
VISUAL LANGUAGE EDITORS BASED ON
LR PARSING TECHNIQUES

Gennaro Costagliola and Vincenzo Deufemia
Dipartimento di Matematica e Informatica

Universitá di Salerno
84081 Baronissi (SA), Italy

{gcostagliola, deufemia}@unisa.it

Abstract
Visual language editors should provide a user-friendly environment where users are supported in an
effective way in the construction of visual sentences. In this paper, we propose an approach for the
construction of syntax-directed visual language editors by integrating incremental parsers into free-
hand editors. The approach combines the LR-based techniques for parsing visual languages with
the more general incremental Generalized LR parsing techniques developed for string languages.

1 Introduction

Visual languages are widely used in several application fields: teaching, development of GUIs,
software development process (examples of modeling languages are UML, Petri Nets, automata,
etc.). Such tasks require to be supported by a powerful visual environment within which
the visual language is embedded and tightly integrated. To this aim, in recent years much
effort has been devoted to the development of tools that assist the designer in the specification
and implementation of visual environments [2, 4, 6, 8, 9]. Traditionally, such environments
encompass a visual editor and a compiler for the specified language.
The two standard interaction models for diagramming software are free-order editing and

syntax-directed model. In the free-order editing approach there is a clean separation of the
concerns of the graphical editing and the interpretation of diagrams. The user draws the
diagram in free order and then invokes the language analyzer to interpret the drawing. The
analyzer informs the user about any errors it finds during parsing and semantic processing.
This approach to visual language implementation makes it possible to combine the sketching
and the checking of diagrams into an explorative style of constructing visual programs, and
reduces the complexity of the implementation.
A completely opposed approach is to construct a graphical editor that enforces a syntax-

directed way to construct diagrams. The term “syntax-directed editor” refers to an editor
which has knowledge of the syntax of a language. This means that the tool maintains an
internal model of a diagram being edited and at every editing step checks the consistency of
the model. Editing actions leading to inconsistent states are rejected. In this way, the user
of the tool cannot draw incorrect diagrams. The syntax-directed style of interaction is good
for beginners who are learning a visual language and learning how to use a drawing tool for
the language. However, syntax-directed editing is unsuitable when the user wants to radically
restructure a diagram. This need occurs frequently during the actual design phase of the model

represented by the diagram. In a less restrictive approach the editor may report errors when
they occur, but allowing continuation.
In this paper we propose an approach based on LR parsing for the construction of visual

language editors that combines the positive aspects of both editing modes. In particular, such
editors support the editing of visual sentences in free-order form. Moreover, the underlying
parsers incrementally analyze the sentences, during their construction, providing an immediate
feedback to the user.
The paper is organized as follows. Section 2 describes the main characteristics of the Extended

Positional Grammars. Section 3 shows an incremental LR-based methodology for the parsing of
visual languages modeled through XPGs. Section 4 illustrates how the parser can be integrated
into a visual editor to support the user in the construction of visual sentences. Conclusions
conclude the paper.

2 Extended Positional Grammars

In this section we illustrate the main characteristics of the eXtended Positional Grammars
(XPG, for short).
In order to represent visual sentences, the XPG formalism uses an attribute-based approach

[7]. In this approach a sentence is conceived as a set of attributed symbols. The attributes
of each symbol can be classified in physic, syntactic, and semantic attributes. The values
of the syntactic attributes are determined by the relationships holding among the symbols.
Thus, a sentence is specified by combining symbols with relations. As an example, a state
transition diagram could be specified by providing the symbols representing nodes and edges,
and the relations between them. In particular, the syntactic attribute to express the attachment
relation between the borderline of a node and the end point of edges can be represented by an
“attaching region” on that node.
More formally, an Extended Positional Grammar is the pair (G, PE), where PE is a positional

evaluator, and G is a particular type of context-free string attributed grammar (N, T∪POS, S,
P) where:

• N is a finite non-empty set of non-terminal symbols;

• T is a finite non-empty set of terminal symbols, with N∩T=∅;

• POS is a finite set of binary relation identifiers, with POS∩N=∅ and POS∩T=∅;

• S∈N denotes the starting symbol ;

• P is a finite non-empty set of productions of the following format:

