
Multiword Expression Filtering for Building Knowledge Maps

Shailaja Venkatsubramanyan
San Jose State University

Department of MIS
One Washington Square

San Jose, California, 95192-0244
USA

shailaja@acm.org

Jose Perez-Carballo
California State University, Los Angeles

Dept. of Information Systems
5151 State University Drive

Los Angeles, CA 90032
USA

perez-carballo@acm.org

Abstract

This paper describes an algorithm that
can be used to improve the quality of
multiword expressions extracted from
documents. We measure multiword ex-
pression quality by the “usefulness” of a
multiword expression in helping ontolo-
gists build knowledge maps that allow
users to search a large document corpus.
Our stopword based algorithm takes n-
grams extracted from documents, and
cleans them up to make them more suit-
able for building knowledge maps. Run-
ning our algorithm on large corpora of
documents has shown that it helps to in-
crease the percentage of useful terms
from 40% to 70% – with an eight-fold
improvement observed in some cases.

1 Introduction

Many real world applications require extraction
of word sequences or multiword expressions
from text. Examples of such applications in-
clude, among others, creation of search engine
indexes, knowledge discovery, data mining, ma-
chine translation, summarization and term sug-
gestion for either knowledge engineering or
query refinement by end users of a search sys-
tem.

The application of interest to the authors of this
paper was that of building knowledge maps that
help bridge the gap between searchers and docu-
ments. A knowledge map for a particular domain
is a collection of concepts, relationships between
these concepts as well as evidence associated to
each concept. A domain concept represents an
abstraction that can be generalized from

instances in the domain. It can be a person, a
thing, or an event. An example of a concept in
the operating system domain is ‘installation
guidelines’. Relationships between concepts can
be either generalization or specialization (such as
“is a”) as well as different types of association
(such as "part-of"). The evidence associated to a
concept is a set of single or multiword terms such
that if any of those terms are found in a docu-
ment, then it is likely that the document refers to
that concept.

The task we were trying to support was to iden-
tify multiword expressions in a corpus of docu-
ments belonging to a domain that can help
ontologists identify the important concepts in the
domain as well as their evidence.

Our research was focused on domains where the
corpus of documents representing the domain
contains a high degree of technical content. The
reason for this is that such documents are served
on many company web sites to help provide
technical support for both employees and cus-
tomers.

Our research assumes that a term1 is “useful”
when it meets all of the following conditions –
(1) it makes sense in context of the domain, (2) it
represents an action, some tangible or intangible
object, name of a product, or a troubleshooting
phrase, and (3) it would be chosen by an ontolo-
gist to be incorporated to their knowledge map.

Some examples of multiword expressions that
may be considered useful for building knowledge
maps about technical content are “how to

1 In common parlance, the words “term” and “expres-
sion” are generally used interchangeably. In this pa-
per, a term refers to a expression with one or more
words.

Second ACL Workshop on Multiword Expressions: Integrating Processing, July 2004, pp. 40-47

uninstall the program”, “Simple Mail Transfer
Protocol”, and “cannot reboot the computer”.
Some expressions may not seem useful at first
glance but may make sense to an ontologist fa-
miliar with that domain. For instance, the occur-
rence of the number “error 37582” may be an
error code, and hence evidence of a particular
kind of problem. Similarly, expressions such as
“after rebooting the system” may not seem useful
but may be good evidence of concepts related to
problem identification. Examples of expressions
that may be acceptable for some purposes, but
not for building knowledge maps are “this soft-
ware was implemented by” and “and reboot the
system to”. These expressions however can be-
come useful after undergoing some processing or
manipulation by humans.
We extracted n-grams from documents using an
algorithm proposed by Tseng [1998], and
cleaned them up iteratively using a stopword-
based algorithm in order to make them more use-
ful for building knowledge maps. Tseng’s algo-
rithm is based on the assumption that documents
concentrating on a topic tend to mention a set of
words in a specific sequence repeatedly. In other
words, repeated multiword expressions are ex-
tracted since they will make good evidence can-
didates.

