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Abstract 

This paper describes an algorithm that 
can be used to improve the quality of 
multiword expressions extracted from 
documents. We measure multiword ex-
pression quality by the “usefulness” of a 
multiword expression in helping ontolo-
gists build knowledge maps that allow 
users to search a large document corpus.  
Our stopword based algorithm takes n-
grams extracted from documents, and 
cleans them up to make them more suit-
able for building knowledge maps. Run-
ning our algorithm on large corpora of 
documents has shown that it helps to in-
crease the percentage of useful terms 
from 40% to 70% – with an eight-fold 
improvement observed in some cases. 

1 Introduction 

Many real world applications require extraction 
of word sequences or multiword expressions 
from text.  Examples of such applications in-
clude, among others, creation of search engine 
indexes, knowledge discovery, data mining, ma-
chine translation, summarization and term sug-
gestion for either knowledge engineering or 
query refinement by end users of a search sys-
tem.   

 
The application of interest to the authors of this 
paper was that of building knowledge maps that 
help bridge the gap between searchers and docu-
ments.  A knowledge map for a particular domain 
is a collection of concepts, relationships between 
these concepts as well as evidence associated to 
each concept. A domain concept represents an 
abstraction that can be generalized from 

instances in the domain. It can be a person, a 
thing, or an event. An example of a concept in 
the operating system domain is ‘installation 
guidelines’. Relationships between concepts can 
be either generalization or specialization (such as 
“is a”) as well as different types of association 
(such as "part-of"). The evidence associated to a 
concept is a set of single or multiword terms such 
that if any of those terms are found in a docu-
ment, then it is likely that the document refers to 
that concept.  

 
The task we were trying to support was to iden-
tify multiword expressions in a corpus of docu-
ments belonging to a domain that can help 
ontologists identify the important concepts in the 
domain as well as their evidence.  

 
Our research was focused on domains where the 
corpus of documents representing the domain 
contains a high degree of technical content.  The 
reason for this is that such documents are served 
on many company web sites to help provide 
technical support for both employees and cus-
tomers.  

 
Our research assumes that a term1  is “useful” 
when it meets all of the following conditions – 
(1) it makes sense in context of the domain, (2) it 
represents an action, some tangible or intangible 
object, name of a product, or a troubleshooting 
phrase, and (3) it would be chosen by an ontolo-
gist to be incorporated to their knowledge map.   

 
Some examples of multiword expressions that 
may be considered useful for building knowledge 
maps about technical content are “how to 

                                                            
1 In common parlance, the words “term” and “expres-
sion” are generally used interchangeably.  In this pa-
per, a term refers to a expression with one or more 
words. 
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uninstall the program”, “Simple Mail Transfer 
Protocol”, and “cannot reboot the computer”.  
Some expressions may not seem useful at first 
glance but may make sense to an ontologist fa-
miliar with that domain.  For instance, the occur-
rence of the number “error 37582” may be an 
error code, and hence evidence of a particular 
kind of problem.  Similarly, expressions such as 
“after rebooting the system” may not seem useful 
but may be good evidence of concepts related to 
problem identification.  Examples of expressions 
that may be acceptable for some purposes, but 
not for building knowledge maps are “this soft-
ware was implemented by” and “and reboot the 
system to”.  These expressions however can be-
come useful after undergoing some processing or 
manipulation by humans.      
We extracted n-grams from documents using an 
algorithm proposed by Tseng [1998], and 
cleaned them up iteratively using a stopword-
based algorithm in order to make them more use-
ful for building knowledge maps.  Tseng’s algo-
rithm is based on the assumption that documents 
concentrating on a topic tend to mention a set of 
words in a specific sequence repeatedly. In other 
words, repeated multiword expressions are ex-
tracted since they will make good evidence can-
didates.  