A → x1R1x2R2 . . . xm−1Rm−1xm,∆,Γ

where A is a non-terminal symbol, x1R1x2R2 . . . xm−1Rm−1xm is a linear representation
with respect to POS where each xi is a symbol in N∪T and each Rj is partitioned in two
sub-sequences

(〈RELh1
j1

, . . . , RELhk
jk
〉, 〈REL

hk+1
jk+1

, . . . , RELhn
jn

〉) with 1 ≤ k ≤ n

Each RELhi
ji
relates syntactic attributes of xj+1 with syntactic attributes of xj−hi

, with
0≤hi<j. In the rest of the paper, we will denote REL0

1 simply as REL1. The relation
identifiers in the first sub-sequence of an Rj are called driver relations, whereas the ones in
the second sub-sequence are called tester relations. Driver relations are used during syntax
analysis to determine the next symbol to be scanned, whereas tester relations are used to check
whether the last scanned symbol (terminal or non-terminal) is properly related to previously
scanned symbols. We refer to the driver (tester, resp.) relations of Rj with driver(Rj)
(tester(Rj), resp.). Without loss of generality we assume that there are no useless symbols,
and no unit and empty productions [1].

∆ is a set of rules used to synthesize the values of the syntactic attributes of A from those of
x1, x2,. . .,xm.

Γ is a set of triples (Nj, Condj, ∆j)j=1,..,t, t≥0, used to dynamically insert new symbols in
the input visual sentence during the parsing process. In particular,

– Nj is a terminal symbol to be inserted in the input visual sentence;

– Condj is a pre-condition to be verified in order to insert Nj;

– ∆j is the rule used to compute the values of the syntactic attributes of Nj from those of
x1,. . ., xm.

Informally, a Positional Evaluator PE is a materialization function that transforms a lin-
ear representation into the corresponding visual sentence in the attribute-based representation
and/or graphical representation. The attribute-based representation of a visual sentence is a
list of all the objects forming the sentence together with the values of their syntactic attributes.
In the following we characterize the languages described by an extended positional grammar

XPG = ((N, T∪POS, S, P), PE). We write α ⇐ β and say that β reduces to α in one step,
if there exist δ, γ, A, η such that A → η, ∆, Γ is a production in P, β = δηγ, α = δA′πγ,
where A′ is a symbol whose attributes are set according to the rule ∆ and π results from the
application of the rule Γ.
We also write α

i⇐ β to indicate that the reduction has been achieved by applying production
i. Moreover, we write α

∗⇐ β and say that β reduces to α, if there exist α0, α1, . . ., αm (m≥0)
such that α = α0 ⇐ α1 ⇐ . . . ⇐ αm = β. The sequence αm, αm−1, . . ., α0 is called a derivation
of α from β.

• a positional sentential form from S is a string β such that S ∗⇐ β;

• a positional sentence from S is a string β containing no non-terminals and such that S ∗⇐ β;

• a visual sentential form (visual sentence, resp.) from S is the result of evaluating a positional
sentential form (positional sentence, resp.) from S through PE.

The language described by an XPG, L(XPG), is the set of the visual sentences from the
starting vsymbol S of XPG.
For some relations it is possible to specify semantically opposed relation. In particular,

let REL1 and REL2 be two relation identifiers, if x REL1 y and y REL2 x hold for any
pair of symbols x and y then REL2 is the opposed relation of REL1 and vice versa. In
the following, we denote with inv(R) the opposed relation of R. Given an XPG, if there

exists inv(R) for each R in POS then XPG is named reversible. It is worth noting that for
some relations it may happen that inv(R)=R. Now, we are ready to introduce the con-
cept of reverse grammar for XPGs that will be useful for the final incremental parsing algorithm.

Definition 2.1. Let G=((N, T∪POS, S, P), PE) be a reversible XPG. A reverse
grammar with respect to G, denoted with rev(G), is an XPG G′=((N, T∪POS′,
S, P′), PE), where POS′=inv(POS) and P′ is defined as follows: whenever A
→ x1R1x2R2 . . . xm−1Rm−1xm,∆,Γ is in P then A→ xmR′

1xm−1R′
2 . . . x2R′

m−1x1,∆,Γ is in
P′ with R′

j=(〈REL′
1, . . . , REL′

k〉, 〈REL′
k+1, . . . , REL′

n〉) where REL′
t=inv(RELhi

pv
), p-hi=m-j

and if 1≤t≤k then RELhi
pv
is in driver(Rq) otherwise it is in tester(Rq) for 1≤q≤m-1.