Our experience with Tseng’s algorithm was that
it extracts many useful multiword expressions.
But, it also extracts multiword expressions that
are repeated frequently in the documents but are
not useful when viewed independently of the
sentences from where they originated. This may
not matter for some applications, but puts a lot of
burden on librarians or ontologists who want to
use those multiword expressions to build knowl-
edge maps. Examples of such expressions are
“software was”, “computer crashed after”, “in-
stalled in order to”, and so on. Such expressions
have to undergo further manipulation or process-
ing by ontologists in order for them to be useful.
A good weighting algorithm may eliminate some
of these expressions in some cases. However,
our experience has shown that in a sufficiently
large and homogenous set of documents, occur-
rence of all of these variations is so high that
many of them meet the threshold requirements to
qualify as eligible multiword expressions. Set-
ting higher frequency thresholds may be a solu-
tion to this problem, but that may result in
elimination of other useful multiword expres-
sions.

One of the steps usually undertaken is to elimi-
nate not so useful single word terms extracted
from documents. For instance, the word “the” is
not considered to be useful for most purposes. If
a user were to submit a query such as “the cat”,
returning documents that contain “cat” would be
more useful than looking for documents that con-
tain both “the” and “cat.” Terms such as “a”,
“an”, “the” and so on are referred to as “stop-
words” or “noise words” or “skipwords”, and
these are usually ignored by search engines when
they occur by themselves when building indexes.
There are many common stopword lists useful in
various contexts.

Statistical and quantitative techniques using fre-
quency or mutual information scores for multi-
word expressions as well as syntactic techniques
using phrase trees have been used to extract
multiword expressions from text. [Choueka
1988, Dias 1999, Lessard 1991, Hamza 2003,
Merkel 1994, Paynter 2000] According to Dias
et. al. [1999], many multiword units identified
using statistical methods can not be considered as
terms although it may be useful to identify them.
Examples cited by the authors include terms such
as “be notified” and “valid for”. Less com-
monly found in literature is work done to “clean”
or “filter” the extracted multiword expressions to
make them suitable for certain purposes. An ex-
ample of implementation of a filter is found in
work done by Merkel et al. in their FRASSE sys-
tem [Merkel 2000] where they defined words
that should be stripped at the beginning and at
the end of multiword expressions as well as re-
quirements on what kinds of characters should be
regarded as pairs (quotation marks, parentheses,
etc). The reason for identifying characters that
should be regarded in pairs is to make sure that
multiword expressions that are retained after fil-
tering do not have only one parenthesis character
or quotation mark. Their filter was implemented
with the use of entropy thresholds and stopwords
for the Swedish language. Another example of a
proposed filter is found in work by Dias et. al.
[1999] in which the authors suggest using a filter
that removed stopwords where they occurred
either at the beginning or at the end of multiword
expressions. Our work uses a standard stopword
list used by systems that suggest terms to ontolo-
gists and end users, and part of speech informa-
tion to achieve the same goal. The part of speech
information ensures that we treat beginning and
end of multilword expressions differently.

Our contribution has been to extend Tseng’s al-
gorithm using stopwords and a part of speech
based algorithm to reduce the occurrence of ex-
pressions that need further processing by ontolo-
gists. Our goal was to increase the proportion of
expressions extracted that don’t have to undergo
any more manual processing by ontologists to
make them useful. This is very useful in situa-
tions such as term suggestion where users can be
saved the time and effort involved in going
through long lists of terms many of which may
not be useful, or may have to be manipulated in
some way to make them useful. Running our
algorithm on large corpora of documents has
shown that it helps to increase the percentage of
useful terms from 40% (+-10) to 70% (+-10). In
other words, the improvement is at least 20% and
could be high as 160%.

The rest of this paper is organized as follows –
Section 2 describes our algorithm for extraction
of frequently occurring n-grams, and converting
them to useful multiword expressions. Sections
3 and 4 describe the results of evaluating our al-
gorithm on large corpora of documents and con-
clude the paper.

2 Term Extraction and Filtering Algo-
rithms

Researchers have extracted keywords by a sim-
ple recognition of fixed patterns that occur fre-
quently in the text. [Choueka 1988, Tseng 1998]
We adopted Tseng’s algorithm which identifies
frequently repeated N-grams because of its effi-
ciency.
We begin by describing Tseng’s algorithm and
then discuss our modifications to extract useful
multiword expressions.

2.1 Tseng’s Algorithm

This algorithm consists of three major steps. The
first step requires only linear-time complexity for
converting the input text into a list. The second
step repeats merging tests until no elements re-
mained to be merged. The third step involves
filtering out noisy terms using a stop list.

