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Abstract 

We propose a novel language-independent 
framework for inducing a collection of mor-
phological inflection classes from a monolin-
gual corpus of full form words.  Our approach 
involves two main stages.  In the first stage, 
we generate a large data structure of candidate 
inflection classes and their interrelationships.  
In the second stage, search and filtering tech-
niques are applied to this data structure, to 
identify a select collection of "true" inflection 
classes of the language.  We describe the basic 
methodology involved in both stages of our 
approach and present an evaluation of our 
baseline techniques applied to induction of 
major inflection classes of Spanish.  The pre-
liminary results on an initial training corpus 
already surpass an F1 of 0.5 against ideal 
Spanish inflectional morphology classes. 

1 Introduction 

Many natural language processing tasks, such as 
morphological analysis and parsing, have mature 
solutions when applied to resource-rich European 
and Asian languages.  Addressing these same tasks 
in less studied low-density languages, however, 
poses exciting challenges.   

These languages have limited available re-
sources: with perhaps a few million speakers there 
is likely no native speaker linguist and frequently 
there is little electronic text readily available.  To 
compound the difficulties, while low-density lan-
guages abound, comparatively little financial re-
sources are available to address their challenges.  
These considerations suggest developing systems 
to automatically induce solutions for NLP tasks in 
new languages. 

The AVENUE project (Lavie et al, 2003; Car-
bonell et al., 2002; Probst et al., 2002) at Carnegie 
Mellon University seeks to apply automatic induc-
tion methods to develop rule-based machine trans-
lation systems between pairs of languages where 
one of the languages is low-density and the other is 
resource-rich.  We are currently pursuing MT sys-

tems with Mapudungun, an indigenous language 
spoken by 900,000 people in southern Chile and 
Argentina, and Aymara, spoken by 3 million peo-
ple in Bolivia, Peru, and northern Chile, as low-
density languages and Spanish the resource rich 
language. 

A vital first step in a rule-based machine transla-
tion system is morphological analysis.  This paper 
outlines a framework for automatic natural lan-
guage morphology induction inspired by the tradi-
tional and linguistic concept of inflection classes.  
Additional details concerning the candidate inflec-
tion class framework can be found in Monson 
(2004).  This paper then goes on to describe one 
implemented search strategy within this frame-
work, presenting both a simple summary of results 
and an in depth error analysis. 

While the intent of this research direction is to 
define techniques applicable to low-density lan-
guages, this paper employs English to illustrate the 
main conjectures and Spanish, a language with a 
reasonably complex morphological system, for 
quantitative analysis.  All experiments detailed in 
this paper are over a Spanish newswire corpus of 
40,011 tokens and 6,975 types. 

2 Previous Work 

It is possible to organize much of the recent 
work on unsupervised morphology induction by 
considering the bias each approach has toward dis-
covering morphologically related words that are 
also orthographically similar. 

At one end of the spectrum is the work of 
Yarowsky et al. (2001), who derive a morphologi-
cal analyzer for a language, L, by projecting the 
morphological analysis of a resource-rich language 
onto L through a clever application of statistical 
machine translation style word alignment prob-
abilities.  The word alignments are trained over a 
sentence aligned parallel bilingual text for the lan-
guage pair.  While the probabilistic model they use 
to generalize their initial system contains a bias 
toward orthographic similarity, the unembellished 
algorithm contains no assumptions on the ortho-
graphic shape of related word forms. 

Next along the spectrum of orthographic similar-
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ity bias is the work of Schone and Jurafsky (2000), 
who first acquire a list of pairs of potential mor-
phological variants (PPMV’s) using an ortho-
graphic similarity technique due to Gaussier 
(1999), in which pairs of words from a corpus vo-
cabulary with the same initial string are identified.  
They then apply latent semantic analysis (LSA) to 
score each PPMV with a semantic distance.  Pairs 
measuring a small distance, those whose potential 
variants tend to occur where a neighborhood of the 
nearest hundred words contains similar counts of 
individual high-frequency forms, are then pro-
posed as true morphological variants of one anther.  
In later work, Schone and Jurafsky (2001) extend 
their technique to identify not only suffixes but 
also prefixes and circumfixes by building both 
forward and backward tries over a corpus. 

Goldsmith (2001), by searching over a space of 
morphology models limited to substitution of suf-
fixes, ties morphology yet closer to orthography.  
Segmenting word forms in a corpus, Goldsmith 
creates an inventory of stems and suffixes.  Suf-
fixes which can interchangeably concatenate onto 
a set of stems form a signature.  After defining the 
space of signatures, Goldsmith searches for that 
choice of word segmentations resulting in a mini-
mum description length local optimum. 

Finally, the work of Harris (1955; 1967), and 
later Hafer and Weiss (1974), has direct bearing on 
the approach taken in this paper.  Couched in mod-
ern terms, their work involves first building tries 
over a corpus vocabulary, and then selecting, as 
morpheme boundaries, those character boundaries 
with high branching count in the tries. 