 
Our experience with Tseng’s algorithm was that 
it extracts many useful multiword expressions.  
But, it also extracts multiword expressions that 
are repeated frequently in the documents but are 
not useful when viewed independently of the 
sentences from where they originated.  This may 
not matter for some applications, but puts a lot of 
burden on librarians or ontologists who want to 
use those multiword expressions to build knowl-
edge maps.  Examples of such expressions are 
“software was”, “computer crashed after”, “in-
stalled in order to”, and so on.  Such expressions 
have to undergo further manipulation or process-
ing by ontologists in order for them to be useful.  
A good weighting algorithm may eliminate some 
of these expressions in some cases.  However, 
our experience has shown that in a sufficiently 
large and homogenous set of documents, occur-
rence of all of these variations is so high that 
many of them meet the threshold requirements to 
qualify as eligible multiword expressions.  Set-
ting higher frequency thresholds may be a solu-
tion to this problem, but that may result in 
elimination of other useful multiword expres-
sions. 

 

One of the steps usually undertaken is to elimi-
nate not so useful single word terms extracted 
from documents.  For instance, the word “the” is 
not considered to be useful for most purposes.  If 
a user were to submit a query such as “the cat”, 
returning documents that contain “cat” would be 
more useful than looking for documents that con-
tain both “the” and “cat.”  Terms such as “a”, 
“an”, “the” and so on are referred to as “stop-
words” or “noise words” or “skipwords”, and 
these are usually ignored by search engines when 
they occur by themselves when building indexes.  
There are many common stopword lists useful in 
various contexts.   

 
Statistical and quantitative techniques using fre-
quency or mutual information scores for multi-
word expressions as well as syntactic techniques 
using phrase trees have been used to extract 
multiword expressions from text.  [Choueka 
1988, Dias 1999, Lessard 1991, Hamza 2003, 
Merkel 1994, Paynter 2000]  According to Dias 
et. al. [1999], many multiword units identified 
using statistical methods can not be considered as 
terms although it may be useful to identify them.  
Examples cited by the authors include terms such 
as “be notified” and “valid for”.   Less com-
monly found in literature is work done to “clean” 
or “filter” the extracted multiword expressions to 
make them suitable for certain purposes.  An ex-
ample of implementation of a filter is found in 
work done by Merkel et al. in their FRASSE sys-
tem [Merkel 2000] where they defined words 
that should be stripped at the beginning and at 
the end of multiword expressions as well as re-
quirements on what kinds of characters should be 
regarded as pairs (quotation marks, parentheses, 
etc). The reason for identifying characters that 
should be regarded in pairs is to make sure that 
multiword expressions that are retained after fil-
tering do not have only one parenthesis character 
or quotation mark. Their filter was implemented 
with the use of entropy thresholds and stopwords 
for the Swedish language.  Another example of a 
proposed filter is found in work by Dias et. al. 
[1999] in which the authors suggest using a filter 
that removed stopwords where they occurred 
either at the beginning or at the end of multiword 
expressions.  Our work uses a standard stopword 
list used by systems that suggest terms to ontolo-
gists and end users, and part of speech informa-
tion to achieve the same goal.  The part of speech 
information ensures that we treat beginning and 
end of multilword expressions differently.   
   



Our contribution has been to extend Tseng’s al-
gorithm using stopwords and a part of speech 
based algorithm to reduce the occurrence of ex-
pressions that need further processing by ontolo-
gists.  Our goal was to increase the proportion of 
expressions extracted that don’t have to undergo 
any more manual processing by ontologists to 
make them useful.  This is very useful in situa-
tions such as term suggestion where users can be 
saved the time and effort involved in going 
through long lists of terms many of which may 
not be useful, or may have to be manipulated in 
some way to make them useful.  Running our 
algorithm on large corpora of documents has 
shown that it helps to increase the percentage of 
useful terms from 40% (+-10) to 70% (+-10).  In 
other words, the improvement is at least 20% and 
could be high as 160%. 

 
The rest of this paper is organized as follows – 
Section 2 describes our algorithm for extraction 
of frequently occurring n-grams, and converting 
them to useful multiword expressions.  Sections 
3 and 4 describe the results of evaluating our al-
gorithm on large corpora of documents and con-
clude the paper.   