Table 1: Tseng’s algorithm [Tseng 1998]

1. Convert the input text into a LIST of overlapping
2-grams (or 2-words, see an example below).
2. WHILE LIST is not empty

2.1. Set MergeList to empty.

2.2. Push a special token to the end of LIST
as a sentinel.

2.3. FOR each pair of adjacent elements KI
and K2 in LIST,

 IF Kl and K2 are mergeable and both of
their occurring frequency are greater than a threshold

 THEN
 Merge KI and K2 into K and push K into

MergeList.
 Accumulate the occurring frequency of

K.
 ELSEIF the occurring frequency of KI is
greater than a threshold and KI did not merge with
the element before it in LIST

 Push KI into the FinalList.
 ENDIF
ENDFOR

ENDWHILE
2.4. Set LIST to MergeList.
3. Filter out noisy terms in FinalList and sort the re-
sult according to some criteria.

2.2 Iterative Term Filtering Algorithm

We used Tseng’s algorithm to select a set of mul-
tiword expressions. Then, we applied an algo-
rithm based on stopwords and part of speech
information to filter out the less useful words
from the beginning and end of multiword expres-
sions in order to help identify and construct use-
ful multiword expressions. Our algorithm
deletes words from the beginning and end of the
multiword expression until one of the following
conditions are satisfied: (1) the result is a one
word term that is not a stopword, or (2) the
words at the beginning and end of the multiword
expression are deemed acceptable by our algo-
rithm or (3) all words in the expression are de-
leted.

Our technique uses the stopword list that is used
by step 3 of Tseng’s algorithm along with rules
regarding which of those stopwords are accept-
able if found at the beginning and at the end of
the extracted n-grams. Stopword lists may be
generated by analyzing a corpus of documents,
and identifying the most frequently occurring
words across the corpus. Many pre-compiled
lists are also available, and generally the practice
has been to adopt a pre-compiled list and tweak it
to meet a specific purpose.

The number of entries in stopword lists can range
from approximately 50 to 5000 words. [“Onix”
online stopword lists, “freeWAIS-sf”, “Seattle

City Clerk Information Services Database”,
“RDS”] The stopword lists that are used for term
suggestion tend to be longer or more aggressive
than those used for building standard search en-
gine indexes. The stopword list used by the term
suggestion system that we used for our experi-
mentation contained around 600 words. Fast-
NPE, a noun phrase extractor, uses a stopword
list with more than 3500 words [Bennett, 1999].
One would find words such as “can”, “cannot”,
should”, “approximately”, and so on a stopword
list for term suggestion even though they may
not be present in other stopword lists. The rea-
son for this is that such words are not useful by
themselves to end users or to ontologists who are
trying to understand the content of documents.
But, these words may be useful when found at
the beginning or end of multiword expressions.
Our algorithm assumes the use of a stopword list
generally used by implementers building term
suggestion systems. Our part of speech based
heuristics determine which of those stopwords
would be considered acceptable at the beginning
or end of multiword expressions.

2.3 Stopword Analysis

In order to gain an initial insight into what kinds
of words are acceptable at the beginning and end
of multiword expressions, we built lists of ac-
ceptable multiword expressions based on filter-
ing performed by a team of experienced
ontologists on a sample set of multiword expres-
sions extracted from hundreds of thousands of
documents. Studying words in the multiword
expressions that were discarded or retained gave
us clues about what words are acceptable at the
beginning and end of multiword expressions.
This helped us identify patterns that could then
be incorporated into a more general algorithm.

Most of the time, stopwords were not useful
when they were at the beginning or end of mul-
tiword expressions. Some good examples of
stopwords that are not useful at the beginning or
end or a multiword expression are coordinating
conjunctions such as “and”, “or”, and so on.
However, there are exceptions to this rule. The
exceptions are described in sections 2.3.1 and
2.3.2.

