SUPERTAGGING: A NON-STATISTICAL
PARSING-BASED APPROACH

Pierre Boullier
INRIA-Rocquencourt
Domaine de Voluceau

B.P. 105
78153 Le Chesnay Cedex, France

Pierre.Boullier@inria.fr

Abstract
We present a novel approach to supertagging w.r.t. some lexicalized grammar G. It differs
from previous approaches in several ways:

o These supertaggers rely only on structural information: they do not need any training phase;

o These supertaggers do not compute the “best” supertag for each word, but rather a set of
supertags. These sets of supertags do not exclude any supertag that will eventually be used in
a valid complete derivation (i.e., we have a recall score of 100%);

e These supertaggers are in fact true parsers which accept supersets of £(G) that can be more
efficiently parsed than the sentences of £(G).

1 Introduction

In [7], Joshi and Srinivas introduced the idea of supertagging in order to improve the efficiency
of parsers for lexicalized formalisms by selecting, for each word, its appropriate descriptions
given its context in a sentence. In NLP, numerous grammatical formalisms are lexicalized. In
this paper, we will concentrate on supertagging of lexicalized tree-adjoining grammars (LTAGs)
(See [8]). In LTAGs, each elementary tree contains at least one lexical item called an anchor. All
the arguments of this anchor are instantiated at places (nodes) through either a substitution or
an adjunction operation. Thus an elementary tree may be seen as a description of the context,
the domain of locality, of its anchor, including long distance dependencies. Since an elementary
tree (either initial or auxiliary) defines its anchor precisely, it is called a supertag, because it
conveys much more information than the standard part-of-speech tag. As a consequence, in the
LTAG context, the lexical ambiguity of a word (i.e., the number of supertags associated with
it) is generally much greater than its number of standard part-of-speech tags.

Many LTAG parsers work in two phases: for each word in a sentence, the first phase selects
the appropriate supertags, while the second phase combines the selected supertags through
substitutions and adjunctions. The first phase is called supertagging. Supertag disambiguation
is the process by which local lexical ambiguity can be reduced or eventually even resolved,
resulting in a single supertag per word. This selection of the most probable supertag is usually
performed using statistical distributions of supertag co-occurrences extracted from (large) an-
notated corpora of parses. In this context, the result of a supertagger is almost a parse in the
sense that a parser only needs to link together its supertags into a single structure. If such a

single structure cannot be built, we have a partial parser (See, for example, [9]). However, this

approach which assigns a single supertag per word, even if it is extended to produce the n-best
supertags for each word, may well eliminate trees which are parts of valid parses (a detailed
discussion on supertagging can be found in [10]).

In this paper we will depart from the supertagging community on several points:
1. non-statistical;
2. strictness;
3. parsing-based.

The first point means that, in our approach, supertag disambiguation will not be done in
a statistical setting, thus avoiding the need for training on annotated corpora, which are very
costly to develop.

The second point means that we adopt a strict supertag disambiguation approach. A strict
supertagger cannot eliminate supertags that could be parts of some complete parse.

In contrast to Srinivas and Joshi who estimate in [10] that only “local technigues can be used
to disambiguate supertags” and that “full parsing is contrary to the spirit of supertagging’, in
point three, we advocate that a supertagger can indeed be a parser. A potential advantage
of this approach is that our supertaggers may use global information to take their decisions
while only local (statistical) information (n-gram model) is used in traditional supertaggers.
However, this parser must be “sufficiently” efficient. This means, of course, that it cannot be
based upon the original LTAG. We thus assume that a supertagger relies upon a grammar which
is not the original LTAG. For evident reasons of reliability and development costs, we require
that the grammars upon which our supertaggers are based must be automatically deduced from
the original LTAG. In other words, our purpose is to reduce supertag ambiguity by using only
structural information which can be automatically extracted from any given LTAG.

This paper is divided into three main parts. In Sections 2 and 3, we study how it is possi-
ble to define a context-free (CF) superset and a regular superset for any given tree-adjoining
language (TAL). In Sections 4 and 5, we study how general recognizers for these supersets can
be transformed into supertaggers for the original LTAG. Finally, in Section 7 we report on the
experiments that have been performed with a wide-coverage English LTAG, on a large test set.

2 From TAG to CFG

The purpose of this section is to show how any TAG G that defines the TAL £(G) can be
transformed into a CF grammar (CFG) G¢ whose language £(Gef) is a superset of L£(G).
The process shown here is a direct transformation from TAG to CFG and is reminiscent of
Boullier’s work which proposes such a transformation, using the intermediate formalism of
range concatenation grammars (RCG).2

1The dependency model of Srinivas and Joshi in [10] does not put any limitation on the size of the window.
However, they stopped their experiments because “[they] are restrained by the lack of a large corpus of LTAG
parsed derivation siructures that is needed to reliably estimate the various parameters of this model’.

2Following [3] G, is first transformed into an equivalent simple positive RCG (PRCG). Then, following [1],

this simple PRCG is transformed into a simple 1-PRCG which defines a CF superset. This simple 1-PRCG is
in turn transformed into an equivalent CFG (See [2]).

We assume here that the reader is familiar with the TAG formalism (See [6] for an introduc-
tion). Let G = (Vw,Vr,Z,A,S) be a TAG,? we will see how each initial tree of Z and each
auxiliary tree of A can be transformed into CF productions to form a CFG G = (N, T, P, S)
such that £(G) C L(Ger)-

G and Gf have the same set of terminal symbols (i.e., Vi = T') and the same start symbol S.
The set N of nonterminal symbols of G is defined by N = VEU{A4; | i € {L, R} and 4 € Vi'}.
That is, nonterminal symbols which label substitution nodes and the roots of initial trees, are
kept unchanged, while the nonterminal symbols, say A, which label adjunction nodes, roots
and feet of auxiliary trees, produce two CF nonterminal symbols Ay and Ag. The intended
meaning of Ay, is to capture the set of strings generated by the parts of the auxiliary A-trees
which lie to the left of their spines, while Ag will capture the set of strings generated by the
parts of the auxiliary A-trees which lie to the right of their spines.

As in [3], for each elementary tree 7, its decoration string o, is an element of (N U T)*
defined as follows. We perform on 7 a top-down left-to-right traversal that collects the labels
of the traversed nodes in o. The traversals (both top-down and bottom-up) of root nodes in
initial trees leave no trace in o,. For an auxiliary A-tree 7, the top-down traversal of its root
node initializes o, with A;. Upon completion of this traversal, the bottom-up visit of the root
node of 7 will eventually complete o, with Ar. Except for foot nodes, inside nodes and leaf
nodes of initial and auxiliary trees are equally processed. The traversal of a leaf node labeled
[results in appending ! to o, (if [= ¢, o, is left unchanged). The top-down traversal of an
inside (adjunction) node labeled A results in appending Ay, to o, while its bottom-up traversal
results in appending Ag to o,. The (left-to-right) traversal of a foot node labeled A results in
appending Ar AR to o,. If 7 is an auxiliary A-tree, let o~ be the prefix of o, collected before
the traversal of its foot node (including Ay) and let af be the suffix of o, collected after the
traversal of its foot node (starting with Ag).*

If 7 is an initial A-tree and if o, = X; ... X, is its decoration string, we associate to 7 the
single CF production

A g X]_...Xp

If 7 is an auxiliary A-tree and if o, = oLo® is its decoration string, we associate to 7 the

pair of CF productions

AL — Xl...Xp
AR g Y'qu

if we have £ = X;...X, and ¢® = Y7...Y,. Moreover, by construction (and without any
adjunction constraints), we have p > 2, X; = X, = Ay and ¢ > 2,Y; =Y, = Ag®

Note that the same CF production can be produced by different auxiliary trees.

3An A-tree is an elementary tree whose root node is labeled by the nonterminal symbol A € Vyy. We assume
that the nonterminal symbols Vg which label the roots of the initial trees are disjoint from the nonterminal
symbols VJ\",‘ which label the roots of the auxiliary trees, we have V]% n Vf\;‘ =0 and VZ{," U V1<r4 = Vn, that the
start symbol S is an element of VJ% , that each internal node of ZU A is labeled by an element of VJ-(,“, while each
leaf of T U A is labeled by an element of VZ UV U {e}, except that each foot node bears the same label as its
root node.

4If a node has a null adjunction constraint, its top-down and bottom-up traversals (or left-to-right traversal
for a foot node) leave the decoration string unchanged.

5These productions are both left and right recursive and thus, G is ambiguous.

)

Q
Q

By, B R

)

a _DL D
a
WL Ar R
E
Or = ALBLaBRCLDLEAL ARDRFCRCAR

AL — ALBLG,BRCLDLEAL
AR — ARDRFCRCAR

Figure 1: Translation of an auxiliary A-tree 7 into a pair of CF productions

It is not hard to see that, as such, the nonterminal symbols of the form Ay and Agr cannot
generate any terminal string. This can be amended by adding to P, for each A € Vj(fl, the pair

of e-productions

AL—>6

AR—>6

which will terminate any sequence of adjunction operations.

To illustrate this process, in Figure 1, we have the translation of an auxiliary A-tree 7 into a

pair of CF productions.

It is not difficult to see that if w € L(G), we have w € L(G¢r). More precisely, if we consider
the decoration string o associated with any derived tree that can be composed, starting from

an initial S-tree, this string can be derived from S w.r.t. Ges (ie., S §+> 0).5 Moreover, if this
cf

derived tree is complete (no more substitution can take place) and if its terminal yield is w

(that is w € L(G)), we have o G% w.
cf

If G is an LTAG, it does not mean that its associated CFG G is also lexicalized: the
productions generated by initial trees are lexicalized, at least one production in the pair of
productions generated by auxiliary trees is lexicalized, while the e-productions are surely not

lexicalized.

6 After substitution at some leaf node, the root node of an initial tree becomes an inside node of the derived
tree, we assume that the traversal of such an inside node leaves no trace in o.

3 From TAG to FA

In this section, we examine how a TAG G can be transformed into a regular grammar (or
equivalently into a finite-state automaton (FA)) that defines a (regular) superset of £(G). In
the previous Section, we saw how to build a grammar G.r that defines a CF superset of £(G).
Therefore, we now only have to see how to define a regular superset of a CFL.

Finding a regular superset of a CFL is an old problem which has many theoretical solutions.
However, as soon as “practical” constraints are added, such as “large” CFG and a not too
“distant” superset, the solutions become much fewer. We will use the solution of [4] where
it is shown how to transform a CFG into a deterministic FA called a set automaton (SA). A
state of an SA is a pair [I,J], in which I is a set of items (dotted productions of the form
A — «a.f3) called the control set and J is a set of items called the active set. For a given string
W =aj...an, a configuration of (the interpreter of) an SA A = (Q,T, 6, qo, F) is an element of
@ x T*. The initial configuration ¢y is ¢ = (go,w). A binary relation between configurations
noted t‘ is defined by (g, tx) t‘ (¢',x), iff 6(q,t) = ¢'. The string w is recognized by A iff we

have ¢ l;tcl ... ;cn, with ¢, = (gn,€) and g, is a final state in F.
Note that this SA, which could be extremely large, is not (pre-)constructed, but only the
subpart selected by a given input w = a; ...a, is constructed at run-time: that is the n + 1

states qo,q1, - - -, ¢n needed in configurations ¢g, ¢y, ..., Cn.

4 Regular-Based Supertagging

However, the previous FA technology itself cannot be used as such, since only recognizing an
input is not the purpose of a supertagger. Thus, we must see whether an SA can be transformed
into a finite-state transducer (FT) whose outputs are supertags. Fortunately, SAs have the
following property: for each configuration ¢; = ([L;, Ji], @it1 - - - an), 1 < i < n, we are sure that
in configuration ¢;_1, the active set J;_; contains items of the form A — a.a;8. In other words,
we can say that if a transition on some terminal ¢ occurs between two configurations ¢;—; and
¢;, we have a; = t and, moreover, for each item of the form A — «at.8 in the active set of ¢;, the
CF production A — atf is anchored on a;. That is, the production A — atf is a “supertag”
w.r.t. G for the itP word of w.

Therefore, to summarize, if G is an LTAG, G, is its associated CFG as defined in Section 2
and if A is the SA associated with G.f as defined in Section 3, the FT based on A which for
each input word a; outputs a set of CF productions is a “supertagger” for G¢. In order to
get a supertagger for the original LTAG G, we only have to exploit the reverse mapping which
records for each production r of G, the set of elementary trees 7 of G from which r has been
generated. If 7 is an initial tree, there is a one-to-one mapping between 7 and its associated
(lexicalized) production, say r. Thus, if r is a CF supertag for some word a;, we conclude that
7 is a (TAG) supertag for a;. If 7 is an auxiliary tree, it generates two productions, say 7y,
and rg. The auxiliary tree 7 can be part of some complete parse for G only if both r; and
rg are themselves part of some complete parse for Ger (for the same input w). With auxiliary
trees, two cases may arise. First, if both r; and rg are lexicalized productions and if ry is a
CF supertag for some a; and if rg is a CF supertag for some a;, we may conclude that 7 is
a supertag for both a; and a;. Second, if only one of 71, and rg is a lexicalized production,

say rr, and if rp is a CF supertag for some a;, we may conclude that 7 is a supertag for a;.
However, it is possible to take into account the fact that the (non-lexicalized) production rg
must have been “recognized” in the FT to validate 7 as a supertag for a;. Therefore, the FT
is extended as follows. It also looks for complete items A — a. of non-lexicalized productions
A — a, a € N*, and it records all these productions in a set R. Now, we say that 7 is a (TAG)
supertag for a; only if 1, is a CF supertag for a; and if rg is in R. The (TAG) supertagger
designed in such a way is called Ssa in the experiment section 7.

We may use the mirror SA A to increase the precision of this FT (See [4]). A mirror SA is
an SA which uses the mirror grammar Ger which defines the mirror language of L(G¢) (ie.,
{an...a1|a1...an € L(Ger)}). Of course, an interpreter of a mirror SA scans its input w from
right to left. Therefore, such an FT proceeds in two passes, the first pass interprets w from left
to right with A, while the second pass interprets w from right to left with A A production r of
Gt is a CF supertag for some word a;, iff it is a CF supertag for a; w.r.t. both A and A. This
supertagger, based on set automata, which scans its input from left to right and from right to
left is called Sprsa in the experiment section 7.

5 CF-Based Supertagging

In the previous section, in order to get a regular superset of the initial TAL, we built an
intermediate CFG G which defines a CF superset of this TAL. In this section we will see
whether a general CF parser based on G.¢ can be changed into a supertagger. Of course, doing
that, on the one hand, we could expect a greater precision than the regular-based approach,
but, on the other hand, we renounce the linear time behaviour for, at worst, a cubic time.
However, since supertaggers typically handle short inputs (say sentences of a few dozen words),
it could happen that the cubic run-time remains tractable. Since it exhibits good performances,
we decided to use the guided Earley recognizer of [4] as a push-down transducer (PDT). As for
the previous FTs, these PDTs will output for each input word position i a set of CF productions
in G which have to be mapped back onto the original LTAG G, as in the FT case, in order
to get our CF-parsing based supertaggers. Note that we have decided to use both the SA A of
Gor and its mirror SA A as a guide for the Earley recognizer. This means that we are sure that
our CF-based supertaggers will at least exhibit the precision of Sprsa.

If we consider the recognizer part of an Earley strategy, or more precisely its Scanner phase,
we know that if an Earley item of the form [A — «.tf,14] is in some table T;_; and if the input
W =@y ...a, is such that a; = t, then the Earley item [A — «at.3,4] is put in the next table T}.
In other words, this means that the production A — «atf is a candidate CF supertag for the
word a;. However, in doing that, we are not sure that the complete item [A — atf.,4] will be
eventually an element of some table Ty, k > j. That is, no prefix of aj41 ... a, is an element of
the set of strings derived from 3 in G¢. Of course, such a premature supertag detection may
spoil the precision. Thus we decide to postpone any association between an anchor a; = ¢ and
a supertag such as A — atf until the complete recognition of its RHS atf.

This supertagger, which is (almost) only an Earley recognizer, is called Sgrc in the experi-
ment described in Section 7.

We can also remark that, even if the recognition of some lexicalized production A — atf
has been completed in a table T}, (i.e., 3[4 — atB.,i] € Tk, i < k), this does not mean that

the corresponding sub-tree, say 7, (i.e., the subtree rooted at A whose daughter nodes are atf
and which spans between the indices 4 and k of the input) will necessarily be a part of some
complete parse tree. Thus, we have built a second version of the CF supertagger, called Sgep,
in which we postpone the association between an anchor a; =t and a supertag A — atf until

we are sure that a sub-tree such as 7 is a part of a complete parse tree.

6 Precision of a Supertagger

If G is an LTAG, we note G its associated TAG parser. We assume that, by definition, the
output of a supertagger S on a string w = a; -..a, is a sequence of n sets. Each set, noted
Si 1 < i < nis the set of supertags anchored on a;. Analogously, for G and a sentence
w = aj ...a,, we note G¢, the set of supertags anchored on the word a; in the complete parse
forest for w. Of course, no supertagger could do a more accurate job than a TAG parser and
the sets G, are taken as gold standard. By definition, the precision score (precision for short)

of § on the word a; of some w is the quotient ;gﬂ, the precision of § on a sentence w is the
. i 1951 .. .
quotient %7 For a non-empty test set 7, the average precision score for T is the
1<i<n ICw

i
ngfr Z15i5|w| 19|

number —,
Ewe'f El§i5|w| IS5
Moreover, as a consequence of the strictness of our approach, the recall score of all our

supertaggers is 100%: no supertag which is a part of a complete parse (w.r.t. G) is left out.

7 Test Material and Experiment Results

The measures presented in this section have been gathered on a 1.2GHz AMD Athlon PC
running Linux. All processors are written in C and have been compiled with gcc without any

optimization flag.

[INI[T 1P| | |G| | max RHS #nt |
[33 [476 [1131 [17129 | 26 |

Table 1: G = (N, T, P, S) facts

Our experiment is based upon a wide-coverage English grammar designed for the XTAG
system [11]. This grammar consists of 1132 tree templates that can be anchored on 476 anchors.
As explained in Section 2, the XTAG grammar is first transformed into a CFG G¢. In order
to give an idea of the complexity of this grammar, the penultimate column of Table 1 gives
the size of Ger (|Get| = 20 4, acp |Acl), while the last column gives the number of nonterminal
symbols that occur in the RHS of the longest production.

For our test set,® we have used sentences extracted from the Wall-Street Journal. We used
42253 sentences for a total length of 1M words. An input word (inflected form) selects one
or, more often, several terminal symbols (anchors). In this test set, a word selects about 11
anchors on average. The association between a word and its anchors is performed by means of

a dictionary search. If an input word is not in the dictionary, we assign a default value to this

"Note that multi-anchored supertags are counted several times in G, and S,.
8We use exactly the same test set as [4].

H Lexer ‘ Ssa ‘ SLRsA ‘ SRrEC ‘ SRED ‘ g ‘
#supertags 65.89 27.30 20.92 20.66 19.10 | 18.41

Precision 27.94% | 67.43% | 87.99% | 89.10% | 96.39% | 100%
Recall 100% 100% 100% 100% 100% | 100%

Table 2: Average number of supertags, average precision and average recall per word

unknown word: we assume that any unknown word is a noun and it thus selects the anchors
associated with a noun. Of 1M words, 68 407 are unknown. Each anchor, in turn, selects several
supertags (tree templates in G). On average, a word selects about 66 supertags. This initial
selection process is performed by a lexer. Of course, a lexer may itself be seen as a supertagger,
its performances are reported in Table 2 in the first column..

However, of these 42253 sentences, 964 are extragrammatical w.r.t. G, and 715 others are
extragrammatical w.r.t. G, thus, 1679 input strings were left out of the actual test set leaving
40574 sentences for a total of 925605 words. In this test set, the lengths of individual sentences
show great variations: with an average length of almost 23 words per sentence, there are single
word sentences while the longest ones contain 97 words. The distribution of our test set is

shown in Figure 2.

1600 i I i i i i i i i
1400 ~
1200 -
1000 -
800
600 -
400 -
200 A

Average length = 22.8 words T

#sentences

é obe-
0 T T T T T I T o I

0 10 20 30 40 50 60 70 8 90 100
Input length

Figure 2: Distribution of the number of sentences by their lengths

The performances of our supertaggers are displayed in Table 2 while their precisions and
run-times as a function of the input length are plotted in Figures 3 and 4 respectively.

In Figure 3, we note that the precision of each of our supertaggers seems to be largely
independent of the sentence length, at least beyond a length of say 20 words. The high precision
of Sgep can be interpreted as follows: on the one hand, the English XTAG definition is close
to being context-free and, on the other hand, our TAG to CFG transformation, together with
its PDT interpretation are accurate enough to allow this closeness to be shown. Lastly, we can
remark that the savings of Sgpc w.r.t. Sprsa are rather limited.

In Figure 4, as expected, we note that both Sgp and Sprsa seems to exhibit a linear run-
time behaviour, while Sgrc and Sgep show a super-linear behaviour (which should be cubic

9Note that some of these input strings are considered to be “extragrammatical” only because they exhausted
the memory resource available for that test. As an example, this happened for a 158 word sentence!

100

90

80

Precision (%)
o o -
S S S

I
[en]

: Ssa (glbl avrg precision = 67.43%) +

W
o
1
T
o

o : Sprsa (glbl avrg precision = 87.99%)
20 + : Srec (glbl avrg precision = 89.10%) T
~ 1 Sgep (glbl avrg precision = 96.38%)

0 I I I I I I I I I

0 10 20 30 40 50 60 70 8 90 100
Input length

Figure 3: Supertaggers average precision score

at worst).
If we have to choose among these supertaggers, undoubtedly two candidates will emerge,
Sirsa for its good trade-off between speed and precision and Sggp for its high precision (if

speed is not at a premium).

8 Conclusion

It is difficult to compare our results with previously published measures both in terms of run-
times and in terms of performance.

The practical run-times of other supertaggers are almost never addressed, though we may
assume that, at least theoretically, they run in linear time. In this paper, we have presented
two classes of supertaggers. In the first class, the two supertaggers Ssa and Sprsa run in linear
time with average run-times of, respectively, 12ms and 18ms per sentence on our test set. In
the second class, the two supertaggers Sggc and Sgep run in cubic time at worst. However,
on typical small sentences that one usually handled in NLP, their run-times stay practicable:
on average, Sgec and Sgep run respectively in 47ms and 73ms per sentence on our test set.

As concerns performance, the comparison of usual supertaggers with our work is also difficult
since their goals are different. Classical supertaggers try to assign the best supertag to each

word,'® whereas we have designed a method in which each word selects a set of supertags which

100r a small set of supertags as in [5].

1750 i i i i i i i i i

1500 + s : Sgep (avrg run-time = 73ms) 4
B + S avrg run-time = 47ms
2 1250 + reC (avrg) T
= o : Sprsa (avrg run-time = 18ms)
£ 1000 T +
g e : Ssa (avrg run-time = 12ms)
&
& 750 + 1
<]
>
<t

500 T 1

250 + 1

AAA‘AA«A;A' 4 J By
0 less VAL LS uu(EEe880e880088888000s Y ! ! ! |

0 10 20 30 40 50 60 70 8 90 100
Input length

Figure 4: Supertaggers average run-times

does not exclude any supertag that will eventually be used in a valid complete derivation (i.e.,
we have designed a method whose recall score is 100%). In order to perform our precision
score measures on a real-size application (both on a large scale grammar and on numerous
unrestricted length sentences), we must have at our disposal a complete TAG parser to play
the role of “gold supertagger”. It seems that the only published measures which use the results
of a TAG parser put considerable limits on the length of their input sentences.!’ These limits
are due to the fact that the available TAG parsers, when working with a large grammar, are
unable to process long sentences. To our knowledge, the only TAG parser which is capable of
handling (almost) unrestricted length sentences has been described in [1]. It has been slightly
modified and transformed into a gold supertagger which allows us to supertag 1M words of
the WSJ (more than 42000 WSJ sentences, up to a length of almost 100 words). As already
remarked,'? the usage of TAG derivations to perform some evaluations is more severe than the
usage of annotated corpora. Nevertheless, we have reached very good precision scores: 88% for
the linear time supertagger Sprsa and more than 96% for Sgep, a cubic time supertagger.

Moreover, in this conclusion, we want to stress that our supertagging methods are automat-
ically deduced from the (TAG) grammar and do not need any training data. Our purpose was
to build correctness-preserving supertaggers by using only structural information. We can note
that such a correctness cannot be reached with statistical supertaggers, even if they select the
top n supertags, for any value of n. In contrast to other approaches, our supertaggers may
W,thereported experiment uses the English XTAG parser on 1350 WSJ sentences, the lengths of which
are less than 16.

12From [9], we quote that “...evaluation against LTAG derivation trees is much more strict and hence more
significant than the crossing bracket precision and recall figures measured against skeletally bracketed corpora’.

be safely used as neutral (no useful information is lost) filters for other processors. These pro-

cessors may well be classical statistical supertaggers or TAG parsers. Incidently, the complete

TAG parser that we used as a gold supertagger in our experiments uses Srgp as a filter.!3

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

Francois Barthélemy, Pierre Boullier, Philippe Deschamp, and Eric dela Clergerie. Guided
parsing of range concatenation languages. In Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics (ACL’01), pages 42—49, University of Toulouse,
France, July 2001.

Pierre Boullier. A cubic time extension of context-free grammars. Grammars, 3(2/3):111-
131, 2000.

Pierre Boullier. On TAG parsing. Traitement Automatique des Langues (T.A.L.),
41(3):759-793, 2000. Issued June 2001.

Pierre Boullier. Guided Earley parsing. In Proceedings of the 8th International Workshop
on Parsing Technologies (IWPT 2003), Nancy, France, April 2003.

John Chen, Srinivas Bangalore, and K. Vijay-Shanker. New models for improving supertag
disambiguation. In Proceedings of the 9th Conference of the European Chapter of the
Association for Computational Linguistics (EACL’99), pages 188-195, Bergen, Norway,
June 1999.

Aravind K. Joshi. An introduction to tree adjoining grammars. In A. Manaster-Ramer,

editor, Mathematics of Language, pages 87-114. John Benjamins, Amsterdam, 1987.

Aravind K. Joshi and Bangalore Srinivas. Disambiguation of super parts of speech (or
supertags): Almost parsing. In Proceedings of the 17th International Conference on Com-
putational Linguistics (COLING’94), Kyoto, Japan, 1994.

Yves Schabes, Anne Abeillé, and Aravind K. Joshi. Parsing strategies with ’lexicalized’
grammars: Application to tree adjoining grammars. In Proceedings of the 12th Interna-
tional Conference on Computational Linguistics (COLING’88), Budapest, Hungary, 1988.

Bangalore Srinivas. Advances in Probabilistic and Other Parsing Technologies, volume 16
of Text, Speech and Language Technology, chapter Performance Evaluation of Supertagging
for Partial Parsing, pages 203-220. Kluwer Academic Publishers, H. Bunt and A. Nijholt
edition, 2000.

Bangalore Srinivas and Aravind K. Joshi. Supertagging: An approach to almost parsing.
Computational Linguistics, 25(2):237-265, 1999.

The research group XTAG. A lexicalized tree adjoining grammar for English. Technical
Report IRCS 95-03, Institute for Research in Cognitive Science, University of Pennsylvania,
Philadelphia, PA, USA, March 1995.

131n fact SREp is used as the guiding phase of our (guided) TAG parser (See [1] and [4] for a notion of guided
parsing). In a further paper, we plan to relate the benefits of such a preprocessing for a full TAG parser.