The work in this paper also has a strong bias to-
ward discovering morphologically related words 
that share a similar orthography.  In particular, the 
morphology model we use is, akin to Goldsmith, 
limited to suffix substitution.  The novel proposal 
we bring to the table, however, is a formalization 
of the full search space of all candidate inflection 
classes.  With this bulwark in place, defining 
search strategies for morpheme discovery becomes 
a natural and straightforward activity. 

3 Inflection Classes as Motivation 

When learning the morphology of a foreign lan-
guage, it is common for a student to study tables of 
inflection classes.  In Spanish, for example, a regu-
lar verb belongs to one of three inflection 
classes—verbs that take the -ar infinitive suffix 
inflect for various syntactic features with one set of 
suffixes, verbs that take the -er infinitive suffix 
realize the same set of syntactic features with a 
second set of suffixes, while -ir  verbs take yet a 
third set. 

Carstairs-McCarthy formalizes the concept of an 
inflection class in chapter 16 of The Handbook of 
Morphology (1998).  In his terminology, a lan-
guage with inflectional morphology contains lex-
emes which occur in a variety of word forms.  
Each word form carries two pieces of information: 

1) Lexical content and 
2) Morphosyntactic properties. 

For example, the English word form gave ex-
presses the lexeme GIVE plus the morphosyntactic 
property Past, while gives expresses GIVE plus the 
properties 3rd Person, Singular, and Non-Past. 

A set of morphosyntactic properties realized 
with a single word form is defined to be a cell, 
while a paradigm is a set of cells exactly expressed 
by the word forms of some lexeme.   

A particular natural language may have many 
paradigms.  In English, a language with very little 
inflectional morphology, there are at least two 
paradigms, a noun paradigm consisting of two 
cells, Singular and Plural, and a paradigm for 
verbs, consisting of the five cells given (with one 
choice of naming convention) as the first column 
of Table 1. 

Lexemes that belong to the same paradigm may 
still differ in their morphophonemic realizations of 
various cells in that paradigm—each paradigm 
may have several associated inflection classes 
which specify, for the lexemes belonging to that 
inflection class, the surface instantiation for each 
cell of the paradigm.   

Three of the inflection classes within the English 
verb paradigm are found in Table 1 under the col-
umns labeled A through C.  Each inflection class 

Inflection Classes Verb 
Paradigm A B C 

Basic 
blame 
roam 
solve 

show 
sow 
saw 

sing 
ring 

3rd Person 
Singular     
Non-past 

-/z/ 
blames 
roams 
solves 

-/z/ 
shows 
sows 
saws 

-/z/ 
sings 
rings 

 

Past 

-/d/ 
blamed 
roamed 
solved 

-/d/ 
showed 
sowed 
sawed 

V→ /eI/ 
sang 
rang 

 

Perfective       
or Passive 

-/d/ 
blamed 
roamed 
solved 

-/n/ 
shown 
sown 
sawn 

V→ /Λ/ 
sung 
rung 

 

Progressive 

-/iŋ/ 
blaming 
roaming 
solving 

-/iŋ/ 
showing 
sowing 
sawing 

-/iŋ/ 
singing 
ringing 

 
 
Table 1: A few inflection classes of the Eng-

lish verb paradigm 



column consists of entries corresponding to the 
cells of the verb paradigm.  Each entry contains an 
informal notation for the morphophonemic process 
which the inflection class applies to the basic form 
of a lexeme and examples of word forms filling the 
corresponding paradigm cell. 

Inflection class A is one of the largest and most 
productive verb inflection classes in English, in-
flection class B contains the Perfective/Passive 
suffix -/n/, and C is a small “irregular” inflection 
class of strong verbs. 

The task our morphology induction system en-
gages is exactly the discovery of the inflection 
classes of a natural language.  Unlike the analysis 
in Table 1, however, the rest of this paper treats 
word forms as simply strings of characters as op-
posed to strings of phonemes. 

4 Empirical Inflection Classes 

There are two stages in our approach to unsu-
pervised morphology induction.  First, we define a 
search space over a set of candidate inflection 
classes, and second, we search this space for those 
candidates most likely to be part of a true inflec-
tion class in the language.  In both stages of our 
approach we intentionally exploit the fact that suf-
fixes belonging to the same natural language in-
flection class frequently occur interchangeably on 
the same stems. 

4.1 Candidate Inflection Class Search Space 

To define a search space wherein we hope to 
identify inflection classes of a natural language, 

our algorithm accepts as input a monolingual cor-
pus for that language and proposes candidate mor-
pheme boundaries at every character boundary in 
every word form in the corpus vocabulary.  We 
call each string before a candidate morpheme 
boundary a candidate stem or c-stem, and each 
string after a boundary a c-suffix.  We define a 
candidate inflection class (CIC) to be a set of c-
suffixes for which there exists at least one c-stem, 
t, such that each c-suffix in the CIC concatenated 
to t produces a word form in the vocabulary.  For 
convenience, let the set of c-stems which generate 
a CIC, C, be called the adherent c-stems of C; let 
the number of adherent c-stems of C be C’s adher-
ent size; and let the size of the set of c-suffixes in 
C be the level of C.  We denote a CIC in this paper 
by a period delimited sequence of c-suffixes. 

