 | 82.38 | 46.21 | 79.54 | 82.57 argument/n| 42.04 | 57.58 | 51.35 | 43.24 | 51.35
degree/n| 64.56 | 78.38 | 60.93 | 71.09 | 82.03 difficulty/n | 35.48 | 58.06 | 17.39 | 34.78 | 39.13
hot/a | 68.67 | 78.00 | 79.06 | 76.74 | 81.39 || performance/n| 38.21 | 52.85 | 26.43 | 28.73 | 39.08
watch/v | 85.71 | 89.80 | 74.50 | 78.43 | 80.39 use/v | 80.77 | 88.46 | 71.42 | 78.57 | 78.57
smelllv | 70.41 | 85.27 | 40.00 | 74.54 | 78.18 hear/v | 64.52 | 74.19 | 46.87 | 53.12 | 53.12
bank/n | 61.36 | 79.22 | 67.42 | 59.84 | 78.03 win/v | 50.65 | 68.83 | 43.58 | 48.71 | 48.71
expect/v| 64.93 | 77.92 | 74.35 | 73.07 | 76.92 different/a | 54.81 | 65.27 | 50.00 | 46.00 | 46.00
talk/iv | 77.37 | 83.21 | 72.60 | 73.97 | 75.34 miss/v | 40.00 | 68.89 | 33.33 | 43.33 | 43.33
appear/v| 79.24 | 87.17 | 44.36 | 71.42 | 75.18 solid/a | 9.80 | 31.78 | 31.03 | 27.58 | 27.58
decide/v | 72.95 | 86.89 | 67.74 | 70.96 | 74.19 receive/v | 75.00 | 80.77 | 88.88 | 92.59 | 88.88
wash/v | 32.26 | 62.90 | 67.64 | 52.94 | 73.52 mean/v | 84.81 | 91.14 | 52.50 | 77.50 | 75.00
organization/n| 67.66 | 77.51 | 73.21 | 69.64 | 73.21 audience/n| 73.90 | 85.29 | 67.00 | 76.00 | 74.00
party/n | 61.82 | 71.96 | 62.06 | 65.51 | 72.41 operate/v| 72.73 | 84.85 | 38.88 | 66.66 | 55.55
interest/n | 63.28 | 70.36 | 41.93 | 59.13 | 72.04 write/v | 64.29 | 71.43 | 34.78 | 56.52 | 43.47
express/v| 48.62 | 72.48 | 69.09 | 45.45| 70.90 play/v | 48.42 | 64.21 | 46.15| 51.92 | 42.30
sort/v | 61.09 | 78.60 | 65.62 | 66.66 | 70.83 difference/n| 57.14 | 68.51 | 40.35 | 47.36 | 46.49
atmosphere/n| 47.42 | 60.20 | 66.66 | 51.85 | 70.37 judgment/n| 35.64 | 60.40 | 28.12 | 40.62 | 34.37
note/v | 56.15 | 69.23 | 56.71 | 61.19 | 68.65 treat/v | 37.84 | 55.86 | 28.07 | 40.35 | 38.59
disc/n | 54.03 | 69.19 | 38.00 | 52.00 | 66.00 lose/v | 44.78 | 62.69 | 52.77 | 36.11 | 52.77
climb/v | 63.48 | 78.26 | 55.22 | 59.70 | 64.17 important/a| 72.08 | 82.23 | 47.36 | 42.10 | 47.36
shelter/n| 66.14 | 74.02 | 44.89 | 54.08 | 63.26 activate/v | 70.40 | 80.27 | 82.45 | 64.91 | 80.70
simple/a | 43.55 | 58.52 | 27.77 | 44.44 | 61.11 source/n| 34.06 | 52.90 | 65.62 | 46.87 | 59.37
ask/v | 49.80 | 62.06 | 28.24 | 60.30 | 61.06 OVERALL SCORE
begin/v | 53.41 | 63.07 | 59.49 | 53.16 | 60.75 FINE-GR. | 59.82 | 71.28 | 55.22 | 60.80 | 67.40
encounter/v| 51.94 | 65.89 | 36.92 | 58.46 | 60.00 COARSEGR. / / / / 74.00

guage learningMachine Learning34:11-43.

W. Daelemans, V. Hoste, F. De Meulder, and
B. Naudts. 2003a. Combined optimization of
feature selection and algorithm parameter inter-
action in machine learning of language. Rroc.
of ECML-2003 pages 84—95.

W. Daelemans, J. Zavrel, K. van der Sloot, and
A. van den Bosch. 2003b. TiMBL: Tilburg
memory-based learner, ver. 5.0, ref. guide. Tech.
report, ILK.

formation seems to contribute to the disambiguatiorp. Goldberg. 1989Genetic Algorithms in Search,

process: Table 4 list for each type of feature the per- Optimization and Machine LearningAddison
centage of times it was selected by the GA. Though Wesley.

Table 4 is an not exhaustive comparison of the difyy Hoste, I. Hendrickx, W. Daelemans, and
ferent types of features, we nevertheless see that the A. van den Bosch. 2002. Parameter optimization
GA selects SyntaCtiC and grammatical information for machine-|earning of word sense disambigua-
more often than plain words or POS-tags. tion. Nat. Language Eng8:311-325.

Finally, Table 4 also suggests that our cascadegada Mihalcea. 2002. Instance based learning with
approach to combine two different information  automatic feature selection applied to word sense
sources is quite successful: the predictions from the disambiguation. IProc. of COLING-2002
previous classifier(s) are very often selected, espgq T Ng and H. B. Lee. 1996. Integrating multiple
cially in the LS task, where the prediction from the  \nowledge sources to disambiguate word senses:
keyword classifier is most often selected. An examplar-based approach. Pmoc. of ACL-
1996 pages 40-47.
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Table 4: The GA's selection of the different types of
features in percentages.

PREDICTION TYPE | AW LS
predictions from keyword classifigr 59 74
predictions from old data classifier / 65
words in local context 59 58
POS-tags of local context 55 65
chunk+relation tags of local context67 72