2.3.1. Stopwords Acceptable at the Begin-
ning of Multiword Expressions

We studied words retained and discarded by on-
tologists at the beginning of multiword expres-
sions. As expected, many times, these were
words that were in the stopword lists. But, there
were cases where some stopwords were not dis-
carded. These helped us identify cases or pat-
terns that went into the creation of our algorithm.
Those cases are presented below:

Prepositions – Words such as “under”,

“over”, “after”, and so on. An example of
an expression that has a preposition at the
beginning, and is a useful expression is
“after installing the operating system”.
Using the standard stopwords list to elimi-
nate words from the beginning of multi-
word expressions would have resulted in
that expression being reduced to “install-
ing the operating system”. The meaning
of “after installing the operating system” is
quite different from “installing the operat-
ing system”. The content of documents
containing the expression “after installing
the operating system” may be quite differ-
ent from documents containing just the
expression “installing the operating sys-
tem”. “After installing the operating sys-
tem” may be indicative of a document
about problems users may run into after
installation. Just “installing the operating
system” may be indicative of documents
about how to install an operating system.
The goal here is not to determine whether
one multiword expression is really differ-
ent from another, but to provide the on-
tologist with all possible information to
make those judgment calls.

Auxiliary verbs – Words such as “can”,
“cannot”, “will”, “won’t”, “was”, “has”,
“been” are examples of auxiliary or help-
ing verbs. For example, the expression
“can uninstall the program” is quite differ-
ent from “cannot uninstall the program”.
Since “can” is both a noun as well as an
auxiliary verb, it is usually not on most
stopword lists. But, “cannot” is some-
times found in some stopword lists.

Adverbs - Words such as “slowly”, “insuffi-
ciently”, “fast”, “late”, early”, etc. may be
found in stopword lists used for term sug-
gestion since these words do not carry
much meaning by themselves. But, they
are useful when found at the beginning of

multiword expressions. Examples of such
expressions include “early binding” and
“late binding”.

Adjectives – Adjectives such as “slow”,
“fast”, “empty”, “full”, and intermittent”
are useful when found in the beginning of
multiword expressions. Examples include
“slow CPU”, “intermittent failures”, etc.
"All," "any," "each," "few," "many," "no-
body," "none," "one," "several," and
"some," are some examples of indefinite
adjectives. Multiword expressions such
as “several users”, and “all CDROM
drives” may convey more meaning than
just “users” and “CDROM drives”.

Interrogative pronouns – “How”, “why”,
“when”, and so on are not useful by them-
selves, but are very useful when found at
the beginning of multiword expressions.
Examples of such expressions include –
“how to install an anti-virus package”,
“when to look for updates”, and “how do I
fix my computer”.

Correlative conjunctions – “Both the com-
puters”, and “either freezing or crashing”
are examples of expressions that begin
with correlative conjunctions. “Both” and
“either” are very likely to be found in
stopword lists used for term suggestion,
but they add meaning to multiword ex-
pressions.

2.3.2. Stopwords Acceptable at the End of
Multiword Expressions

Similarly we studied words retained and dis-
carded by ontologists at the end of multiword
expressions. As expected, many times, these
were words that were in the stopword lists. But,
there were cases where some stopwords were not
discarded. Those cases are presented below:

Numbers – Numbers are generally found on

most stopword lists. 0, 1, 2, and so on
rarely make sense by themselves, espe-
cially in the context of term suggestion.
However, when they are found at the end
of the multiword expressions in the digit
form (0, 1, 2, and so on) rather than in the
word form (one, two, three, and so on),
they can be useful. Examples of such
cases are usually product names with their

version numbers – “Microsoft Word ver-
sion 3.0”, “Windows 3.1”, and so on.

Closing parentheses – Closing parentheses
usually indicates the presence of opening
parentheses within the multiword expres-
sion. Therefore, retaining the closing
parentheses is a good idea. Examples of
such expressions are “Manufacturing (UK
division)”, “Transmission Control Proto-
col (TCP)”, and so on. A nice side effect
of this heuristic is the ability for the users
to learn about acronyms in the domain.

Adverbs – Words such as “slowly”,
“quickly”, “immediately”, and so on are
useful at the end of multiword expres-
sions. Examples of these include “com-
puter shuts down slowly”, and “uninstall
the program immediately”.