While CIC’s effectively model suffix substitu-
tion on bound stems, we would also like to model 
suffix concatenation onto free stems.  To this end, 
the set of candidate morpheme boundaries our al-
gorithm proposes include those boundaries after 
the final character in each word form.  In this paper 
we assume a suffix, which we denote as Ø, follows 
all word form final boundaries.  A CIC contains 
the Ø c-suffix when each c-stem in the CIC can 
occur, not only bound to other c-suffixes in the 
CIC, but also as a free stem.  For generality, the 
boundary before the first character of each word 
form is also a candidate morpheme boundary. 

 Table 2 illustrates the type of CIC’s produced 
by our algorithm.  The CIC’s in this table, arranged 
in a systematic but arbitrary order, are each derived 

Vocabulary: blame
blames roams
blamed roamed

roaming

Ø.s.d
blame

Ø.s
blame.solve

Ø.d
blame

s.d s.ed.ing e.es.ing
blame roam solv

s.ed e.ing
roam solv

s s.ing es.ing
blame.roam.solve roam solv

d ed.ing ng
blame.roame roam roami.solvi

ing g
roam.solv roamin.solvin

lame
b

solves
solve

ame.ames.amed
bl

me.mes.med e.es.ed

solving

oams.oamed.oaming
bla blam r

me.mes e.es olve.olves.olvingame.ames

ame.amed
bla blam.solv sbl

me.med e.ed
...

bla blam

bl

mes.med es.ed
bla blam

me e
bla blam.solv

amed
bl.ro

mes es
bla blam.solvbl

ames

med ed
bla.roa blam.roam

Ø
blame.blames.blamed.roams.roamed.roaming.solve.solves.solving

lame.lames.lamed
b

lame.lames
b

lame.lamed
b

lames.lamed
b

lames
b

lamed
b

bl

ames.amed
bl

ame

Table 2: Some of the CIC's, arranged in a systematic but arbitrary order, derived from a toy vo-
cabulary. Each entry is specified as a period delimited sequence of c-suffixes in bold above a   

period delimited sequence of adherent c-stems in italics 



from one or more forms in a small vocabulary con-
sisting of a subset of the word forms found under 
inflection class A from Table 1.  Proposing, as our 
procedure does, morpheme boundaries at every 
character boundary in every word form necessarily 
produces many ridiculous CIC’s, such as 
ame.ames.amed, from the forms blame, blames, 
and blamed and the c-stem bl.  Dispersed among 
the incorrect CIC’s generated by our algorithm, 
however, are also CIC’s that seem very reasonable, 
such as Ø.s, from the c-stems blame and tease.   

Note that where Table 1 lists all the surface 
forms of the three lexemes BLAME , ROAM, and 
SOLVE, the vocabulary of Table 2 mimics the vo-
cabulary of a text corpus from a highly inflected 
language where we expect few, if any, lexemes to 
occur in the complete set of possible surface forms.  
Specifically, the vocabulary of Table 2 lacks the 
surface form blaming of the lexeme BLAME , solved 
of the lexeme SOLVE, and the root form roam of 
the lexeme ROAM.  Hence, while the reasonable 
CIC Ø.s arises from the pairs of surface forms 
(blame, blames) and (solve, solves), there is no 
way for the form roams to contribute to the Ø.s 
CIC because the surface form roam is missing 
from this vocabulary.  In other words, we lack evi-
dence for a Ø suffix on the c-stem roam.  Also no-
tice that, as a result of English spelling rules, the 
CIC s.ed generated from the pair of surface forms 
(roams, roamed) is separate from each of the 
CIC’s s.d and es.ed generated from the pair of sur-
face forms (blames, blamed).   

Looking at Table 2, it is clear there is structure 
among the CIC’s.  In particular, at least two types 
of relations hold between CIC’s.  First, hierarchi-
cally, the c-suffixes of one CIC may be a superset 
of the c-suffixes of another CIC.  For example the 
c-suffixes in the CIC e.es.ed are a superset of the 
c-suffixes in the CIC e.ed.  Second, cutting across 
this hierarchical structure there is structure be-
tween CIC’s which propose different morpheme 
boundaries within the same word forms.  Compare 
the CIC’s me.mes.med and e.es.ed; each is de-
rived from exactly the triple of word forms blame, 
blames, and blamed, but differ in the placement of 
the hypothesized morpheme boundary.   

Taken together the hierarchical c-suffix set in-
clusion relations and the morpheme boundary rela-
tions impose a lattice structure on the space of 
CIC’s.  Figure 1 diagrams the CIC lattice over an 
interesting subset of the columns of Table 2.  Hier-
archical links, represented by solid lines, connect 
any given CIC often to more than one parent and 
more than one child.  The empty CIC (not pictured 
in Figure 1) can be considered the child of all level 
one CIC’s (including the Ø CIC), but there is no 
universal parent of all top level CIC’s.  Moving up 

the lattice always results in a monotonic decrease 
in adherent size because a parent CIC requires 
each adherent c-stem to form a word with a super-
set of the c-suffixes of each child. 

