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Abstract
The paper describes an incremental parsing algorithm for natural languages that uses nor-
malized interfaces of modules of proof-nets. This algorithm produces at each step the different
possible partial syntactical analyses of the first words of a sentence. Thus, it can analyze texts on
the fly leaving partially analyzed sentences.

1 Introduction

Categorial grammars and Lambek calculus are based on the idea that sentences are produced
from words using lexical rules. In fact, Lambek associates to each word a set of types in Lambek
calculus [7]. A correct sentence is a list of words such that the parser can build a proof in this
logical system of a list of types that must be associated in the lexicon to the list of words. Usually,
a parser for Lambek calculus tries to delimit a sentence in input stream. Then it selects, for each
word, one of its types that are found in the lexicon. For each list of formulas, it starts a theorem
prover. If a proof is found, the sentence is accepted and the proof is given as result. Otherwise,
the parser tries the next possible list of types. If none are left, the words do not form a correct
sentence.

In the paper, we want to define a parsing algorithm that processes incrementally “on the fly”
on the input stream. In fact, we need to characterize any left part of a syntactical analysis.
Thus, we use (non-commutative intuitionistic) linear logic proof-nets [4] which are an alternative
presentation of Lambek calculus because we need to consider (left) parts of a proof that are named
modules in proof-net theory [4, 3] (see [8] for their use in computational linguistics). In order to
compare different modules, we characterize them using normalized interfaces. With interfaces,
parsing becomes a simple game of composition of interfaces and combinators that can be presented
independently of Lambek calculus or linear logic.

In fact, the parser does not need intuitionism: It is also adapted to a classical “word”. The
difference between a classical and an intuitionistic system only comes from the form of the lexicon
that associates some modules to each word of the alphabet. Moreover, it is very suitable when
types are complex. For instance, a grammar that describes only tree like structures does not need
a module presentation. A simple stack machine would be enough and one would rather prefer to
use a CFG or a lexicalized version like HPSG [14]. Systems like LTAG [6] or PPTS [5] are very
close to an intuitionistic logical system. More powerful than Lambek calculus with adjunction
operation and stretching they usually do not use complex types (functional types of order' greater
than 2) and the global parse structure is a tree.

Thus, we think that our system is very useful for situation when either the lexicon is not
intuitionistic or when it uses types with an order greater than 2. A higher order and classical
system is certainly the best word for linear logic modules. For example, a classical system can
be used in place of a traditional intuitionistic one to normalize syntactical analyses. In French,
adjectives like “petit” (small) must be placed before the noun but some others like “noir” (black)

1For Lambek calculus, the order of a formula can be computed by: o(A) = 0 if A is atomic, o(A/B) =
o(B\ A) = maz(o(A), o(B) + 1).



for instance must appear after the noun. Now, a noun phrase like “le petit chat noir” (the small
black cat) has two analyses: “(le (petit (chat noir)))” or “(le ((petit chat) noir)”. Using trees
or proof-nets, the two analyses are fundamentally different and lead to two semantically different
structures. This is certainly a spurious ambiguity that comes from the fact that a noun has only
one conclusion that is used first on the left then on the right or vice-versa. But, with a classical
word, a noun can possess two conclusions (a left and a right one): a noun has type Nl+ ® N,
An adjective is either Nz+ ®N; or N, ® N;F2. With this coding, there is only one analysis of “le
petit chat noir” and the syntactical and semantical spurious ambiguity disappears. But, because
types become more complex, their order is higher and we really need a parser that can handle
graph structures rather than trees: this is a situation where logic is classical, types are complex
and parsing structures are graphs (with loops).

The parsing algorithm that we introduce here looks like a stack automata with the traditional
shift and reduce operations. However, because the underlying structures behind the stack are
modules (in fact interfaces of modules that are essentially graphs), the choice between a reduction
or a shift is difficult. The paper proves that this test can be done by a graph rewriting system
that normalizes interfaces in a polytime. The parser gets as input a non modified lexicon and
the algorithm does not need to compile the grammar that it uses which is certainly an advantage
for a dynamic system (for instance a system associated to a learning mechanism that transforms
dynamically its grammar).

The paper presents first Lambek calculus, non-commutative intuitionistic multiplicative lin-
ear logic modules and proof-nets. The next sections define interfaces and their normalization.
Section 6 presents the interface calculus and the parsing algorithm.

2 Lambek Calculus

The reader not familiar with Lambek Calculus may find nice presentations in various articles even
the first one written by Lambek[7] or more recently in [9, 11, 1, 10]. The types, or formulas,
of Lambek calculus are generated from a set of atomic formulas by three binary connectives “/”
(over), “\” (under) and “e” (product). As a logical system, we use a Gentzen-style sequent
presentation on Figure 1. A sequent I' - A is composed of a sequence of formulas I" which is the
antecedent configuration and a succedent formula A.
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Figure 1: Gentzen-style presentation of Lambek calculus

3 Lambek proof-nets

Lambek Calculus With Empty Sequence using proof-nets may be defined as the intuitionistic
non-commutative multiplicative fragment of linear logic®. A formula is a couple constituted of a
term and a polarity. Polarities are either input noted — or output noted +. Terms are inductively
constructed from atomic terms X, X € V where V is a set of propositional variables and from
the binary connectives o, \ and /. Formulas are noted by capital letters AT, B™. Sequents are
circular lists of formulas. Intuitionistic sequents are circular lists of formulas where one and only
one formula is output. They are written A;,---, A, F A where A" is the output formula and
A7 ,---,A; are the other input formulas: The circular list is cut between AT and A7. Capital
Greek symbols A, T" denote lists of formulas.

24+ is an output and — an input.

3The results presented here are adapted to Lambek Calculus Without Empty Sequence by adding parenthesis
to frontiers and a complementary condition to correctness criterion. For interface calculus as it is presented in
Section 6, this system corresponds to a restriction on the lexicon and not on the parser.



Definition 1 [Link, Module, Frontier, Proof-structure]

e A link is one of the 8 drawings listed in Figure 2. Formula occurrences above the link are the
premises and formulas under the link are the conclusions.

A~ B~ BT AT

L] ]
o ® A~ At
\/ \/ + 7
Cut
(AeB)~ (AeB)t

A+ B_ BJr A‘

VYV

Figure 2: Links

o A module is a planar drawing such that a formula occurrence is premise of at most one link and
conclusion of at most one link. The formula occurrences that are not conclusion of a link and
the formula occurrences that are not premise of a link must be on the border of the drawing.

e The frontier of a module is composed of the list (from left to right on a drawing of a module) of
formula occurrences that are not conclusion of a link (they are the conclusions of the module)
and the list (from right to left on a drawing of a module) of formula occurrences that are not
premise of a link (they are the premises of the module).

o A proof-structure is a module that has no premise.

e An intuitionistic proof-structure is a proof-structure such that the conclusions form an intu-
itionistic sequent (there is exactly one output formula).

Figure 3 shows a module composed of five ®-links, one *9-link and two axiom links. Six formula
occurrences are premise and conclusion of some links, four are only conclusion, six are only premise
and one NP~ is neither premise nor conclusion. Thus, the conclusions of the module are, from
left to right, NP~, (NP\ S)/VP~, (S/VP)\ (S/VP)~, NP~ and (NP \ VP)~. The premises
are, from right to left, VP, NPT, NP~, VP S, St and S~. The formula occurrence NP~
that is not connected to a link appeared both as a conclusion and as a premise of the module.

Definition 2 [Proof-net] A proof-net s an intuitionistic proof-structure that corresponds to a
sequential proof in Lambek calculus.

Remark: In fact, not every intuitionistic proof-structure is a proof-net. But, there exist criteria
that tell us if a proof-structure is or is not a proof-net. In this article, we use the Danos-Regnier
criterion [3].

Definition 3 [Proof-structure/module switching] A switching of a proof-structure (or a
module) is a selection for every -link between left or right position. This switching induces
a planar graph by replacing each link by the edges shown on Figure 4 (right and left positions are
completely independent of the kind of '9-link (input, left output or right output 2-links)).

Definition 4 [Correct proof-structure] A proof-structure is correct (it verifies the correctness
criterion) if and only if for every switching, the graph is acyclic and connected.

Theorem 5 Correct intuitionistic proof-structures without cut are proof-nets (they correspond to
a sequential proof).
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Figure 3: A module (part of the proof-net of Figure 5)
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Figure 4: Switching links

This is the usual sequentialization theorem of proof-nets. In [4, 2, 15], the theorem is given
in the case of classical linear logic. Here, we must take into account the fact that the proofs are
intuitionistic and non-commutative [16].

Figure 5 shows a proof-net corresponding to the sentence “Peter saw briefly Mary dancing”.
The category of each word is supposed to be given by a lexicon (several formulas are allowed for
a word).

4 Module Interfaces

We can split a proof-structure in two modules by splitting the circular list of conclusions in two.
Axiom links that connect the two parts are cut: the link is left in the right module, thus this module
has new conclusions (one for each cut axiom link), the left module has new premises (one for each
cut axiom link). Figure 6 shows the splitting of the proof-net of Figure 5 corresponding to “Peter
saw” and “briefly Mary dancing I S”. In this example, we split the conclusions between succedent
S and the first formula NP (remember that the list is circular) and between the second formula
(NP\S)/V P and the third formula (S/V P)\ (S/V P). The left module has two conclusions NP~
and (NP \ S)/VP~ and two premises VPt and S~. The right module is a proof-structure (but
neither a proof-net nor an intuitionistic proof-structure) because it does not have a premise. Its
conclusions are S—, VP, (S/VP)\ (S/VP)", NP, NP\VP and ST.
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Figure 5: A proof-net corresponding to “Peter saw briefly Mary dancing”
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Figure 6: A splitting of a proof-net in two modules

Definition 6 [Orthogonal modules] A module M with conclusions Ai,..., A, and premises
By,..., B, is orthogonal to a proof-structure N with conclusions Bi,...,By,C1,...,Cn, (nota-
tion M L N) if and only if the proof-structure obtained by linking the n premises of M to the n
first conclusions of N is a proof-net.

For instance, because the left module and the right proof-structure of Figure 6 are defined by
splitting the proof-net of Figure 5, they are orthogonal.

Definition 7 [Equivalent modules] Two modules M1 and M> with the same premises are equiv-
alent (notation M1 = M) if and only if for every proof structure N, M1 L N <= M, L N

For instance, the modules which are shown on Figure 7 corresponding to the two first words
and the three first words of “Peter saw briefly Mary dancing” on Figure 5 are equivalent. From
a linguistic point of view, two equivalent modules correspond to two left parts of sentences that
are syntactically equivalent. This equivalence is particularly interesting because it does not need
to follow the constituent boundary as the previous example shows.

However, this equivalence is not easy to check directly on modules. In the context of commu-
tative linear logic, [2] computes the set of partitions of the premises of each module induced by
the switching positions of the *@-links of the modules. If a module has k *@-links, this is done in
2% steps even if the number of premises is bound. Thus, we need a characterization of modules
that enables us to test this equivalence in polynomial time. For that, we introduce interfaces of
modules and a normalizing (in polynomial time) and confluent rewriting system for each class of
equivalent modules.

Definition 8 [Interface] An interface is a triple (B, N, m) where:

e B, the border of the interface, is a list of formula occurrences from the set of atomic terms V.
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Figure 7: Two equivalent modules

e N = (V| L), the net of the interface, is a (non-planar) drawing made from vertices V and k-ary
@-links L shown on Figure 8. Each link is connected to a particular vertez called the conclusion
and to a multiset of vertices that are its premises. The arity is the number of premises and must
be greater or equal to 1 and must not be necessarily equal for all the *9-links of a module.

oM

Figure 8: k-ary '®-link and one of its switching positions

e m, the mapping of the interface, is a function m : B — V that maps formula occurrences of the
border to (not necessarily different) vertices of the net.

Definition 9 [Natural (premise) interface]

e The natural interface of a module (or proof-structure) M towards a border B that must be
(contiguous) formula occurrences of the frontier of the module is defined by transforming each
link of the module by the corresponding local net defined on Figure 9. The mapping of the
interface associates to each formula occurrence of B the verter of the net that corresponds to
the translation of the formula occurrence of M. This interface is noted Ap(M).

e The natural premise interface of a module M is the natural interface of the module towards the
list of premises of M. It is noted A(M).

Figure 10 gives the natural premise interface of the left module of Figure 6. There are six
vertices, three unary 'g-links, one binary ’@-link. The border has two formula occurrences noted
VPt and S; that are mapped to two different vertices.

An interface looks like a module except that it is not necessarily planar and vertices can be
connected to more than two links. However, correctness criteria can be applied to it.

Definition 10 [Interface switching, Correct interface]

o A switching of an interface is a selection for every k-ary *@-link from one of its k positions.
This switching induces a graph by replacing each link by an edge following its switching position
(see Figure 8).

o An interface is correct (it verifies the correctness criterion for interfaces) if and only if for every
switching, the graph is acyclic and each component has at least a vertex that is mapped to a
formula occurrence of the border.

Theorem 11 Testing that an interface is correct is polytime.
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Figure 10: The natural interface of the left module of Figure 6

Proof:
This result is not very original because it is just an adaptation to interfaces of results on correctness
criteria of proof-nets. One can use for instance blue-red graphs like in [15]. a

Theorem 12 The natural premise interface of a module that is orthogonal to some proof-structure
s correct.

Proof:

A switching of the natural interface corresponds exactly to a switching of the module. Because the
module M is orthogonal to a proof-structure N, M and N connected together form a proof-net
P. A switching of M and a switching of IV define a switching of P which is correct. The graph for
P for this switching is acyclic and connected. So, the switching of the natural interface induces a
graph that is acyclic and where each vertex must be connected to a vertex corresponding to the
border (which is connected to N in P). O

Definition 13 [Orthogonal interfaces]

e Two correct interfaces It = (Bi,(Vi,L1),m1) and I = (Ba,(Va,L2), m2) with borders
Ai,...,An and A,,..., A1 are orthogonal (notation It L Iz) if and only if for every switch-
ing of the nets of I1 and I, the graph obtained from the union of the two induced graphs by
connecting the n edges m1(A1) to ma2(A1), ..., mi(Ay) to ma(As) is acyclic and connected.

o A correct interface I with a border Ai,..., A, is orthogonal to a proof-structure N with con-
clusions A1,...,Ap,B1,...,Bn, (notation I L N) if and only if I L A4, .. a,(N).

For instance, because the left module and the right proof-structure of Figure 6 are defined
by splitting the proof-net of Figure 5, the interface on Figure 10 and the right proof-structure of
Figure 6 are orthogonal.



Definition 14 [Equivalent interfaces] Two correct interfaces Iy and I» with the same border
are equivalent (notation It = I2) if and only if for every proof structure N, I1 L N <= I L N

Theorem 15 Two modules M1 and My with the same premises are equivalent if and only if
A(M,) and A(M>) are equivalent.

Proof:
The proof is straightforward. a

5 Interface normalization

For a particular border B, we want to know if two modules are equivalent. Theorem 15 allows
us to use interfaces rather than modules. This section presents the main result of the paper
by introducing interface transformations that are compatible with the equivalence of modules.
Moreover, the orientation of the transformations leads to a normalizing mechanism that gives a
unique representative of each class of equivalence. Thus, two correct interfaces (then two modules)
are equivalent if and only if their normalized interfaces are equal.

Definition 16 [Flat interface transformations, Interface normalization transforma-
tions]

e Flat interface transformations are transformations of correct interfaces. Figure 11 shows the
four rules: @-erasing, @ -transitivity, Edge merging and Vertices merging.

Fl F" Fl Fn

Edge

merging

' = (e No other edge — A
I
p-transitivity
—
Vertice "’
Ay merging
—

Figure 11: Flat Interface Transformations

o Interface mormalization transformations are transformations of correct interfaces. Figure 12
shows the three rules: Propagation, Merging and Completion.

The transformations need some explanations. Capital Greek letters like T' or A represent
formula occurrences from the border that are mapped to a vertex. For all rules except *@-erasing,
this mapping is free. In *g-erasing, the conclusion of the n-ary ’@-link must not be mapped to
any formula occurrence of the border. Moreover, this vertex must not be premise or conclusion
of another ’@-link. In Merging, a n-ary *@-link disappears and two vertices are merged. In fact,
this *@-link must have as premises all the premises of all the *@-links whose conclusion is the single



Figure 12: Interface Normalization Transformations

vertex mapped to I'. This is almost equivalent to the condition shown on Figure 12 for this vertex.
For Completion, we must verify that there exists a path between the vertex mapped to I and the
vertex mapped to Az. This path must be simple and must not follow two different edges
of the same *g-link. Moreover, it must not take the *@-link with conclusion the vertex mapped
to I'. Finally, for all rules, a new edge of a '®-link is effectively added only if none already exists
for this ’®-link with the same premise (Edge merging in implicitly used).

Theorem 17 On the net of a correct interface, flat interface transformations and interface nor-
malization transformations preserve correctness and are compatible with interface equivalence (they
do not change the class of the interface).

Proof:

The different proofs use a common technique that proves that a net and its transformed net
have the same orthogonal that is the same set of orthogonal proof-structures. In fact, we use a
compositional lemma that says that on correct interfaces, a local transformation that transforms
a sub-net by an equivalent one does not change the class of the global interface. A second step
need the key transformation shown on Figure 13 that preserves correctness and the equivalence
of interfaces. This transformation can be seen as a small brick that can be used extensively for
instance for proving correctness and compatibility of *@-transitivity, Propagation and Merging. O

Theorem 18 In a class of equivalent interfaces that has at least one orthogonal proof-structure,
there exists only one interface that can not be reduced by transformations of Theorem 17

Proof:

This proof is relatively long and can not be presented in detail in the paper due to lack of space.
Firstly, an interface that is in a class that has at least one orthogonal proof-structure must be
correct. Secondly, a correct interface that is reduced towards flat interface transformations must
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be flat. A flat interface is an interface where a vertex can not be, at the same time, premise
and conclusion of one or several *®-links. Thus, a vertex can be alone but in this case it must
be mapped to one or several formula occurrences of the border. It can be premise of one or
several ®-links and must be mapped to one or several formula occurrences of the border. It can
be conclusion of a unique ®-link but in this case it must be mapped to one or several formula
occurrence of the border. Finally, it can be conclusion of several *@-links and can be mapped to one
or several formula occurrence of the border. This property is important because it gives a bound
on the number of reduced correct interfaces towards the number of formula occurrences of the
border. One can prove that there are at most n? different correct interfaces with a fixed border
of n formula occurrences. The third part of the proof is a recurrence on the size of interfaces
that shows that if we have two correct flat interfaces that are equivalent and are reduced towards
interface normalization transformations, these interfaces are equal. O

Theorem 19 The rewriting system on correct interfaces that performs firstly flat interface trans-
formations and secondly interface normalization transformations terminates in polynomial time
towards the size of the interface and is confluent.

Proof:
In fact, interface normalization transformations transform flat interfaces into flat interfaces. Thus,
the result of the rewriting system is reduced (towards flat interface transformations).

For each transformation, the number of vertices and ’@-links of the net can not increase. For
flat interface transformations, the unique problem can arrive if one can use *9-transitivity in a loop.
But this is not possible because the interface is correct and so does not have a cycle following from
conclusion to premise a circular list of *?-links. This also prove that the number of reductions
using ’@-transitivity transformation is bound by the square of the number of *@-links. The number
of edges of a '-link is also bound by this number plus the initial number of edges. So, this first
step is polytime. The second step that uses interface normalization transformations terminates
because the number of reduction using Merging is bound by the number of %9-links. The two other
rules increase the number of edges. Because at this level, the interface is flat, the number of edges
is bound by the square of the number of vertices (two vertices can not be linked by more than one
edge in flat interfaces) and reduction is polynomialy bound.

With the previous theorem, we know that there exists only one reduced correct interface for
each class. So, the system is confluent. m|

6 Interface calculus and parsing

In fact, we can use directly interfaces rather than module in the parsing algorithm. This is done
by introducing a left-to-right composition of interfaces. What we have to do is to compute for each
word the different interfaces corresponding to the formulas associated to the word in the lexicon.
Because it is possible to have axiom links on a proof-net that connect two dual atomic types of
the same formula (however for Lambek calculus without empty sequence this is very rare), several
different interfaces correspond to a formula. Now, for an interface with a border A, ..., A,, there
exists n + 1 different compositions. For 0 < 7 < n, the i-th combinator gives A,,..., A;4+1 to the
left and A;,..., A to the right. Thus, for our parsing algorithm, we suppose that the lexicon
associates to each word a set of combinators. Each combinator is an interface where the border is



divided in two lists: a left border that must match the left part of the sentence and a right border
that must match the right part of the sentence.

Definition 20 [Lexicon, Combinator] A lexicon £ C W x C is a finite binary relation between
words W and combinators C that are normalized correct interfaces where the border is divided in
two sub-lists the left and right borders.

Definition 21 [Interface/combinator composition] The composition of a normalized correct
interface I with border A, ..., A, and a combinators C with left border B, . .., By and right border
Ci,...,C is possible when k < n, when Vi,1 <i< k, A; = B,i‘_H_l, when n—k+1>0 and when
the interface obtained from I and C by linking (with an aziom link) in the reverse order the first
k formula occurrences of I with the k formula occurrences of C' corresponding to Bu, ..., By (the
formulas are erased from the border) is a correct interface. The result of the composition which is
noted I o C is the normalized correct interface corresponding to the previous correct interface. Its
border is C1,...,C1, Aky1,.--,An.

Definition 22 [Parser| The parsing algorithm parses sentences from left to right adding a word
at each step. It computes the different possible normalized correct interfaces that correspond to the
already parsed left part of the sentence. L is the lexicon of the parser. It starts with the list of
interfaces corresponding to the combinators of the first word of the stream that have an empty left
border.

If I, ..., I, are the possible correct interfaces at last step:

e If no more word is on the input, the parser searches in I1,...,I, the interfaces that have a
border with only one formula. These atomic types are the possible types of the parsed sentence:
phrase, noun phrase, question...

o (Otherwise, the parser gets the next word w and searches the combinators associated to it in L.
If C1, ..., Ck are the possible combinators, it tries the n x k possible compositions, computes the
possible resulting normalized correct interfaces I; o C; and continues with the next word.

Figure 14 shows a partial analysis of the first three words of “Peter saw briefly Mary dancing”.
Small rectangles represent the combinators corresponding to the three words. Wide rectangles are
the successive computed interfaces (their net is not shown here). In this simple case, we only put
one combinator for each word. But, of course, this is not the case for a complex lexicon.

s~ s~
—= ,_ﬂ‘ et
+ + + + +

NP~ NPt s— vpt vp— st s— vpt

Peter saw briefly

Figure 14: Successive computed interfaces and combinators for “Peter saw briefly”

7 Discussion and conclusion

The parsing algorithm that is introduced in the last section is not polytime because at each step,
the number of possible correct interfaces is not bound. This result is not a surprise because the
complexity of Lambek calculus is still open. But, this parser can restrict the language that it
recognizes with certain linguistically founded arguments. For instance, in [12, 13], proof-nets that
correspond to the syntactical analysis of an acceptable sentence have a limited depth. Intuitively,
this limit says that we can not understand very complex sentences that are “not flat”. For
the parser, it means that the number of formulas of the border of interfaces must be bound
by a parameter and, of course, our algorithm is polytime but it uses a much more compact
representation than usual interface modeling that is based on sets of partitions of the formulas of
the interface and a bi-orthogonal calculus.

Moreover, this parser can give partial results and can be adapted to find on a stream of
words some constituents like noun phrases. This is particularly useful when the input is not



completely correct. Another useful result of the parser is that it can produce in a compact way
all the possible syntactical analyses of the same sentence. Thus, a semantical module may use
this compact representation to find the proper one: Syntax is of course not enough to eliminate
all ambiguities that are very often in natural languages.

References

1]

[10]
[11]
[12]
[13]
[14]

[15]
[16]

Denis Bechet and Philippe de Groote. Constructing different phonological bracketings from
a proof net. In Proceedings of the First Conference on Logical Aspects of Computational Lin-
guistics, Nancy, France, Septembre 1996 (Lecture Note in Artificial Intelligence, vol. 1328),
pages 119-133, 1997.

Vincent Danos. La Logique Linéaire Appliquée a ’étude de Divers Processus de Normalisation
(Principalement du A-Calcul). PhD thesis, University of Paris VII, June 1990.

Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathe-
matical Logic, 28:181-203, 1989.

] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

Aravind Joshi and Seth Kulick. Partial proof trees as building blocks for a categorial grammar.
Linguistics and Philosophy, 20:637-667, 1997.

Aravind Joshi and Seth Kulick. Partial proof trees, resource sensitive logics and syntactic con-
straints. In Christian Retoré, editor, Logical Aspects of Computational Linguistics, LACL ‘96,
volume 1328 of LNCS/LNAI pages 21-42. Springer-Verlag, 1997.

Joachim Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154-170,
1958.

Alain Lecomte and Christian Retoré. Words as modules: a lexicalised grammar in the frame-
work of linear logic proof nets. In Carlos Martin-Vide, editor, Mathematical and Computa-
tional Analysis of Natural Language — selected papers from ICML ‘96, volume 45 of Studies in
Functional and Structural Linguistics, pages 129-144. John Benjamins publishing company,
1998.

Michael Moortgat. Categorial Investigations: Logical € Linguistic Aspects of the Lambek
Calculus (Groningen-Amsterdam Studies in Semantics). Foris Publications, 1988.

Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter Meulen,
editors, Handbook of Logic and Language, pages 93—-177. Elsevier, Amsterdam, 1997.

Glyn Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic Publishers,
Dordrecht, 1994.

Glyn Morrill. Incremental processing and acceptability. Computational Linguistics, 26(3):319—
338, 2000.

Guy Perrier. Interaction grammars. In Proceedings of the 5th International Conference on
Computational Linguistics (CoLing 2000), 2000.

Carl J. Pollard and Ivan A. Sag. Hpsg: A new theoretical synopsis. In Byung-Soo Park,
editor, Linguistic Studies on Natural Language, volume 1 of Kyunghee Language Institute
Monograph. Hanshin, Seoul, Korea, 1992.

Christian Retoré. Réseauz and Séquents Ordonnés. PhD thesis, University of Paris VII, 1993.

Dirk Roorda. Resource Logics: proof-theoretical investigations. PhD thesis, University of
Amsterdam, 1991.