Note that L(G) is equivalent to L(rev(G)) for each reversible XPG grammar G.

In the following we show two examples of XPG grammars, the first describing a Flow-Chart
language, and the second modeling a State Transition Diagram language.

Example 2.1. The following extended positional grammar FlowCharts generates struc-
tured flow-charts with loops. The set of non-terminals is given by N = {F, C, S, R} and F is
the starting symbol. The terminal symbols of the grammar are graphically depicted in figure
1. Here, each attaching point is represented by a circle and is identified by a number. In the

start halt function begin end

1

1 1

2

1

2

1

2

predicate

1

2 3

Figure 1: The terminals for the grammar FlowCharts.

following, the notation V symi denotes the attaching point i of the symbol V sym. The set of
relations is given by POS = {LINKh,k}, where the relation identifier LINKi,j is defined as:
“a symbol x is in relation with a symbol y iff attaching point i of x is connected to attaching
point j of y”, and will be denoted as i j to simplify the notation. Moreover inv(h k)=k h.
The set of productions for FlowCharts and rev(FlowCharts) follow.

(1) F → start 1_1 C 2_1 halt

 ∆: (F1 = start1; F2 = halt2)

(2) C → begin 2_1 R

 ∆: (C1 = begin1; C2 = R2)

(3) R → S 2_1 R’

 ∆: (R1 = S1; R2 = R’2)

(4) R → end

 ∆: (R1 = end1; R2 = end2)

(5) S → function

 ∆: (S1 = function1; S2 = function2)
(6) S → predicate <2_1 , 1_2> C

 ∆: (S1 = predicate1; S2 = predicate3)

(7) S → predicate 2_1 C <31_1 , 2_2> C’

 ∆: (S1 = predicate1; S2 = C2)

(1’) F → halt 1_2 C 1_1 start

 ∆: (F1 = start1; F2 = halt2)

(2’) C → R 1_2 begin

 ∆: (C1 = begin1; C2 = R2)

(3’) R → R’ 1_2 S

 ∆: (R1 = S1; R2 = R’2)

(4’) R → end

 ∆: (R1 = end1; R2 = end2)

(5’) S → function

 ∆: (S1 = function1; S2 = function2)
(6’) S → C <1_2 , 2_1> predicate

 ∆: (S1 = predicate1; S2 = predicate3)

(7’) S → C 2_2 C’ <11_3 , 1_2> predicate

 ∆: (S1 = predicate1; S2 = C2)

The production 1) defines a flow-chart F as a compound statement C delimited by the start
and halt terminal symbols. In production 2) a compound statement C is defined as a begin
symbol connected to a non-terminal R. Productions 3) and 4) define a non-terminal R as a

sequence of statements S ending with the end symbol. Productions 5), 6) and 7) describe a
statement S as a simple function, a WHILE loop construct, and an IF THEN ELSE construct,
respectively. Note that the starting non-terminal F has no attaching points, while all the other
non-terminals have two attaching points. Figure 2 shows a flow-chart described by the previous
grammars.

start

predicate

function
halt

end

 end

begin

begin

Figure 2: A flow-chart.

Example 2.2. Let STD= ((N, T∪POS, S, P), PE) be the XPG for State Transition Dia-
grams, characterized as follows.

The set of non-terminals is given by N = {StateTD, Graph, Node} where each symbol has
one attaching region as syntactic attribute, and StateTD is the starting symbol, i.e. S =
StateTD. The set of terminals is given by T = {NODEI, NODEIF, NODEF, NODEG, EDGE,
PLACEHOLD} (see figure 3). The terminal symbols NODEI, NODEIF, NODEF, NODEG
have one attaching region as syntactic attribute. They represent, the initial, the initial and
final, the final, and the generic node, respectively, of a state transition diagram. The terminal
symbol EDGE has two attaching points as syntactic attributes corresponding to the start and
end points of the edge. Finally, PLACEHOLD is a fictitious terminal symbol to be dynamically
inserted in the input sentence during the parsing process. It has one attaching region as syntactic
attribute. In figure 3, each attaching region is represented by a bold line and is identified by

1 1

 NODEI NODEIF NODEF NODEG EDGE PLACEHOLD

1 1

1 2

1

Figure 3: The terminals for the grammar STD.

the number 1, whereas the two attaching points of EDGE are represented by bullets and are
identified each by a number. The set of relations is given by POS = {LINKh,k, any} where the
relation identifier any denotes a relation that is always satisfied between any pair of symbols,
whereas LINKh,k is defined as in the previous example. Moreover, we use the notation h k

when describing the absence of a connection between two attaching areas h and k.