Horizontal morpheme boundary links, dashed 
lines, connect a CIC, C, with a neighbor to the 
right if each c-suffix in C begins with the same 
character.  This entails that there is at most one 
morpheme boundary link leading to the right of 
each CIC.  There may, however, be as many links 
leading to the left as there are characters in the or-
thography.  The only CIC with depicted multiple 
left links in Figure 1 is Ø, which has left links to 
the CIC’s e, s, and d.  A number of left links ema-
nating from the CIC’s in Figure 1 are not shown; 
among others absent from the figure is the left link 
from the CIC e.es leading to the CIC ve.ves with 
the adherent sol.  Since left links effectively divide 
a CIC into separate CIC’s, one for each character 
in the orthography, adherent count monotonically 
decreases as left links are followed. 

To better visualize what a CIC lattice looks like 
when derived from real data, Figure 2 contains a 
portion of a hierarchical lattice automatically gen-
erated from our Spanish newswire corpus.  Each 
entry in Figure 2 contains the c-suffixes compris-
ing the CIC, the adherent size of the CIC, and a 
sample of adherent c-stems.  The lattice in Figure 2 
covers: 

e.es 
blam 
solv 

e.ed 
blam 

es 
blam 
solv 

Ø.s.d 
blame 

Ø.s 
blame 
solve 

Ø 
blame 
blames 
blamed 
roams 
roamed 
roaming 

solve 
solves 
solving 

e.es.ed 
blam 

ed 
blam 
roam 

d 
blame 
roame 

Ø.d 
blame 

s.d 
blame 

s 
blame 
roam 
solve 

es.ed 
blam 

e 
blam 
solv 

me.mes 
bla 

me.med 
bla 

mes 
bla 

me.mes.med 
bla 

med 
bla 
roa 

mes.med 
bla 

me 
bla 

Figure 1: Portion of a CIC lattice from the 
toy vocabulary in Table 2 

c-suffix set inclusion links 
morpheme boundary links 



1) The productive Spanish inflection class for 
adjectives, a.as.o.os, covering the four adjec-
tive paradigm cells: feminine singular, femi-
nine plural, masculine singular, and mascu-
line plural, respectively, 

2) All possible CIC subsets of the adjective 
CIC, e.g. a.as.o, a.os, etc. and, 

3) The imposter CIC a.as.o.os.tro, together 
with its rogue descendents, a.tro, and tro .   

Other CIC’s that are descendents of a.as.o.os.tro 
and that contain the c-suffix tro do not supply ad-
ditional adherents and hence are not present either 
in Figure 2 or in our program’s representation of 
the CIC lattice.  The CIC’s a.as.tro and os.tro, for 
example, both have only the one adherent, cas, 
already possessed by their common ancestor 
a.as.o.os.tro.  Strictly speaking we have simplified 
for exposition, as the CIC a.as.o.os.tro is not actu-
ally present in the algorithm’s representation ei-
ther, because the c-stem cas occurred with a num-
ber of additional c-suffixes yielding the CIC: 

a.as.i.o.os.sandra.tanier.ter.tro.trol.  

4.2 Search 

Given the framework of CIC lattices, the key 
task for automatic morphology induction is to 
autonomously separate the nonsense CIC’s from 
the useful ones, thus identifying linguistically 
plausible inflection classes.  This section treats the 
CIC lattices as a hypothesis space of valid inflec-
tion classes and searches this space for CIC’s most 
likely to be true inflection classes in a language. 

There are many possible search strategies and 
heuristics applicable to the CIC lattice, and while 
for future work we intend to explore a variety of 
search techniques, this paper presents a reasonable 
and intuitive baseline search procedure.  We have 
investigated a series of algorithms which build 
upon each other.  Each algorithm employs a num-
ber of parameters which are tuned by hand.  These 
parameters are only interesting in so far as they 
help us find true CIC’s from among the many in 
the lattice.  The performance of each algorithm is 
described in section 6. 

4.2.1 Vertical Only 
 To motivate the general approach we have 

taken, compare the adherent sizes of the various 
CIC’s in Figure 2.  The target CIC a.as.o.os, corre-
sponding to the Spanish adjective inflection class, 
has 43 adherents.  Its various descendents must 
occur with monotonically increasing adherent 
sizes, but frequently a child will not more than 
double or triple its immediate parent’s adherent 
size, and never is there a difference greater than a 
factor of ten. Notice also the large adherent counts 

of the level one descendents of a.as.o.os, the 
smallest is as with 404 adherents.   

Contrast this behavior with that of CIC’s involv-
ing the spurious suffix tro.  The CIC a.as.o.os.tro 
occurs in the corpus with exactly one adherent, 
cas.  Additionally, the word forms cena, supper, 
and centro, center, occur yielding the CIC a.tro 
with two adherents.  In total tro is the final string 
of only 16 individual word forms. 

In general, we expect that true suffixes in a lan-
guage will both occur frequently and occur at-
tached to a large number of stems which also ac-
cept other suffixes from the same inflection class.  
These considerations led us to propose three pa-
rameters for our basic search strategy: 

L1 SIZE:  A level one adherent size cutoff 
TOP SIZE:  An absolute adherent size cutoff 
RATIO:  A parent-to-child adherent size      

ratio cutoff 

The L1 SIZE parameter requires a c-suffix to be 
frequent, while the TOP SIZE and RATIO parame-
ters require a suffix to be substitutable for other c-
suffixes in a reasonable number of c-stems. 

a.as.o.os 
43 

african 
cas 

jurídic 
l 
... 

a.as.o.os.tro 
1 
cas 

a.as.os 
50 

afectad 
cas 

jurídic 
l 
... 

a.as.o 
59 
cas 

citad 
jurídic 

l 
... 

a.o.os 
105 

impuest 
indonesi 
italian 
jurídic 

... 

a.as 
199 
huelg 
incluid 
industri 
inundad 

... 

a.os 
134 

impedid 
impuest 
indonesi 
inundad 

... 

as.os 
68 
cas 

implicad 
inundad 
jurídic 

... 

a.o 
214 

id 
indi 

indonesi 
inmediat 

... 

as.o 
85 

intern 
jurídic 

just 
l 
... 

a.tro 
2 
cas 
cen 

a 
1237 
huelg 

ib 
id 

iglesi 
... 

as 
404 
huelg 

huelguist 
incluid 
industri 

... 

os 
534 

humorístic 
human 
hígad 

impedid 
... 

o 
1139 

hub 
hug 

human 
huyend 

... 

tro  
16 
catas 

ce 
cen 
cua 
... 

as.o.os 
54 
cas 

implicad 
jurídic 

l 
... 

 

Figure 2: Hierarchical CIC lattice automati-
cally derived from Spanish 

o.os 
268 
human 

implicad 
indici 

indocumentad 
... 



We apply these three parameters by beginning 
our search at the bottom of the lattice.  Each level 
one CIC with an adherent count larger than L1 
SIZE is placed in a list of path CIC’s.  Then for 
each path CIC, C, we remove C from the list of 
path CIC’s, and in turn consider each of C’s hier-
archical parents, Pi.  If Pi’s adherent size is at least 
TOP SIZE, and if the ratio of Pi’s adherent size to 
C’s adherent size is larger than RATIO, then Pi is 
placed in the list of path CIC’s.  If no parent of C 
can be placed in the list of path CIC’s, and if C’s 
level is greater than one, then C is placed in a list 
of selected CIC’s.  When there are no more CIC’s 
in the list of path CIC’s, the search ends and the 
CIC’s in the selected list are the CIC’s the algo-
rithm believes are true CIC’s of the language. 

As an illustration suppose we explored the lattice 
in Figure 2 with the following parameter settings: 

L1 SIZE:  100 
TOP SIZE:  2 
RATIO:  0.1 

Our search algorithm begins by comparing the 
adherent size of each level one CIC to L1 SIZE.  
The only level one CIC with an adherent count less 
than 100 is tro with 16 adherents, preventing tro  
from being placed in the list of path CIC’s.   

Each of the surviving level one CIC’s is then 
considered in turn.  The algorithm comes to the 
CIC a, where the ratios of adherent sizes between 
each of its parents a.tro, a.as, a.o, and a.os and 
itself are 0.002, 0.161, 0.173, and 0.108 respec-
tively.  Each of these ratios, except that between a 
and a.tro, at 0.002, is larger than 0.1.  And since 
the adherent sizes of a.as, a.o, and a.os are each 
larger than TOP SIZE, these three CIC’s are placed 
in the list of path CIC’s.   

From this point, every hierarchical link in Figure 
2 leading to the CIC a.as.o.os passes the TOP SIZE 
and RATIO cutoffs.  Thus the algorithm reaches a 
state where the only CIC in the list of path CIC’s is 
a.as.o.os.  When this good CIC is removed from 
the list of path CIC’s, the algorithm finds that its 
only parent is a.as.o.os.tro with its lone adherent.  
Since TOP SIZE requires a parent to have at least 
two adherents, a.as.o.os.tro cannot be placed in 
the list of path CIC’s.  As no parent can be placed 
in the list of path CIC’s, a.as.o.os is placed in the 
list of selected CIC’s—which is the desired out-
come.  The list of path CIC’s is now empty and the 
search ends. 

4.2.2 Horizontal Blocking 
 To improve performance over the Vertical Only 

algorithm we next incorporated knowledge from 
the horizontal morpheme boundary links.  Monson 
(2004) describes how morpheme boundary links in 

a CIC lattice can be thought of as branchings in a 
vocabulary trie where identical subtries are con-
flated.  Harris (1955) discusses how the branching 
count in a suffix trie can be exploited to identify 
morpheme boundaries.  We extend the spirit of 
Harris’ work in our algorithm through the use of 
two search parameters: 

HORIZ RATIO: A cutoff over: 

sizeadherent 

character in  ending adherents of #
argmax

c
c  

HORIZ SIZE: An adherent size cutoff 

Left Blocking 
In the first variant of horizontal blocking we ap-

ply these two horizontal parameters when consid-
ering a CIC, C, removed from the list of path 
CIC’s.  If the adherent size of C is larger than 
HORIZ SIZE and the maximum percentage of ad-
herents of C that end in any one character is larger 
than HORIZ RATIO, then C is simply thrown out. 

For example, suppose we used the following 
horizontal parameter settings: 

HORIZ RATIO:  0.5 
HORIZ SIZE:  10 

 The CIC da.do in our Spanish corpus has 62 
adherents, 46, or a fraction of 0.742, of which end 
in the character a (ada and ado fill the feminine 
and masculine past participle cells for the -ar verb 
inflection class).  If our Left Blocking search algo-
rithm reached the CIC da.do, it would be dis-
carded because while its adherent size is larger 
than HORIZ SIZE more than half of its adherents 
end with the same character.  Notice that this algo-
rithm does not explicitly follow leftward mor-
pheme boundary links.  The rationale for this be-
havior is that ada.ado will likely be explored inde-
pendently by a separate vertical path.  In future 
experiments we intend to investigate the effect of 
ensuring that the CIC to the left is explored by 
overtly placing the leftward CIC in the list of path 
CIC’s. 

Right Blocking 
 So far we have only described an algorithm to 

block paths where the correct morpheme boundary 
is to the left of the current hypothesis.  There are 
also CIC’s where a morpheme boundary should be 
moved to the right. The CIC cada.cado with seven 
adherents is one such. 

Accordingly, whenever we encounter a CIC, C, 
all of whose c-suffixes begin with the same charac-
ter (e.g. c in cada.cado) our algorithm poses the 
question, if we were considering the CIC to the 
right (e.g. ada.ado) would we have triggered Left 
Blocking?  If Left Blocking would not have been 



triggered then we throw C out.  In other words, we 
prefer the rightmost possible morpheme boundary, 
unless there is some reason to believe the mor-
pheme boundary should be to the left. 

Taking a closer look at cada.cado, the CIC to its 
right, ada.ado, has 46 adherents of which the char-
acter c ends the most, 7 or a fraction of 0.152.  If 
we were using a HORIZ RATIO of 0.5 as in the pre-
vious section, Left Blocking would not be trig-
gered from ada.ado and so Right Blocking is trig-
gered, throwing out cada.cado.  On the other hand, 
if we were considering blocking ada.ado, where 
both c-suffixes begin with a, the HORIZ RATIO pa-
rameter would need to be larger than 0.742 before 
right blocking would throw out ada.ado.   

Right Blocking Recursive 
 In addition to standard Right Blocking we ex-

plored recursively looking at the next most right 
neighbor of a CIC if the immediate right neighbor 
falls below the HORIZ SIZE threshold.  The ration-
ale behind this variant stems from CIC’s such as 
icada.icado with 4 adherents, crit, publ, ratif, and 
ub.  Since icada.icado’s immediate right neighbor 
cada.cado has only 7 adherents itself we may not 
want to base our blocking decision on so little data.  
Instead we consider the CIC ada.ado, discussed in 
the previous section, which has a large enough ad-
herent size that we might feel confident in our 
judgment.   

Full Horizontal Blocking 
The final version of the search we tried was to 

combine Left Blocking and Right Blocking Recur-
sive while constraining both to use the same values 
for the HORIZ RATIO and HORIZ SIZE parameters. 

5 Evaluation 

To evaluate the performance of the various base-
line search strategies, we first decided on a stan-
dard set of six inflection classes for Spanish: two 
for nouns, Ø.s and Ø.es, one for adjectives, 
a.as.o.os, and three for verbs, corresponding to the 
traditional -ar, -er, and -ir  verb inflection classes.  
We call these six inflection classes our set of stan-
dard IC’s.  We make no claim as to the truth or 
completeness of the set of standard inflection 
classes we used in this evaluation.  The standard 
IC’s we compiled were simply some of the most 
common suffixes filling some of the most common 
morphosyntactic properties marked in Spanish. 

We then defined measures of recall, precision, 
and fragmentation over these standard IC’s (Figure 
3).  As defined, recall measures the fraction of 
unique suffixes in the standard IC’s that are found 
within those selected CIC’s that are subsets of 
some inflection class in the standard; precision 

measures the fraction of unique suffixes among all 
the selected CIC’s that are found within those se-
lected CIC’s that are subsets of an inflection class 
in the standard; and fragmentation measures re-
dundancy, specifically calculating the ratio of the 
number of selected CIC’s that are subsets of stan-
dard IC’s to the number of inflection classes in the 
standard.  High values for recall and precision are 
desirable, while a fragmentation of exactly 1 im-
plies that the number of usefully selected CIC’s is 
the same as the number of inflection classes in the 
standard. 

6 Results and Error Analysis 

For each of the search variants described in sec-
tion 4.2 we executed a by-hand search over the 
relevant parameters for those settings that optimize 
the F1 measure (the harmonic mean of recall and 
precision).  The best performing parameter settings 
are presented in Table 3 while quantitative results 
using these settings are plotted in Figure 4.   

Examining the performance of each algorithm 
(Figure 4) reveals that the simple Vertical only 
search achieves a high precision at the expense of a 
low recall measure.  The simple Vertical search 
also gives the smallest fragmentation, which, when 
combined with the high precision score, indicates a 
conservative algorithm that selects few CIC’s.  The 
parameter settings which achieve the highest F1 for 
Left Block alone and Right Block alone each pro-
duce much higher recall than the simple Vertical 
search.  Right Block Recursive increases precision 
significantly over simple Right Block and achieves 
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the highest F1 measure of any search variant.  
While Full Horizontal Block also performs well, 
sharing the values of HORIZ RATIO and HORIZ 
SIZE forced a compromise between Left Block and 
Right Block Recursive that did not significantly 
outperform either algorithm alone. 

Of the 83 unique suffixes in the hand compiled 
standard inflection classes, 21 did not share a c-
stem with any other c-suffix in the Spanish news-
wire corpus used for this evaluation—placing an 
upper limit on recall of 0.75 for the search algo-
rithms presented in this paper. 

Examining the parameter settings that yielded 
the highest F1 measure for each search variant 
(Table 3) is also enlightening.  Early experiments 

with Vertical only search clearly demonstrated that 
a TOP SIZE of two, or restricting the CIC’s permit-
ted to be selected to those with at least two adher-
ents, always resulted in better performance than 
other possible settings.  A TOP SIZE of one places 
no restriction on the adherent size of a CIC, ram-
pantly selecting CIC’s, such as the level 10 CIC 
given at the end of section 4.1, that consist of 
many c-suffixes that happen to validly concatenate 
onto a single c-stem—obliterating reasonable pre-
cision.  Higher settings for TOP SIZE induce a 
graceful degradation in recall.  Thus all experi-
ments reported here used a TOP SIZE of two. 

Beyond TOP SIZE the only parameters available 
to the basic Vertical algorithm are L1 SIZE and 
RATIO, which provide only crude means to halt the 
search of bad paths.  In particular, if a level one 
CIC, C, has more than L1 SIZE adherents, and has 
some parent which passes the RATIO cutoff, then 
some ancestor of C will  be selected by the algo-
rithm as a good CIC.  Hence, the Vertical only al-
gorithm ensures search gets off on the right foot by 
using the highest values for the L1 SIZE and RATIO 
parameters of any algorithm variant.  Performance 
falls off quickly above L1 SIZE settings of 192, 
indicating that this parameter in this algorithm is 
sensitive to the size of the training corpus. 

In contrast, the horizontal blocking search algo-
rithms have additional parameters available to cull 
out bad search paths, and can hence afford to use 
lower (and more stable) values for L1 SIZE and 
RATIO.  Recall that the Left Blocking algorithm 
discards paths determined to be using a morpheme 
boundary too far to the right, while the Right 
Blocking algorithm discards paths using mor-
pheme boundaries too far to the left.  Notice that 
since, as reasoned in section 4.1, adherent count 
monotonically decreases as morpheme boundary 
links are followed to the left, if the L1 SIZE cutoff 
blocks a particular CIC, C, all CIC’s to the left of 
C will also be blocked.  From these facts it follows 
that a large L1 SIZE will reject some paths result-
ing from morpheme boundaries chosen too far to 
the left, which would otherwise have been pursued 
in the Left Blocking algorithm.  The Right Block-
ing algorithm, however, receives no such benefit, 
and achieves its best performance by maximizing 
recall with a small L1 SIZE. 

Examining the best performing parameter values 
for the Right Blocking Recursive algorithm reveals 
a curious behavior in which low values for L1 SIZE 
and RATIO allow a permissive vertical search while 
stringent values of HORIZ RATIO and, particularly, 
HORIZ SIZE constrain the search.  One explanation 
for these facts might be that following the mono-
tonically increasing chain of CIC adherent sizes 
along right horizontal links allows the algorithm to 

Figure 4: Recall, Precision, F1 and Fragmen-
tation Results for each search algorithm:     
Vertical, Left Blocking, Right Blocking,   

Right Blocking Recursive, and                     
Full Horizontal Blocking 
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Table 3: Hand tuned optimal parameter set-
tings for each search algorithm:                       

Vertical, Left Blocking, Right Blocking,       
Right Blocking Recursive, and                      

Full Horizontal Blocking 

Algorithm TOP 

SIZE 
L1 

SIZE 
RATIO HORIZ 

RATIO 
HORIZ 

SIZE 
V 2 192 0.3   
LB 2 64 0.1 0.3 3 
RB 2 27 0.2 0.5 27 

RBR 2 27 0.05 0.5 243 
FHB 2 27 0.2 0.3 3 

 



make intelligent blocking decisions backed by suf-
ficient data. 

The best performing parameter values for the 
Full Horizontal Search are a compromise between 
the well performing values for the Left Blocking 
and those for the Right Blocking algorithms.  This 
parameter value compromise does not draw benefit 
from the recursion in the Right Block Recursive 
algorithm, but instead employs Right Block as a 
replacement for the relatively higher L1 SIZE pa-
rameter in the Left Blocking algorithm. 

It is also interesting to examine CIC’s selected 
by the search algorithms.  Table 4 lists all of the 
CIC’s selected by the conservative Vertical search 
algorithm together with a random sample of CIC’s 
selected by Right Blocking Recursive, the algo-
rithm which reached the highest F1 measure of any 
algorithm variant.   