Table 2 describes Tseng’s algorithm modified
using our term filtering algorithm

Table 2: Modified Term Filtering Algorithm

1. Convert the input text into a LIST of overlapping
2-grams (or 2-words, see an example below).
2. WHILE LIST is not empty

2.1. Set MergeList to empty.
2.2. Push a special token to the end of LIST

as a sentinel.
2.3. FOR each pair of adjacent elements KI

and K2 in LIST,
 IF Kl and K2 are mergeable and both of

their occurring frequency are greater than a threshold
 THEN
 Merge KI and K2 into K and push K into

MergeList.
 Accumulate the occurring frequency of

K.
 ELSEIF the occurring frequency of KI is
greater than a threshold and KI did not merge with
the element before it in LIST

 Push KI into the FinalList.
 ENDIF
ENDFOR

ENDWHILE
2.4. Set LIST to MergeList.
3. Filter out noisy terms in FinalList and sort the re-
sult according to some criteria.
4. FOR each expression FL on the FinalList,

4.1 IF the first word in FL is a stopword and
is not: a preposition, an auxiliary verb, an adverb, an
adjective, an interrogative pronoun, or a correlative
conjunctions

 THEN
 Delete that word
ENDIF

4.2 IF the last word in FL is a stopword and
is not: an adverb, a closing parenthesis, or a number,

THEN
 Delete that word
ENDIF

UNTIL (the words at the beginning and end of FL are
not on the stopword list OR FL is a one word term
that is a not a stopword or all the words in the expres-
sion are deleted by this algorithm)
5. Push FL into FilteredList.

This algorithm can be implemented using either a
program that does part of speech tagging or a
program that looks up a thesaurus. Our imple-
mentation used a list of stopwords that are ac-
ceptable at the beginning of the expression, and
another list of stopwords that are acceptable at
the end of the expression.

3 Evaluation

We implemented this algorithm using Java, and
ran it on more than 20 corpora of documents
dealing with technology topics. The size of the
corpora ranged from 4000 documents to 500,000
documents. The average size of the corpora was
around 5-6 MB. The topics discussed include,
among others, computer networking, instructions
on how to install and use application software,
troubleshooting software problems, and so on.
Program inputs include documents, and a stop-
words list.

Benefits of applying our algorithm to filter ex-
pressions include:

Term list size reduction - The result of ap-
plying our algorithm to filter expressions
extracted from documents is a reduction in
number of terms by at least 30%-40%.
This translated to an order-of-magnitude
reduction in time and effort on the part of
ontologists and other users. Without the
algorithm, ontologists may have had to
study the list manually to eliminate mean-
ingless expressions and manipulate other
terms to turn them into useful expressions.
Examples of such reduction include:

Expressions such as “Windows 98 operat-
ing system”, “Windows 98 operating
system was”, “the Windows 98 operat-
ing system”, and “Windows 98 operat-
ing system is” are reduced to
“Windows 98 operating system”.

Expressions such as “the screen flickers”,
and “screen flickers and” would be re-
duced to just “screen flickers”.

Expressions such as “and is a” and “is not”
and “and etc.” are eliminated from the
list. The individual words in these ex-
pressions are in the stop words list, but
ordinarily a multiword expression such
as “is not” would make it past the stop
words filter since it contains more than
one word in it.

The reduction in the number of terms
translated to a reduction in the number
of person-weeks required to create a
knowledge map using the terms. We
noticed a savings in the number of per-
son-weeks that ranged from 50% to
close to 90%. In one particular in-
stance, using our algorithm reduced the
time required to create a knowledge
map based on extracted n-grams from 4
person-weeks to about 0.5 person
/weeks

Higher precision - There is a greater prob-
ability that the terms that remain after fil-
tering are useful terms. In other words,
the remaining terms are more likely to be
considered useful by users. Our experi-
ence has shown that the percentage of use-
ful terms prior to filtering ranged from
30% to 50%. Post filtering, the percentage
of useful terms ranged from 60% to 80%.
In other words, running our algorithm on
large corpora of documents has shown that
it helps to increase the percentage of use-
ful terms from 40% (±10%) to 70%
(±10%) – with an eight-fold improvement
observed in some cases.

Domain independence - Pattern extraction
from documents involves extracting both
domain specific and domain independent
terms. Domain specific terms are those
that represent the core knowledge in the
domain. For example, terms such as “dy-
namic host control protocol” and
“TCP/IP” can be considered to be domain
specific terms in the computer networking
domain. On the other hand, terms such as
“document author” are not domain spe-
cific. The technique described in this pa-
per aids in filtering both domain specific
and domain independent terms extracted

from documents. This ensures domain
portability. The tests conducted have been
primarily with documents containing tech-
nology topics. However, this algorithm
worked well with documents related to
electronic commerce as well.