Next, we provide the set of productions for describing State Transition Diagrams. In
particular, we present the productions of STD and rev(STD). Notice that Graph1 =
Graph′1 - EDGE1 indicates set difference and is to be interpreted as follows: “the at-
taching area 1 of Graph has to be connected to whatever is attached to the attach-
ing area 1 of Graph′ except for the attaching point 1 of EDGE”. Moreover the no-
tation |Node1| indicates the number of connections to the attaching area 1 of Node.

(1) StateTD → Graph

(2) Graph → NODEI

 ∆: (Graph1 = NODEI1)

(3) Graph → NODEIF

 ∆:(Graph1 = NODEIF1);

(4) Graph → Graph' 〈〈1_1〉,〈1_2〉〉 EDGE 2_1 Node

 ∆: (Graph1 = Graph'1 - EDGE1),

 Γ: { (PLACEHOLD; | Node1|>1;

 PLACEHOLD1 = Node1 - EDGE2)}

(5) Graph → Graph' 〈〈1_1〉,〈1_2〉〉 EDGE

 ∆: (Graph1 = (Graph'1 - EDGE1) - EDGE2);

(6) Graph → Graph' 〈〈1_2〉,〈1_1〉〉 EDGE 1_1 Node

 ∆: (Graph1 = Graph'1 - EDGE2),

 Γ:{ (PLACEHOLD; | Node1|>1;

 PLACEHOLD1 = Node1 - EDGE1)}

(7) Graph → Graph' 〈any〉 PLACEHOLD

 ∆: (Graph1 = PLACEHOLD1);

(8) Node → NODEG

 ∆: (Node1 = NODEG1);

(9) Node → NODEF

 ∆: (Node1 = NODEF1);

(10) Node → PLACEHOLD

 ∆: (Node1 = PLACEHOLD1);

(1’) StateTD → Graph

(2’) Graph→ NODEI

 ∆: (Graph1 = NODEI1)

(3’) Graph→ NODEIF

 ∆:(Graph1 = NODEIF1);

(4’) Graph → Node 1_2 EDGE 〈〈1_1〉,〈2_1〉〉 Graph'

 ∆: (Graph1 = Graph'1 - EDGE1),

 Γ: { (PLACEHOLD; | Node1|>1;

 PLACEHOLD1 = Node1 - EDGE2)}

(5’) Graph→ EDGE 〈〈1_1〉,〈2_1〉〉 Graph'

 ∆: (Graph1 = (Graph'1 - EDGE1) - EDGE2);

(6’) Graph → Node 1_1 EDGE 〈〈2_1〉,〈1_1〉〉 Graph'

 ∆: (Graph1 = Graph'1 - EDGE2),

 Γ:{ (PLACEHOLD; | Node1|>1;

 PLACEHOLD1 = Node1 - EDGE1)}

(7’) Graph → PLACEHOLD 〈any〉 Graph'

 ∆: (Graph1 = PLACEHOLD1);

(8’) Node → NODEG

 ∆: (Node1 = NODEG1);

(9’) Node → NODEF

 ∆: (Node1 = NODEF1);

(10’) Node → PLACEHOLD

 ∆: (Node1 = PLACEHOLD1);

According to these rules, a State Transition Diagram is described by a graph (production 1)
defined as an initial node (production 2) or as an initial-final node (production 3) or, recursively,
as a graph connected to a node through an outgoing (production 4) or incoming (production
6) edge, or as a graph with a loop edge (production 5). A node can be either a generic node
(production 8) or a final node (production 9).
Figure 4 shows a sentence described by both grammars above.

1

3

2

Figure 4: A state transition diagram.

3 Incremental Generalized XpLR Parsing

The idea behind the definition of the XPG formalism is to overcome the inefficiency of the
visual languages syntactic analysis by researching efficient parsing algorithms based on suitable
extensions of the well-known LR technique. As a result, some versions of the formalism have
been defined and new more powerful parsing algorithms have been devised, thus allowing the
specification and the analysis of more complex classes of visual languages. In particular, parsers
based on XPG are based on an extension of LR parsing, named XpLR parsing [7].
A peculiarity of XpLR parsers is its scanning of the input in a non-sequential way (driven by

the relations used in the grammar). However, this increases the occurrence of parsing conflicts.
Indeed, an XpLR parser suffers from the same drawbacks as any other deterministic table-
driven parser: the language grammar must be unambiguous and conform to the limitations of
the particular table-generation algorithm, which, in many cases, is quite restrictive and requires
significant “grammar-hacking”.
In the case of textual languages, the descriptive power of Generalized LR parsing [11, 12]

eliminates the need for most “grammar-hacking” and allows a syntax specification that naturally

corresponds to abstract syntax. GLR parsing handles conflicts successfully by using a graph-
structured stack and by representing the possible parse tree in a compact way (the packed shared
parse forest). Additionally, GLR permits a syntactically ambiguous grammar specification,
which is necessary because the syntax of many languages, included the visual ones, falls outside
the LR(k) class of languages. Moreover, an XpLR parser as defined in [7] does not provide any
feedback while the user composes a sentence. In the case of visual languages this is not desirable
since a visual environment needs to be interactive in order to make the user comfortable with its
use. In order to give immediate feedback to the user, a visual interactive environment requires
then the use of incremental parsing methods. To this aim, the XpLR parser has been made
generalized and incremental.

The Incremental Generalized XpLR parser (IG-XpLR parser, for short) is based on ideas
first introduced in [3]. The components of an IG-XpLR parser are shown in figure 3.1 and are
detailed in the following.

action goto next

G-XpLR Parsing Table

Incremental

G-XpLR parsing

program
(driver program)

Modified

Visual Sentence
Graph Stack

symbol

 Next symbol request

Output

s0
st

sj

sk

si

sv

Parse Forest

S

Figure 5: The architecture of an Incremental Generalized XpLR parser.

The input to the incremental parser is a dictionary storing the attribute-based representation
of the modified visual sentence as produced by the visual editor, a parse forest and a graph stack
built on the original visual sentence. The parser matches the modified visual sentence with the
yield of the parse forest, restructures the parse forest on the base of the modifications, and
updates the graph stack. The match is accomplished by retrieving the objects in the dictionary
through the Fetch Symbol function driven by the relations in the grammar.

The graph stack has more than one stack top (usually visualized by circles). The operations
of Splitting, Combining and Local Ambiguity Packing avoid an exponential growth of the stack
during the parsing process [12]. For a highly ambiguous grammar, many parse trees might be
generated for the input. The packed shared parse forest allows to share common subtrees, and
to pack vertices whose parse subtrees describe the same portion of input and lead to the same
state. A G-XpLR parsing table (see figure 6) is composed by a set of rows and is divided into
three main sections: action, goto, and next. Each row is composed of a set of one or more
sub-rows each corresponding to a parser state. The action and goto sections are similar to the
ones used in the LR parsing tables for string languages [1], while the next section is used by
the parser to select the next symbol to be processed. An entry next[k] for a state sk contains
the pair (Rdriver, x), which drives the parser in selecting the next symbol (derivable from x) by
using the sequence of driver relations Rdriver. The special entries (start, S) and (end, EOI) are
used to retrieve the first symbol to be parsed and to check whether the whole input sentence has

been parsed, respectively. The action and goto entries are named conditioned actions and have
the format “Rtester: state” and “Rtester: shift state”, respectively, where Rtester is a possibly
empty sequence of tester relations. A shift or goto action is executed only if all the relations in
Rtester are true, or if Rtester is empty.
Other than the traditional shift-reduce and reduce-reduce conflicts, a G-XpLR parsing table

presents a positional conflict if there exists an entry of the next section containing more than
one element, and a shift-shift conflict (goto-goto conflict, resp.) if the action section (goto
section, resp.) presents an entry with more than one conditioned action with conditions that
are not mutually exclusive [7]. The IG-XpLR permits these tables to contain conflicts: when a
state transition is multiply defined, the IG-XpLR parser simply forks multiple parsers to follow
each possibility.
As an example, figure 6 shows the G-XpLR(0) parsing table for the grammar of state tran-

sition diagrams given in example 2.2. State 4 presents four possible actions:

(i) sh5 (sh6, resp.) on seeing an outgoing edge (a self-edge, resp.) (corresponding to substate
4.1),

(ii) sh7 on seeing an incoming edge (substate 4.2),

(iii) sh8 on seeing an reintroduced symbol PLACEHOLD (state 4.3),

(iv) r1: reduce by rule (1) “StateTD → Graph”.

Thus, when a state has more than one substate the parser non-deterministically invokes a
function Fetch Symbol on each pair (R, x) of the next section.

St. Action Goto NEXT
 NODEI NODEIF NODEF NODEG EDGE PLACEHOLD EOI StateTD Graph Node

0 :sh2 :sh3 :1 :4 (start, StateTD)
1 acc (end , EOI)
2 r2 r2 r2 r2 r2 r2 r2 -
3 r3 r3 r3 r3 r3 r3 r3 -
 1 1 2_ : sh5

1_2: sh6

 (1_1, EDGE)

4 2 1 1_ : sh7 (1_2, EDGE)

 3 :sh8 (any, PLACEHOLD)
 4 r1 r1 r1 r1 r1 r1 r1 -
5 :sh11 :sh10 :sh12 :9 (2_1, Node)
6 r5 r5 r5 r5 r5 r5 r5 -
7 :sh11 :sh10 :sh12 :13 (1_1, Node)
8 r7 r7 r7 r7 r7 r7 r7 -
9 r4 r4 r4 r4 r4 r4 r4 -

10 r8 r8 r8 r8 r8 r8 r8 -
11 r9 r9 r9 r9 r9 r9 r9 -
12 r10 r10 r10 r10 r10 r10 r10 -
13 r6 r6 r6 r6 r6 r6 r6 -

Figure 6: The G-XpLR(0) parsing table for example 2.2.

The parsing program given in [7] can be easily extended to support the capability of the GLR
parser, following the same approach proposed in [3]. The only difference regards the manage-
ment of reintroduced symbols. As a matter of fact if a parser inserts a new terminal symbol
into the input the other parsers cannot scan it. We say then that the symbol reintroduction is
“local” to that parser.

The techniques used to support the incrementality derive from the Incremental GLR (IGLR)
parser presented in [13]. As the authors state: “It combines subtree reuse in deterministic
regions with GLR methods in areas requiring non-deterministic parsing”. Since the XpLR
parser does not make use of lookaheads our algorithm does not need to track lookhead infor-
mation. Moreover, as another difference, the symbols of the sentence are scanned through the
Fetch Symbol function in order to identify the modifications.

4 A Syntax-directed Editor based on IG-XpLR Parsing

In this section, we illustrate how the parser described in the previous section can be effectively
integrated into a graphical editor to support the syntax-directed editing of visual sentences.
In our approach the parsing algorithm is invoked by the editor as the visual sentence is

modified, and it is immediately possible to tell whether the sentence edited so far is accepted
or not, just by looking at the parser state.
It is worth noting that in the LR parsing of visual languages it is difficult to establish from

which symbol of a sentence the parsing process has to start. In [5] an algorithm has been
presented that makes use of two pGLR parsing tables and can be easily extended to the in-
cremental IG-XpLR parser. The idea is to use two parsers that proceed in parallel, scanning
the input sentence in opposite directions from an arbitrary starting symbol. The algorithm is
based on the concepts of substring parsing as presented in [10]. In particular, the algorithm
creates the G-XpLR parsing tables for the original XPG grammar G and for its reverse version
rev(G). Obviously, this restricts the applicability of the algorithm to reversible XPGs. Figure
7 shows the G-XpLR(0) parsing table for rev(STD), the reverse grammar given in example 2.2.
For each state in G (rev(G), resp.) reachable after the occurrence of the starting symbol the

algorithm starts an incremental IG-XpLR parser, named forward (backward, resp.). The forward
parsers interact with the backward parsers only when a parser tries to reduce a production.
In this case, that parser waits for a rendezvous, i.e., an opposite parser attempting to apply
the reverse version of the same reduction. The forward and backward parser stacks can be
considered as only one graph stack expanding to the right and to the left, and with two types
of nodes: simple stack node and joint stack node. The latter encloses a bipartite graph whose
elements are simple stack nodes from forward and backward parsers. The incremental parser
must control that the rendezvous operation can be applied before reusing a subtree. Moreover,
the reintroduction of the terminals is local to the couple of forward and backward parsers
that execute the rendezvous. Figure 8 shows an example of application of such algorithm to
the state transition diagram described in figure 4. The first column visualizes the different
sentences edited during the composition. The editor uses three colors to support the user in the
composition of the visual sentences. In particular, if the sentence is correct then it is visualized
green, otherwise the symbols recognized by the parser are visualized blue, while the unparsed
symbols are black. In figure 8 such colors correspond to bold, black and gray, respectively.
The second and third column describe the correspondent stack graphs and parse shared

forests, respectively. The shaded regions show the reused subtrees. State 2 is the starting
symbol since we assume that the first symbol inserted into the editor is the starting symbol.
Let us observe that the forward parser immediately enters into a wait state, trying to reduce
with production (4). When the backward parser finds the initial state the forward one wakes

St. Action Goto NEXT

 NODEI NODEIF NODEF NODEG EDGE PLACEHOLD EOI StateTD Graph Node

0 :sh2 :sh3 :sh10 :sh9 :sh5 :sh7 :1 :4 :11 (start, StateTD)

1 acc (end, EOI)

2 r2 r2 r2 r2 r2 r2 r2 -

3 r3 r3 r3 r3 r3 r3 r3 -

4 r1 r1 r1 r1 r1 r1 r1 -

5 2_1: sh2 2_1:sh3 2_1:sh10 2_1:sh9 2_1:sh5 2_1:sh7 2_1:6 2_1:11 (1_1, Graph)

6 r5 r5 r5 r5 r5 r5 r5 -

1 :sh2 :sh3 :sh10 :sh9 :sh5 :sh7 :8 :11 (any, Graph)
7 2 r10 r10 r10 r10 r10 r10 r10 -

8 r7 r7 r7 r7 r7 r7 r7 -

9 r8 r8 r8 r8 r8 r8 r8 -

10 r9 r9 r9 r9 r9 r9 r9 -

1 :sh12 (1_2, EDGE)
11 2 :sh14 (1_1, EDGE)

12 2_1:sh2 2_1:sh3 2_1:sh10 2_1:sh9 2_1:sh5 2_1:sh7 2_1:13 2_1:11 (1_1, Graph)

13 r4 r4 r4 r4 r4 r4 r4 -

14 1 1_ :sh2 1 1_ :sh3 1 1_ :sh10 1 1_ :sh9 1 1_ :sh5 1 1_ :sh7 1 1_ :15 1 1_ :11 (2_1, Graph)

15 r6 r6 r6 r6 r6 r6 r6 -

Figure 7: The G-XpLR(0) parsing table for the reverse grammar of example 2.2.

up, and the backward one enters in a wait state, trying to reduce with production (1’), until the
forward parser completes the recognition of the sentence and tries to reduce with production
(1). However, each tree in a parse forest represents an interpretation of the sentence. By default
the editor visualizes in blue the symbols of the parse tree with more leaves, but the user can
require to visualize another one. In the same way, the user can change the starting symbol.

This approach is being integrated into the Visual Language Compiler-Compiler (VLCC)
system [6], a visual environment generation system based on the XPG model that inherits, and
extends to the visual field, concepts and techniques of compiler generation tools like YACC.
Such tool assists the visual language designer in the specification of the grammar and of the
graphical symbols, and automatically generates a visual environment (see figure 9). The visual
editor and the parser interact through a Control Module that invokes the incremental parser
when the sentence is modified, and analyzes the parse forest constructed by the parser in order
to create the new layout of the sentence.

5 Conclusions

We have presented an LR-based approach for the construction of visual language editors that
combines the positive aspects of free-hand editing and syntax-directed editing. During the
construction of a sentence the editor, which is tailored to a specific visual language, interacts
with the incremental LR-based parser that provides an immediate feedback to the user. This
approach is being integrated into the VLCC [6], a system for the automatic generation of visual
programming environments.

The issue of incorporating both editing mode into one editor has also been analyzed by
Köth and Minas in [8]. They propose the hypergraph grammars for the specification of visual
languages, and graph transformation rules for adding syntax-directed editing to the free-hand
editing mode. In particular, after each editing operation the corresponding transformation
rules modify the internal hypergraph, which is then reparsed (with a non-incremental parser)
to indicate the correctness and to create a valid layout.

In the future we will investigate how to extend the functionality of the editor by offering
additional support to the user in the construction of the sentences. In particular, the editor
can exploit the information in the parsing table to suggest the user how to construct the visual
sentence in an easier and more effective way.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, principles, techniques and tools. Addison-
Wesley, 1985.

[2] R. Bardhol. GenGEd - A Generic Graphical Editor for Visual Languages Based on Al-
gebraic Graph Grammars. In Procs. 1998 IEEE Symposium on Visual Languages, pages
48–55, Halifax, Nova Scotia, September 1998.

[3] S.K. Chang, G. Costagliola, and M. Tomita. Parsing 2D Languages by a Pictorial GLR
Parser. In S. Levialdi T. Catarci, M.F. Costabile, editor, Advanced Visual Interfaces,
volume 36 of World Scientific Series in Computer Science, pages 319–333, May 1992.

[4] S.S. Chok and K. Marriott. Automatic Construction of Intelligent Diagram Editors. In
Proceedings of the ACM Symposium on User Interface Software and Technology UIST98,
pages 185–194, San Francisco, California, 1998.

[5] G. Costagliola. (Pictorial) LR Parsing from an Arbitrary Starting Point. In Procs. of
SIGPARSE/ACL Third International Workshop on Parsing Technologies, pages 49–58,
August 1993.

[6] G. Costagliola, A. De Lucia, S. Orefice, and G. Tortora. A Parsing Methodology for the Im-
plementation of Visual Systems. IEEE Transactions on Software Engineering, 23(12):777–
799, 1997.

[7] G. Costagliola and G. Polese. Extended Positional Grammars. In Proceedings of 16th IEEE
Symposium on Visual Languages, pages 103–110, Seattle, WA, USA, September 2000.

[8] O. Köth and M. Minas. Generating Diagram Editors Providing Free-Hand Editing as
well as Syntax-Directed Editing. In Procs. GRATRA’2000 - Joint APPLIGRAPH and
GETGRATS Workshop on Graph Transformation Systems, pages 32–39, March 2000.

[9] K. Marriott and B. Meyer, editors. Visual Language Theory. Springer-Verlag, 1998.

[10] J. Rekers and W. Koorn. Substring Parsing for Arbitrary Context-Free Grammars. In
Procs. of Second International Workshop on Parsing Technologies, pages 218–224, Febru-
ary 1991.

[11] M. Tomita, editor. Efficient Parsing for Natural Languages. Kluwer, Boston, 1985.

[12] M. Tomita, editor. Generalized LR Parsing. Kluwer, Boston, 1991.

[13] T.A. Wagner and S.L. Graham. Incremental Analysis of Real Programming Languages.
In Proceedings of the 1997 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 31–43, 1997.

1

3

2

Stack graph

B9 F10

NODEG

Parse shared forest

Node

NODEG B14

F9

F13

Visual Sentence

B12

B11

2

2

Node

NODEG EDGE NODEI

Graph

Graph

1 2

3

1 2

1 2

Node

NODEG EDGE NODEI

Graph

Graph

B8

B6

B4

B13

B15

Node

NODEG EDGE NODEI

Graph

Graph

PLACEHOLD

Graph

NODEF

Node

EDGE

Graph

B1 F1

B1 F1

Node

NODEG EDGE NODEI

Graph

Graph

PLAC.

Graph

NODEF

Node

EDGE

Graph

3

StateTD

StateTD

StateTD

PLAC.

Graph

Node

EDGE

Graph

Graph

Graph

Graph

F1 B1

F10

PLAC.
PLAC..

Node

Joint Node Simple Node

Figure 8: Syntax-directed editing of the state transition diagram in figure 4.

Visual

Editor

F/B Incremental

G-XpLR Parser

modified

sentence

new layout

Control

Module

visual sentence
with starting

symbol

new parse

forest

VLCC

graphical

symbols

XPG

Figure 9: The generation of a syntax-directed visual language editor.