Perhaps the most striking feature of Table 4 is 
the extent to which the CIC’s overlap.  Very few 
individual c-suffixes occur in only one CIC.  Of all 
the CIC’s in Table 4, only Ø.s and a.as.o.os, both 
among the CIC’s selected by the Vertical algo-
rithm, represent complete inflection classes in the 
standard IC’s.  The remaining CIC’s are proper 
subsets of various verbal inflection classes.  The 

overlapping nature of the selected CIC’s suggests 
an additional step, which we do not investigate 
here, of conflating CIC’s into a fewer number of 
meta-CIC’s. 

The only verbal inflection class for which sub-
sets are able to pass the large L1 SIZE cutoff im-
posed by the Vertical search algorithm is -ar, the 
most frequent of the three major inflection classes 
in Spanish.  The Right Blocking Recursive algo-
rithm on the other hand identifies significant por-
tions of all three verbal inflection classes.  

The c-suffixes appearing in italics in Table 4 
correspond to no suffix found in any standard IC.  
These alien c-suffixes fall into two categories. 

1) The c-suffixes aciones, ación, and adores 
are noun forming derivational suffixes.   

2) The remaining c-suffixes were formed by 
choosing a morpheme boundary too far to 
the right.   

It is the second type of mistake that the Left 
Blocking search algorithm was specifically de-
signed to address.  Unfortunately naïvely combin-
ing the Right Blocking Recursive with the Left 
Blocking algorithm did not improve performance.  
We expect that by using separate horizontal pa-

Vertical
ar er ir 23 of 23 Selected CIC's

• Ø.s
• a.aba.ada.adas.ado.ar.as
• a.aba.ada.ado.ando.ar
• a.aba.ada.ado.ar.ará.en.ó

a.aciones.ación.ada.adas.ar.aron
• a.ada.adas.ado.ar.ará
• a.ada.adas.ar.aron.ó
• a.ada.ado.ar.aron.ará.ó
• a.ada.ado.ar.ará.arán.en.ó
• a.ada.ado.ar.o.ó
• a.ada.ados.ar.aron.ó
• a.ado.ar.ara.aron.e.ó
• a.ado.ar.aron.ó
• a.an.ar.ó

• a.as.o.os
• • • • a.as

• aba.ado.ando.ar.aron.ará
• aba.ado.ar.aron.ará.en
• ada.ado.ados.ar.aron.ó
• ada.ado.ando.ar.aron.ó
• ada.ado.ar.ará.o.ó
• ada.ado.ar.en.o.ó
• ado.ar.aron.ará.arán.en

N A
d

j Verbs

 

Table 4: All of the CIC’s selected by the conservative Vertical search algorithm (left), and a random 
sample of CIC’s selected by the algorithm with best F1 measure, Right Blocking Recursive (right).  For 
each CIC row, a dot is placed in the columns representing standard IC’s for which that CIC is a subset.  

The c-suffixes in italics are in no standard IC. 

Right Blocking Recursive
ar er ir 23 of 204 Selected CIC's

Ø.ba.n.ndo
• a.aba.ado.ados.ar.ará.arán

a.aciones.ación.adas.ado.ar
• a.ada.adas.ado.ar.ará
• a.adas.ado.an.ar
• a.ado.ados.ar.ó
• a.ado.an.arse.ó
• a.ado.aron.arse.ó
• aba.ada.ado.ar.o.os

aciones.ación.ado.ados
aciones.ado.ados.ará

ación.ado.an.e
• ada.adas.ado.ados.aron.ó
• ada.ado.ados.ar.o

ado.adores.o
• ado.ados.arse.e
• ado.ar.aron.arse.ará

do.dos.ndo.r.ron
• • e.ida.ido
• emos.ido.ía.ían

• ida.ido.idos.ir.ió
• ido.iendo.ir
• ido.ir.ro

N A
d

j Verbs

 



rameters for left blocking and for right blocking 
we could combine these two algorithms in a less 
constrained fashion that would result in better 
overall performance. 

7 Future Work  

We believe the heuristic search strategy de-
scribed in this paper can be significantly improved 
upon.  We plan to investigate search strategies for 
both the vertical and horizontal links in our CIC 
lattices.  We currently have plans to employ statis-
tical independence and correlation tests to adjacent 
CIC’s as a guide to search (Monson, 2004).  Other 
search criteria we are considering are information 
gain and minimum description length measures. 

There are also modifications to the search strat-
egy that may significantly improve performance.  
For example, it may be advantageous to actively 
follow horizontal morpheme boundary links, in-
stead of merely blocking paths, when a morpheme 
boundary error is discovered.  The next immediate 
step we will take is to scale our implementation to 
investigate performance changes as we increase 
the size of our Spanish corpus. 

The intention of this work is to produce a lan-
guage independent morphology induction algo-
rithm.  Hence, we plan to apply this work to a vari-
ety of languages, both well studied resource-rich 
languages as well as low-density languages of in-
terest to the AVENUE project. 
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