2 Term Extraction and Filtering Algo-
rithms  

Researchers have extracted keywords by a sim-
ple recognition of fixed patterns that occur fre-
quently in the text.  [Choueka 1988, Tseng 1998]  
We adopted Tseng’s algorithm which identifies 
frequently repeated N-grams because of its effi-
ciency.   
We begin by describing Tseng’s algorithm and 
then discuss our modifications to extract useful 
multiword expressions. 

2.1 Tseng’s Algorithm 

This algorithm consists of three major steps. The 
first step requires only linear-time complexity for 
converting the input text into a list. The second 
step repeats merging tests until no elements re-
mained to be merged. The third step involves 
filtering out noisy terms using a stop list.   
 

Table 1: Tseng’s algorithm [Tseng 1998] 

1. Convert the input text into a LIST of overlapping 
2-grams (or 2-words, see an example below). 
2. WHILE LIST is not empty 

2.1. Set MergeList to empty. 

2.2. Push a special token to the end of LIST 
as a sentinel. 

2.3. FOR each pair of adjacent elements KI 
and K2 in LIST, 

     IF Kl and K2 are mergeable and both of 
their occurring  frequency are greater than a threshold 

    THEN 
        Merge KI and K2 into K and push K into 

MergeList. 
        Accumulate the occurring frequency of 

K. 
     ELSEIF the occurring frequency of KI is 
greater than a threshold and KI did not merge with 
the element before it in LIST 

        Push KI into the FinalList. 
    ENDIF 
ENDFOR 

ENDWHILE 
2.4. Set LIST to MergeList. 
3. Filter out noisy terms in FinalList and sort the re-
sult according to some criteria. 
 

2.2 Iterative Term Filtering Algorithm 

We used Tseng’s algorithm to select a set of mul-
tiword expressions. Then, we applied an algo-
rithm based on stopwords and part of speech 
information to filter out the less useful words 
from the beginning and end of multiword expres-
sions in order to help identify and construct use-
ful multiword expressions.   Our algorithm 
deletes words from the beginning and end of the 
multiword expression until one of the following 
conditions are satisfied: (1) the result is a one 
word term that is not a stopword, or (2) the 
words at the beginning and end of the multiword 
expression are deemed acceptable by our algo-
rithm or (3) all words in the expression are de-
leted.  

 
Our technique uses the stopword list that is used 
by step 3 of Tseng’s algorithm along with rules 
regarding which of those stopwords are accept-
able if found at the beginning and at the end of 
the extracted n-grams.  Stopword lists may be 
generated by analyzing a corpus of documents, 
and identifying the most frequently occurring 
words across the corpus.  Many pre-compiled 
lists are also available, and generally the practice 
has been to adopt a pre-compiled list and tweak it 
to meet a specific purpose.   

 
The number of entries in stopword lists can range 
from approximately 50 to 5000 words.  [“Onix” 
online stopword lists, “freeWAIS-sf”, “Seattle 



City Clerk Information Services Database”, 
“RDS”]  The stopword lists that are used for term 
suggestion tend to be longer or more aggressive 
than those used for building standard search en-
gine indexes.  The stopword list used by the term 
suggestion system that we used for our experi-
mentation contained around 600 words.  Fast-
NPE, a noun phrase extractor, uses a stopword 
list with more than 3500 words [Bennett, 1999].  
One would find words such as “can”, “cannot”, 
should”, “approximately”, and so on a stopword 
list for term suggestion even though they may 
not be present in other stopword lists.  The rea-
son for this is that such words are not useful by 
themselves to end users or to ontologists who are 
trying to understand the content of documents.   
But, these words may be useful when found at 
the beginning or end of multiword expressions.  
Our algorithm assumes the use of a stopword list 
generally used by implementers building term 
suggestion systems.   Our part of speech based 
heuristics determine which of those stopwords 
would be considered acceptable at the beginning 
or end of multiword expressions.   

2.3 Stopword Analysis 

In order to gain an initial insight into what kinds 
of words are acceptable at the beginning and end 
of multiword expressions, we built lists of ac-
ceptable multiword expressions based on filter-
ing performed by a team of experienced 
ontologists on a sample set of multiword expres-
sions extracted from hundreds of thousands of 
documents.   Studying words in the multiword 
expressions that were discarded or retained gave 
us clues about what words are acceptable at the 
beginning and end of multiword expressions.  
This helped us identify patterns that could then 
be incorporated into a more general algorithm.   

 
Most of the time, stopwords were not useful 
when they were at the beginning or end of mul-
tiword expressions.  Some good examples of 
stopwords that are not useful at the beginning or 
end or a multiword expression are coordinating 
conjunctions such as “and”, “or”, and so on.  
However, there are exceptions to this rule.  The 
exceptions are described in sections 2.3.1 and 
2.3.2.   

 
2.3.1.  Stopwords Acceptable at the Begin-
ning of Multiword Expressions 
 

We studied words retained and discarded by on-
tologists at the beginning of multiword expres-
sions.  As expected, many times, these were 
words that were in the stopword lists.  But, there 
were cases where some stopwords were not dis-
carded.  These helped us identify cases or pat-
terns that went into the creation of our algorithm.  
Those cases are presented below:  

 
Prepositions – Words such as “under”, 

“over”, “after”, and so on.  An example of 
an expression that has a preposition at the 
beginning, and is a useful expression is 
“after installing the operating system”.  
Using the standard stopwords list to elimi-
nate words from the beginning of multi-
word expressions would have resulted in 
that expression being reduced to “install-
ing the operating system”.  The meaning 
of “after installing the operating system” is 
quite different from “installing the operat-
ing system”.  The content of documents 
containing the expression “after installing 
the operating system” may be quite differ-
ent from documents containing just the 
expression “installing the operating sys-
tem”.  “After installing the operating sys-
tem” may be indicative of a document 
about problems users may run into after 
installation.  Just “installing the operating 
system” may be indicative of documents 
about how to install an operating system.  
The goal here is not to determine whether 
one multiword expression is really differ-
ent from another, but to provide the on-
tologist with all possible information to 
make those judgment calls.   

Auxiliary verbs – Words such as “can”, 
“cannot”, “will”, “won’t”, “was”, “has”, 
“been” are examples of auxiliary or help-
ing verbs.  For example, the expression 
“can uninstall the program” is quite differ-
ent from “cannot uninstall the program”.   
Since “can” is both a noun as well as an 
auxiliary verb, it is usually not on most 
stopword lists.  But, “cannot” is some-
times found in some stopword lists.   

Adverbs - Words such as “slowly”, “insuffi-
ciently”, “fast”, “late”, early”, etc.  may be 
found in stopword lists used for term sug-
gestion since these words do not carry 
much meaning by themselves.  But, they 
are useful when found at the beginning of 



multiword expressions.  Examples of such 
expressions include “early binding” and 
“late binding”.   

Adjectives – Adjectives such as “slow”, 
“fast”, “empty”, “full”, and intermittent”  
are useful when found in the beginning of 
multiword expressions.  Examples include 
“slow CPU”, “intermittent failures”, etc.  
"All," "any," "each," "few," "many," "no-
body," "none," "one," "several," and 
"some," are some examples of indefinite 
adjectives.   Multiword expressions such 
as “several users”, and “all CDROM 
drives” may convey more meaning than 
just “users” and “CDROM drives”.   

Interrogative pronouns – “How”, “why”, 
“when”, and so on are not useful by them-
selves, but are very useful when found at 
the beginning of multiword expressions.  
Examples of such expressions include – 
“how to install an anti-virus package”, 
“when to look for updates”, and “how do I 
fix my computer”. 

Correlative conjunctions – “Both the com-
puters”, and “either freezing or crashing” 
are examples of expressions that begin 
with correlative conjunctions.  “Both” and 
“either” are very likely to be found in 
stopword lists used for term suggestion, 
but they add meaning to multiword ex-
pressions.   