The algorithm is, of course, not foolproof, and
there are instances where expressions that ought
to be modified are not, and expressions are modi-
fied more than necessary. For instance, the ex-
pression “software was” will be correctly
reduced to “software” since “was” is an auxiliary
verb. The multiword expression “computer
crashed after” will be reduced to “computer
crashed” since “after” is a prepositon, but “in-
stalled in order to” will be reduced to “installed
in order”. “Installed in order” is not a useful ex-
pression, but it is one of the expressions that are
not processed correctly by our algorithm. On the
whole, however, our finding is that applying this
algorithm results in a significant savings of time
and effort to extract useful multiword expres-
sions from documents.

4 Conclusion and Future Work

We believe that our approach can help tremen-
dously with the task of filtering expressions ex-
tracted automatically from documents. The
result of applying our approach will be automatic
extraction of more useful expressions, and reduc-
tion of burden on users who are presented with
those expressions.

Future work includes using more sophisticated
statistics such as IDF other than just frequency of
occurrence of terms to eliminate more terms be-
fore they are processed by the multiword term
filtering algorithm. Our initial approach was to
do something fast and simple that has a signifi-
cant impact. Our plan is to evaluate various sta-
tistical approaches in order to select one that can
produce better multiword expressions that can
then be fed into the term filtering algorithm. An
approach that we experimented with was running
the algorithm on just the titles and abstracts of
larger documents. We noticed that this approach
worked well for extracting concepts for building
knowledge maps. However, it needs to undergo
further testing. Besides, testing this algorithm on
documents from other domains such as medical,
pharmaceutical and financial domains, and using
syntactic and semantic information to build
“positive filters” that identify well formed pat-

terns, instead of stripping away ill-formed pat-
terns are other issues worth researching.

References
Bennett Nuala A., He Qin, Chang, Conrad T. K., and

Schatz, Bruce R. Concept Extraction in the Inter-
space Prototype, UIUCDCS-R-99-2095, April
1999

Choueka, Y. (1988) “Looking for needles in a hay-
stack”. In RIAO 88, User-oriented Content-based
Text and Image Handling, Volume 1, 609-623,
1988.

Dias, G, Vintar, Pereira Lopes, G.; Guillore, S.
Normalising the IJS-ELAN Slovene-English
Parallel Corpus for the Extraction of Multilingual
Terminology. In: Monachesi, P. (ed.) Proceedings
of the CLIN '99 (Computational Linguistics in the
Netherlands).

freeWAIS-sf stopword list at http://www-
fog.bio.unipd.it/waishelp/stoplist.html

Hamza, H., Mahdy, A. Fayad, M. E. and Cline, M.
Extracting Domain-Specific and Domain-Neutral
Patterns Using Software Stability Concepts, OOIS
2003, Geneva, Switzerland, September 2003

Lessard, G., Hamm, Jean-Jacques. (1991) Computer-
Aided Analysis of Repeated Structures: the Case of
Stendhal's Armance. ACH/ALLC 91, Tempe.

Merkel, Magnus & Andersson, Mikael (2000).
Knowledge-lite extraction of multiword units with
language filters and entropy thresholds. In Proceed-
ings of RIAO'2000, Collége de France, Paris,
France, April 12-14, 2000, Volume 1, pp. 737-746.

Merkel, Magnus, Nilsson, Bernt & Ahrenberg, Lars
(1994). A Phrase-Retrieval System Based on Re-
currence. In Proceedings from the Second Annual
Workshop on Very Large Corpora. Kyoto.

Onix Text Retrieval Toolkit stopword list #1 at
http://www.lextek.com/manuals/onix/stopwords1.h
tml

Onix Text Retrieval Toolkit stopword list #2 at
http://www.lextek.com/manuals/onix/stopwords2.h
tml

Paynter, Gordon W., Witten, Ian H., Cunningham,
Sally Jo, Buchanan, George. Scalable browsing for
large collections: a case study. June 2000. Pro-
ceedings of the fifth ACM conference on Digital
libraries.

RDS Business Reference Suite stopword list at
http://rdsweb2.rdsinc.com/help/stopword_list.html

Seattle City Clerk's Office Information Services
Database Stopword List at
http://clerk.ci.seattle.wa.us/~public/stop.htm

Tseng, Yuen-Hsien. August 1998 Multilingual
keyword extraction for term suggestion. Proceed-
ings of the 21st annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval

