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Abstract 

This paper discusses some main difficulties of 
restricted-domain question-answering systems, 
in particular the problem of precision 
performance. We propose methods for 
improving the precision, which can be 
classified into two main approaches: 
improving the Information Retrieval module, 
and improving its results. We present the 
application of these methods in a real QA 
system for a large company, which yielded 
very good results. 

1 Introduction 

Restricted-domain Question-Answering 
(RDQA) works on specific domains and often uses 
document collections restricted in subject and 
volume. It has some characteristics that make 
techniques developed recently for open-domain 
QA, particularly those within TREC (Text 
REtrieval Conference, e.g. (TREC, 2002)) 
competitions, become less helpful. First, in RDQA, 
correct answers to a question may often be found 
in only very few documents. Light et al (2001) 
give evidence that the performance on precision of 
a system depends greatly on the redundancy of 
answer occurrences in the document collection1. 
Second, a RDQA system has often to work with 
domain-specific terminology, including domain-
specific word meaning. Lexical and semantic 
techniques based on general lexicons and thesauri, 
such as WordNet, may not apply well here. Third, 
if a QA system is to be used for a real application, 
e.g. answering questions from clients of a 
company, it should accept complex questions, of 

                                                 
1 For example, they estimate that only about 27% of 

the systems participating in TREC-8 produced a correct 
answer for questions with exactly one answer 
occurrence, while about 50% of systems produced a 
correct answer for questions with 7 answer occurrences. 
(7 is the average answer occurrences per question in the 
TREC-8 collection.) 

various forms and styles. The system should then 
return a complete answer, which can be long and 
complex, because it has to, e.g., clarify the context 
of the problem posed in the question, explain the 
options of a service, give instructions, procedures, 
or suggestions, etc. Contrarily, techniques from 
TREC competitions, aiming at finding short and 
precise answers, are often based on the hypothesis 
that the questions are constituted by a single, and 
often simple, sentence, and can be categorized into 
a well-defined and simple semantic classification 
(e.g. Person, Time, Location, Quantity, etc.). 

RDQA has a long history, beginning with 
systems working over databases (e.g., BASEBALL 
(Green et al, 1961) and LUNAR (Woods, 1973)). 
Recently, research in QA has concentrated mostly 
on open-domain QA, in particular on how to find a 
very precise and short answer. Nonetheless, RDQA 
seems to be regaining attention, as shown by this 
ACL workshop. Researchers are also beginning to 
recognize the importance of long and complete 
answers. Lin et al (2003) carried out experiments 
showing that users prefer an answer within context, 
e.g., an answer within its containing paragraph. 
Buchholz and Daelemans (2001) defined some 
types of complex answers, and proposed that the 
system presents a list of good candidates to the 
user, and let him construct the reply by himself. 
Harabagiu et al (2001) mentioned the class of 
questions that need a listing answer. 

One well-known approach for RDQA was 
semantic grammars (Brown and Burton, 1975), 
which build pre-defined patterns of questions for a 
specific task. Simple and easy to implement, this 
approach can only deal with very small tasks, and a 
restricted set of questions. The most popular class 
of techniques for QA – whether it is restricted-
domain or open-domain, includes using thesauri 
and lexicons, classifying documents, and 
categorizing the questions. Harabagiu et al (2000), 
for example, use WordNet extensively to generate 
keyword alternations and infer the expected answer 
category of a question. 

In this paper, we present several methods to 
improve the precision of a RDQA system which 



should accept freely complex questions and return 
complete answers. We use our experiments in 
developing a real system as demonstration. 

2 Overview of the demonstration system 

The objective of this system is to reply to clients' 
questions on services offered by a large company, 
here Bell Canada. The company provides wide-
range services on telephone, wireless, Internet, 
Web, etc. for personal and enterprise clients. The 
document collection was derived from HTML and 
PDF files from the company's website 
(www.bell.ca). As the structure of these files was 
so complicated, documents were saved as pure text 
with no mark-ups, sacrificing some important 
formatting cues like titles, listings, tables. The 
collection comprises more than 220 documents, of 
a total of about 560K characters. 

The available question set has 140 questions. It 
was assured that every question has an answer 
from the contents of the collection. The form and 
style of the questions vary freely. Most questions 
are composed of one sentence, but some are 
composed of several sentences. The average length 
of questions is 11.3 words (to compare, that of 
TREC questions is 7.3 words). The questions ask 
about what a service is, its details, whether a 
service exists for a certain need, how to do 
something with a service, etc. For the project, we 
divided the question set at random into 80 
questions for training and 60 for testing. Below are 
some examples of questions: 

Do I have a customized domain name even 
with the Occasional Plan of Business Internet 
Dial? 

With the Web Live Voice service, is it possible 
that a visitor activates a call to our company 
from our web pages, but then the call is 
connected over normal phone line? 

It seems that the First Rate Plan is only good 
if most of my calls are in the evenings or 
weekends. If so, is there another plan for long 
distance calls anytime during the day? 

Although our collection was not very large, it 
was not so small either so that a strategy of 
searching the answers directly in the collection 
could be obvious. Hence we first followed the 
classic two-step strategy of QA: information 
retrieval (IR), and then candidate selection and 
answer extraction. For the first step, we used 
Okapi, a well-known generic IR engine 
(www.soi.city.ac.uk/~andym/OKAPI-PACK/, also 
(Beaulieu et al, 1995)). For each question, Okapi 
returns an ordered list of answer candidates, 
together with a relevance score for each candidate 

and the name of the document containing it. An 
answer candidate is a paragraph which Okapi 
considers most relevant to the question.2 

The candidates were then evaluated by a human 
judge using a binary scale: correct or incorrect. 
This kind of judgment is recommended in the 
context of communications between a company 
and its clients, because the conditions and technical 
details of a service should be edited as clearly as 
possible in the reply to the client. However we did 
also accept some tolerance in the evaluation. If a 
question is ambiguous, e.g., it asks about phones 
but does not specify whether it pertains to wired 
phones or wireless phones, all correct candidates of 
either case will be accepted. If a candidate is good 
but incomplete as a reply, it will be judged correct 
if it contains the principal theme of the supposed 
answer, and if missing information can be found in 
paragraphs around the candidate's text in the 
containing document. 

Table 1 shows Okapi's performance on the 
training question set. We kept at most the 10 best 
candidates for each question, because after rank 10 
a good answer was very rare. C(n) is the number of 
candidates at rank n which are judged correct. Q(n) 
is the number of questions in the training set which 
have at least one correct answer among the first n 
ranks. As for answer redundancy, among the 45 
questions having at least a correct answer (see 
Q(10)), there were 33 questions (41.3% of the 
entire training set) having exactly 1 correct answer, 
10 questions (12.5%) having 2, and 2 questions 
(2.5%) having 3 correct answers. Table 2 gives 
Okapi's precision on the test question set. 

The results show that Okapi's performance on 
precision was not satisfying, conforming to our 
discussion about characteristics of RDQA above. 
The precision was particularly weak for n's from 1 
to 5. Unfortunately, these are cases that the system 
aims at. n=1 means that only one answer will be 
returned – a totally automatic system. n=2 to 5 
correspond to more practical scenarios of a semi-
automatic system, where an agent of the company 
chooses the best one among the n candidates, edits 
it, and sends it to the client. We stopped at n=5 
because a greater number of candidates seems too 
heavy psychologically to the human agent. Also 
note that the rank of the candidates is not important 
here, because they would be equally examined by 
the agent. This explains why we used Q(n) to 
measure the precision performance rather than 

                                                 
2 A paragraph is a block of text separated by double 

newlines. As formatted files were saved in plain text, 
original "logical" paragraphs may be joined up into one 
paragraph, which may affect the precision of the 
candidates. 



other well-known scoring such as mean reciprocal 
rank (MRR). 

Examining the correct candidates, we found that 
they were generally good enough to be sent to the 
user as an understandable reply. About 25% of 
them contained superfluous information for the 
corresponding question, while 15% were lacking 

of information. However, only 2/3 of the latter 
(that is 10% of all) looked difficult to be completed 
automatically. Building the answer from a good 
candidate therefore seemed less important than 
improving the precision of the IR module. We 
therefore concentrated on how to improve Q(n), n= 
1 to 5, of the system. 

 
 

n 1 2 3 4 5 6 7 8 9 10 
C(n) 20 11 5 4 9 3 1 1 4 1 
%C(n) 25% 13.8% 6.3% 5% 11.3% 3.8% 1.3% 1.3% 5% 1.3% 
Q(n) 20 26 28 32 39 41 42 43 44 45 
%Q(n) 25% 32.5% 35% 40% 48.8% 51.3% 52.5% 53.8% 55% 56.3% 

Table 1: Precision performance of Okapi on the training question set (80 questions). 

n 1 2 3 4 5 6 7 8 9 10 
C(n) 18 8 7 2 4 3 3 2 1 1 
%C(n) 30% 13.3% 11.7% 3.3% 6.7% 5% 5% 3.3% 1.7% 1.7% 
Q(n) 18 23 28 29 32 33 35 36 36 37 
%Q(n) 30% 38.3% 46.7% 48.3% 53.3% 55% 58.3% 60% 60% 61.7% 

Table 2: Precision performance of Okapi on the test question set (60 questions). 

 

3 Methods for Improving Precision 
Performance 

The first approach to improve the precision 
performance of the IR module is to use a better 
engine, e.g. by adjusting the parameters, modifying 
the formulas of the engine, or replacing a generic 
engine by a more domain-specific one, etc. 

Now suppose that the IR engine is already fixed, 
e.g. because we have achieved the best engine, or, 
more practically, because we cannot make changes 
or afford another engine. The second approach 
consists in improving the results returned by the IR 
engine. One main direction is candidate re-ranking, 
i.e. pushing good candidates in the returned 
candidate list to the first ranks as much as possible, 
thus increasing Q(n). To do this, we need some 
information that can characterize the relevance of a 
candidate to the corresponding question better than 
the IR engine did. The most prominent kind of 
such information may be the domain-specific 
language used in the working domain of the QA 
system, particularly its vocabulary, or even more 
narrowly, its terminological set. 

In the following, we will present our 
development of the second approach on the Bell 
Canada QA system first, because it seems less 
costly than the first one. However, we will present 
some implementations of the first approach later. 

4 Improving Precision by Re-ranking 
Candidates 

We experimented with two methods of re-
ranking, one with a strongly specific 
terminological set, and one with a good document 
characterization. 

4.1 Re-ranking using specific vocabulary 

In the first experiment, we noted that the names 
of specific Bell services, such as 'Business Internet 
Dial', 'Web Live Voice', etc., could be used as a 
relevance characterizing information, because they 
occurred very often in almost every document and 
question, and a service was often presented or 
mentioned in only one or a few documents, making 
these terms very discriminating. To have a generic 
concept, let's call these names 'special terms'. 
Luckily, these special terms occurred normally in 
capital letters, and could be automatically extracted 
easily. After a manual filtering, we obtained more 
than 450 special terms. 

We designed a new scoring system which raises 
the score of the candidates containing occurrences 
of special terms found in the corresponding 
question, as follows: 
(1) Score_of_candidate[i] = DC × (OW × 

Okapi_score + RC[i] × Term_score + 1) 



Thus, the score of candidate i in the ranked list 
returned by Okapi depends on: (i) The original 
Okapi_score given by Okapi, weighted by some 
integer value OW. (ii) A Term_score that 
measures the importance of common occurrences 
of special terms, and, with less emphasis, other 
noun phrases and open-class words, in the question 
and the candidate. It is weighted by some integer 
value RC[i] (for rank coefficient) that represents 
the role of the relative ranking of Okapi. (iii) A 
document coefficient DC that indicates the relative 
importance of a candidate i coming or not coming 
from a document which contains at least a special 
term occurring in the question. DC is thus 
represented by a 2-value pair; e.g., the pair (1, 0) 
corresponds to the extreme case of keeping only 
candidates coming from a document which 
contains at least one special term in the question, 
and throwing out all others. We ran the system 
with 20 different values of DC, 50 of RC, and OW 
from 0 to 60, on the training question set. See 
(Doan-Nguyen and Kosseim, 2004) for a detailed 
explanation of how formula (1) was derived, and 
how to design the values of DC, RC, and OW. 

Formula (1) gave very good improvements on 
the training set (Table 3), but just modest results 
when running the system with optimal training 
parameters on the test set (Table 4). Note: ∆Q(n) = 
System's Q(n) – Okapi’s Q(n); %∆Q(n) = 
∆Q(n)/Okapi’s Q(n).3 

 
n 1 2 3 4 5 
Q(n) 30 40 42 43 44 
∆Q(n) 10 14 14 11 5 
%∆Q(n) 50% 53.8% 50% 34.4% 12.8%

Table 3: Best results of formula (1) on the 
training set. 

n 1 2 3 4 5 
Q(n) 22 29 32 33 34 
∆Q(n) 4 6 4 4 2 
%∆Q(n) 22.2% 26.1% 14.3% 13.8% 6.3% 

Table 4: Results of formula (1) on the test set. 

                                                 
3 Okapi allows one to give it a list of phrases as 

indices, in addition to indices automatically created 
from single words. In fact, the results in Tables 1 and 2 
correspond to this kind of indexing, in which we 
provided Okapi with the list of special terms. These 
results are much better than those of standard indexing, 
i.e. without the special term list.  

 

4.2 Re-ranking with a better document 
characterization 

In formula (1), the coefficient DC represents an 
estimate of the relevance of a document to a 
question based only on special terms; it cannot 
help when the question and document do not 
contain special terms. To find another document 
characterization which can complement this, we 
tried to map the documents into a system of 
concepts. Each document says things about a set of 
concepts, and a concept is discussed in a set of 
documents. Building such a concept system seems 
feasible within closed-domain applications, 
because the domain of the document collection is 
pre-defined, the number of documents is in a 
controlled range, and the documents are often 
already classified topically, e.g. by their creator. If 
no such classification existed, one can use 
techniques of building hierarchies of clusters (e.g. 
those summarized in (Kowalski, 1997)). 

We used the original document classification of 
Bell Canada, represented in the web page URLs, as 
the basis for constructing the concept hierarchy 
and the mapping between it and the document 
collection. Below is a small excerpt from the 
hierarchy: 
BellAll 
 Personal 
  Personal-Phone 
   Personal-Phone-LongDistance 
    Personal-Phone-LongDistance-BasicRate 
    Personal-Phone-LongDistance-FirstRate 

In general, a leaf node concept corresponds to 
one or very few documents talking about it. A 
parent concept corresponds to the union of 
documents of its child concepts. Note that although 
many concepts coincide in fact with a special term, 
e.g. 'First Rate', many others are not special terms, 
e.g. 'phone', 'wireless', 'long distance', etc. 

The use of the concept hierarchy in the QA 
system was based on the following assumption: A 
question can be well understood only when we can 
recognize the concepts implicit in it. For example, 
the concepts in the question: 

It seems that the First Rate Plan is only good 
if most of my calls are in the evenings or 
weekends. If so, is there another plan for long 
distance calls anytime during the day? 

include Personal-Phone-LongDistance and 
Personal-Phone-LongDistance-FirstRate. 
Once the concepts are recognized, it is easy to 
determine a small set of documents relevant to 
these concepts, and carry out the search of answers 
in this set. 

To map a question to the concept hierarchy, we 
postulated that the question should contain words 



expressing the concepts. These words may be those 
constituting the concepts, e.g., 'long', 'distance', 
'first', 'rate', etc., or synonyms/near synonyms of 
them, e.g., 'telephone' to 'phone'; 'mobile', 
'cellphone' to 'wireless'. For every concept, we 
built a bag of words which make up the concept, 
e.g., the bag of words for Personal-Phone-
LongDistance-FirstRate is {'personal', 'phone', 
'long', 'distance', 'first', 'rate'}. We also built 
manually a small lexicon of (near) synonyms as 
mentioned above. 

Now, a question will be analyzed into separate 
words (stop words removed), and we look for 
concepts whose bags of words have elements in 
common with them. (Here we used the Porter 
stemmed form of words in comparison, and also 
counted cases of synonyms/near synonyms.) A 
concept is judged more relevant to a question if: (i) 
its bag of words has more elements in common 
with the question's set of words; (ii) the quotient of 
the size of the common subset mentioned in (i) 
over the size of the entire bag of words is larger; 
and (iii) the question contains more occurrences of 
words in that subset. 

From the relevant concept set, it is 
straightforward to derive the relevant document set 
for a given question. The documents will be ranked 
according to the order of the deriving concepts. (If 
a document is derived from several concepts, the 
highest rank will be used.) As for the coverage of 
the mapping, there were only 4 questions in the 
training set and 6 in the test set (7% of the entire 
question set) having an empty relevant document 
set. In fact, these questions seemed to need a 
context to be understood, e.g., a question like 
'What does Dot org mean?' should be posed in a 
conversation about Internet services. 

Now the score of a candidate is calculated by: 
(2) Score_of_candidate[i] = (CC + DC) × (OW 

× Okapi_score + RC[i] × Term_score + 1) 

The value of CC (concept-related coefficient) 
depends on the document that provides the 
candidate. CC should be high if the rank of the 
document is high, e.g. CC=1 if rank=1, CC=0.9 if 
rank=2, CC=0.8 if rank=3, etc. If the document 
does not occur in the concept-derived list, its CC 
should be very small, e.g. 0. The sum (CC + DC) 
represents a combination of the two kinds of 
document characterization. We ran the system with 
15 different values of the CC vector, with CC for 
rank 1 varying from 0 to 7, and CC for other ranks 
decreasing accordingly. Values for other 
coefficients are the same as in the previous 
experiment using formula (1). Results (Tables 5 
and 6) are uniformly better than those of formula 

(1). Good improvements show that the approach is 
appropriate and effective. 

 
n 1 2 3 4 5 
Q(n) 32 41 44 44 44 
∆Q(n) 12 15 16 12 5 
%∆Q(n) 60% 57.7% 57.1% 37.5% 12.8%

Table 5: Best results of formula (2) on the 
training set. 

n 1 2 3 4 5 
Q(n) 30 32 35 35 36 
∆Q(n) 12 9 7 6 4 
%∆Q(n) 66.6% 39.1% 25% 20.7% 12.5%

Table 6: Results of formula (2) on the test set. 

5 Two-Level Candidate Searching 

As the mapping in the previous section seems to 
be able to point out the documents relevant to a 
given question with a high precision, we tried to 
see how to combine it with the IR engine Okapi. In 
the previous experiments, the entire document 
collection was indexed by Okapi. Now indexing 
will be carried out separately for each question: 
only the document subset returned by the mapping, 
which usually contains no more than 20 
documents, is indexed, and Okapi will search for 
candidate answers for the question only in this 
subset. We hoped that Okapi could achieve higher 
precision in working with a much smaller 
document set. This strategy can be considered as a 
kind of two-level candidate searching. 

 
n 1 2 3 4 5 
MO Q(n) 18 33 38 45 46 
Q(n) 31 42 48 48 48 
∆Q(n) 11 16 20 16 9 
%∆Q(n) 55% 61.5% 71.4% 50% 23.1%

Table 7: Best results of two-level search 
combined with re-ranking on the training set. 

n 1 2 3 4 5 
MO Q(n) 20 25 26 29 31 
Q(n) 24 28 32 32 33 
∆Q(n) 6 5 4 3 1 
%∆Q(n) 33.3% 21.8% 14.3% 10.3% 3.1% 

Table 8: Results of two-level search combined 
with re-ranking on the test set. 



Results show that Okapi did not do better in this 
case than when it worked with the entire document 
collection (compare MO Q(n) in Tables 7 and 8 
with Q(n) in Tables 1 and 2. MO means 'mapping-
then-Okapi'). We then applied formula (2) to 
rearrange the candidate list as in the previous 
section. Although results on the training set (Table 
7) are generally better than those of the previous 
section, results on the test set (Table 8) are worse, 
which leads to an unfavorable conclusion for this 
method. (Note that ∆Q(n) and %∆Q(n) are always 
comparisons of the new Q(n) with the original 
Okapi Q(n) in Tables 1 and 2.) 

6 Re-implementing the IR engine  

The precision of the question-document mapping 
was good, but the performance of the two-level 
system based on Okapi in the previous section was 
not very persuasive. This led us back to the first 
approach mentioned in Section 3, i.e. replacing 
Okapi by another IR engine. We would not look 
for another generic engine because it was not 
interesting theoretically, but would instead 
implement a two-level engine using the question-
document mapping. As already known, the 
mapping returns just a small set of relevant 
documents for a given question; the new engine 
will search for candidate answers in this set. If the 
document set is empty, the system takes the 
candidates proposed by Okapi as results ("Okapi as 
Last Resort"). 

We implemented just a simple IR engine. First 
the question is analyzed into separate words (stop 
words removed). For every document in the set 
returned by the question-document mapping, the 
system scores each paragraph by counting in this 
paragraph the number of occurrences of words 
which also appear in the question (using the 
stemmed form of words). Here 'paragraph' means a 
block of text separated by one newline, not two as 
in Okapi sense. Note that texts in the Bell Canada 
collection contain a lot of short and empty 
paragraphs. The candidate passage is extracted by 
taking the five consecutive paragraphs which have 
the highest score sum. However, if the document is 
"small", i.e. contains less than 2000 characters, the 
entire document is taken as the candidate and its 
score is the sum of scores of all paragraphs. 

This choice seemed unfair to previous 
experiments because about 60% of the collection 
are such small documents. However, we decided to 
have a more realistic notion of answer candidates 
which reflects the nature of the collection and of 
our current task: in fact, those small documents are 
often dedicated to a very specific topic, and it 
seems necessary to present its contents in its 
entirety to any related question for reasons of 

understandability, or because of important 
additional information in the document. Also, a 
size of 2000 characters (which are normally 70% 
of a page) seems acceptable for a human 
judgement in the scenario of semi-automatic 
systems.4 

Let's call the score calculated as above 
Occurrence_score. We also considered the role of 
the rank of the document in the list returned by the 
question-document mapping. The final score 
formula is as follows: 
(3) Score_of_candidate = RC × (21 - 

Document_Rank) + Occurrence_score 

The portion (21 - Document_Rank) guarantees 
that high-rank documents contribute high scores. 
That portion is always positive because we 
retained no more than 20 documents for every 
question. RC is a coefficient representing the 
importance of the document rank. Due to time 
limit – judgement of candidates has to be done 
manually and is very time consuming, we carried 
out the experiment with only RC=0, 1, 1.5, and 2, 
and achieved the best results with RC=1.5. 

Results (Tables 9 and 10) show that except the 
case of n=1 in the test set, the new system 
performs well in precision. This might be 
explained partly because it tolerates larger 
candidates than previous experiments. However 
what is interesting here is that the engine is very 
simple but efficient because it does searching on a 
well selected and very small document subset. 

 
n 1 2 3 4 5 
Q(n) 42 55 60 60 61 
∆Q(n) 22 29 32 28 22 
%∆Q(n) 110% 112% 114% 88% 56% 

Table 9: Best results of the specific engine on 
the training set. 

n 1 2 3 4 5 
Q(n) 23 37 41 42 42 
∆Q(n) 5 14 13 13 10 
%∆Q(n) 27.8% 60.9% 46.4% 44.8% 31.3%

Table 10: Results of the specific engine on the 
test set. 

                                                 
4 In fact, candidates returned by Okapi are not 

uniform in length. Some are very short (e.g. one line), 
some are very long (more than 2000 characters). 



7 Second Approach Revisited: Extending 
Answer Candidates 

The previous experiment has shown that 
extending the size of answer candidates can greatly 
ease the task. This can be considered as another 
method belonging to the second approach – that of 
improving precision performance by improving the 
results returned by the IR engine. To be fair, it may 
be necessary to see how precision performance 
will be improved if this extending is used in other 
experiments. We did two small experiments. In the 
first one, any candidates returned by Okapi (cf. 
Tables 1 and 2) which came from a document of 
less than 2000 characters were extended into the 
entire document. Table 11 shows that 
improvements are not as good as those obtained by 
other methods. 
 
n 1 2 3 4 5 
Q(n) - A 24 32 35 39 47 
∆Q(n) 4 6 7 7 8 
%∆Q(n) 20% 23.1% 25% 21.9% 20.5%
Q(n) - B 20 27 32 34 37 
∆Q(n) 2 4 4 5 5 
%∆Q(n) 11.1% 17.4% 14.3% 17.2% 15.6%

Table 11: Results of extending Okapi candidates 
on the training set (A) and test set (B). 

In the second experiment, we similarly extended 
candidates returned by the two-level search process 
"mapping-then-Okapi" in Section 5. Improvements 
(Table 12) seem comparable to those of the 
experiment in Section 5 (Tables 7 and 8), but less 
good than those of experiments in Sections 4.2 and 
6. The two experiments of this section suggest that 
extending candidates helps improve the precision, 
but not so much unless it is combined with other 
methods. We have not yet, however, carried out 
experiments of combining candidate extending 
with re-ranking. 

 
n 1 2 3 4 5 
Q(n) - A 25 43 48 57 60 
∆Q(n) 5 17 20 25 21 
%∆Q(n) 25% 65.4% 71.4% 78.1% 53.8% 
Q(n) - B 24 31 32 38 41 
∆Q(n) 6 8 4 9 9 
%∆Q(n) 25% 34.8% 14.3% 31% 23.1% 

Table 12: Results of extending two-level search 
candidates on the training set (A) and test set (B). 

8 Discussions and Conclusions 

RDQA, working on small document collections 
and restricted subjects, seems to be a task no less 
difficult than open-domain QA. Due to candidate 
scarcity, the precision performance of a RDQA 
system, and in particular that of its IR module, 
becomes a problematic issue. It affects seriously 
the entire success of the system, because if most of 
the retrieved candidates are incorrect, it is 
meaningless to apply further techniques of QA to 
refine the answers. 

In this paper, we have discussed several methods 
to improve the precision performance of the IR 
module. They include the use of domain-specific 
terminology to rearrange the candidate list and to 
better characterize the question-document 
relevance relationship. Once this relationship has 
been well established, one can expect to obtain a 
small set of (almost) all relevant documents for a 
given question, and use this to guide the IR engine 
in a two-level search strategy. 

Also, long and complex answers may be a 
common characteristic of RDQA systems. Being 
aware of this, one can design appropriate systems 
which are more tolerant on answer size to achieve 
a higher precision, and to avoid the need of 
expanding a short but insufficient answer into a 
complete one. However, what a good answer 
should be is still an open question, which would 
need a lot more study to clarify. 

We have also presented applications of these 
methods in the real QA system for Bell Canada. 
Good improvements achieved compared to results 
of the original IR module show that these methods 
are applicable and effective. 

Many other problems on the precision 
performance of a RDQA system have not been 
tackled in this paper. Some of them relate to the 
free form of the questions: how to identify the 
category of the question (e.g. the mapping 'Who' – 
Person, 'When' – Time, 'How many' – Quantity, 
etc.), how to analyze the question into pragmatic 
parts (pre-suppositions, problem context, question 
focus), etc. Certainly, they are also problems of 
open-domain QA if one wants to go further than 
pre-defined question pattern tasks. 
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