2.3.2.  Stopwords Acceptable at the End of 
Multiword Expressions 
 
Similarly we studied words retained and dis-
carded by ontologists at the end of multiword 
expressions.  As expected, many times, these 
were words that were in the stopword lists.  But, 
there were cases where some stopwords were not 
discarded.  Those cases are presented below:  

 
Numbers – Numbers are generally found on 

most stopword lists.  0, 1, 2, and so on 
rarely make sense by themselves, espe-
cially in the context of term suggestion.  
However, when they are found at the end 
of the multiword expressions in the digit 
form (0, 1, 2, and so on) rather than in the 
word form (one, two, three, and so on), 
they can be useful.  Examples of such 
cases are usually product names with their 

version numbers – “Microsoft Word ver-
sion 3.0”, “Windows 3.1”, and so on.   

Closing parentheses – Closing parentheses 
usually indicates the presence of opening 
parentheses within the multiword expres-
sion.  Therefore, retaining the closing 
parentheses is a good idea.  Examples of 
such expressions are “Manufacturing (UK 
division)”, “Transmission Control Proto-
col (TCP)”, and so on.  A nice side effect 
of this heuristic is the ability for the users 
to learn about acronyms in the domain.   

Adverbs – Words such as “slowly”, 
“quickly”, “immediately”, and so on are 
useful at the end of multiword expres-
sions.  Examples of these include “com-
puter shuts down slowly”, and “uninstall 
the program immediately”. 

Table 2 describes Tseng’s algorithm modified 
using our term filtering algorithm 

Table 2: Modified Term Filtering Algorithm   

1. Convert the input text into a LIST of overlapping 
2-grams (or 2-words, see an example below). 
2. WHILE LIST is not empty 

2.1. Set MergeList to empty. 
2.2. Push a special token to the end of LIST 

as a sentinel. 
2.3. FOR each pair of adjacent elements KI 

and K2 in LIST, 
     IF Kl and K2 are mergeable and both of 

their occurring  frequency are greater than a threshold 
    THEN 
        Merge KI and K2 into K and push K into 

MergeList. 
        Accumulate the occurring frequency of 

K. 
     ELSEIF the occurring frequency of KI is 
greater than a threshold and KI did not merge with 
the element before it in LIST 

        Push KI into the FinalList. 
    ENDIF 
ENDFOR 

ENDWHILE 
2.4. Set LIST to MergeList. 
3. Filter out noisy terms in FinalList and sort the re-
sult according to some criteria. 
4. FOR each expression FL on the FinalList,  

4.1 IF the first word in FL is a stopword and 
is not: a preposition, an auxiliary verb, an adverb, an 
adjective, an interrogative pronoun, or a correlative 
conjunctions  

 THEN 
     Delete that word 
ENDIF 



4.2 IF the last word in FL is a stopword and 
is not: an adverb, a closing parenthesis, or a number,  

THEN 
    Delete that word 
ENDIF 

UNTIL (the words at the beginning and end of FL are 
not on the stopword list OR FL is a one word term 
that is a not a stopword or all the words in the expres-
sion are deleted by this algorithm) 
5.  Push FL into FilteredList. 
 

This algorithm can be implemented using either a 
program that does part of speech tagging or a 
program that looks up a thesaurus.  Our imple-
mentation used a list of stopwords that are ac-
ceptable at the beginning of the expression, and 
another list of stopwords that are acceptable at 
the end of the expression.   

3 Evaluation 

We implemented this algorithm using Java, and 
ran it on more than 20 corpora of documents 
dealing with technology topics.  The size of the 
corpora ranged from 4000 documents to 500,000 
documents. The average size of the corpora was 
around 5-6 MB.  The topics discussed include, 
among others, computer networking, instructions 
on how to install and use application software, 
troubleshooting software problems, and so on.  
Program inputs include documents, and a stop-
words list. 
   
Benefits of applying our algorithm to filter ex-
pressions include: 

Term list size reduction - The result of ap-
plying our algorithm to filter expressions 
extracted from documents is a reduction in 
number of terms by at least 30%-40%.   
This translated to an order-of-magnitude 
reduction in time and effort on the part of 
ontologists and other users. Without the 
algorithm, ontologists may have had to 
study the list manually to eliminate mean-
ingless expressions and manipulate other 
terms to turn them into useful expressions.  
Examples of such reduction include:   

Expressions such as “Windows 98 operat-
ing system”, “Windows 98 operating 
system was”, “the Windows 98 operat-
ing system”, and “Windows 98 operat-
ing system is” are reduced to 
“Windows 98 operating system”.      

Expressions such as “the screen flickers”, 
and “screen flickers and” would be re-
duced to just “screen flickers”.   

Expressions such as “and is a” and “is not” 
and “and etc.” are eliminated from the 
list.  The individual words in these ex-
pressions are in the stop words list, but 
ordinarily a multiword expression such 
as “is not” would make it past the stop 
words filter since it contains more than 
one word in it.   

The reduction in the number of terms 
translated to a reduction in the number 
of person-weeks required to create a 
knowledge map using the terms.  We 
noticed a savings in the number of per-
son-weeks that ranged from 50% to 
close to 90%.  In one particular in-
stance, using our algorithm reduced the 
time required to create a knowledge 
map based on extracted n-grams from 4 
person-weeks to about 0.5 person 
/weeks   

Higher precision - There is a greater prob-
ability that the terms that remain after fil-
tering are useful terms.  In other words, 
the remaining terms are more likely to be 
considered useful by users.   Our experi-
ence has shown that the percentage of use-
ful terms prior to filtering ranged from 
30% to 50%.  Post filtering, the percentage 
of useful terms ranged from 60% to 80%.  
In other words, running our algorithm on 
large corpora of documents has shown that 
it helps to increase the percentage of use-
ful terms from 40% (±10%) to 70% 
(±10%) – with an eight-fold improvement 
observed in some cases. 

Domain independence - Pattern extraction 
from documents involves extracting both 
domain specific and domain independent 
terms.  Domain specific terms are those 
that represent the core knowledge in the 
domain.  For example, terms such as “dy-
namic host control protocol” and 
“TCP/IP” can be considered to be domain 
specific terms in the computer networking 
domain.  On the other hand, terms such as 
“document author” are not domain spe-
cific.  The technique described in this pa-
per aids in filtering both domain specific 
and domain independent terms extracted 



from documents.  This ensures domain 
portability.  The tests conducted have been 
primarily with documents containing tech-
nology topics.  However, this algorithm 
worked well with documents related to 
electronic commerce as well.   

The algorithm is, of course, not foolproof, and 
there are instances where expressions that ought 
to be modified are not, and expressions are modi-
fied more than necessary.  For instance, the ex-
pression “software was” will be correctly 
reduced to “software” since “was” is an auxiliary 
verb.  The multiword expression “computer 
crashed after” will be reduced to “computer 
crashed” since “after” is a prepositon, but “in-
stalled in order to” will be reduced to “installed 
in order”.  “Installed in order” is not a useful ex-
pression, but it is one of the expressions that are 
not processed correctly by our algorithm. On the 
whole, however, our finding is that applying this 
algorithm results in a significant savings of time 
and effort to extract useful multiword expres-
sions from documents.   

4 Conclusion and Future Work 

We believe that our approach can help tremen-
dously with the task of filtering expressions ex-
tracted automatically from documents.  The 
result of applying our approach will be automatic 
extraction of more useful expressions, and reduc-
tion of burden on users who are presented with 
those expressions.   

 
Future work includes using more sophisticated 
statistics such as IDF other than just frequency of 
occurrence of terms to eliminate more terms be-
fore they are processed by the multiword term 
filtering algorithm.  Our initial approach was to 
do something fast and simple that has a signifi-
cant impact.  Our plan is to evaluate various sta-
tistical approaches in order to select one that can 
produce better multiword expressions that can 
then be fed into the term filtering algorithm.   An 
approach that we experimented with was running 
the algorithm on just the titles and abstracts of 
larger documents.  We noticed that this approach 
worked well for extracting concepts for building 
knowledge maps.  However, it needs to undergo 
further testing.  Besides, testing this algorithm on 
documents from other domains such as medical, 
pharmaceutical and financial domains, and using 
syntactic and semantic information to build 
“positive filters” that identify well formed pat-

terns, instead of stripping away ill-formed pat-
terns are other issues worth researching.   
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