
PARSING TREE ADJOINING GRAMMARS

AND TREE INSERTION GRAMMARS

WITH SIMULTANEOUS ADJUNCTIONS

Miguel A. Alonso

Departamento de Computación

Universidade da Coruña
Campus de Elviña s/n

15071 La Coruña (Spain)
alonso@udc.es

Vı́ctor J. Dı́az

Departamento de Lenguajes
y Sistemas Informáticos
Universidad de Sevilla

Avda. Reina Mercedes s/n
41012 Sevilla (Spain)
vjdiaz@lsi.us.es

Abstract

A large part of wide coverage Tree Adjoining Grammars (TAG) is formed by trees that satisfy
the restrictions imposed by Tree Insertion Grammars (TIG). This characteristic can be used to
reduce the practical complexity of TAG parsing, applying the standard adjunction operation only
in those cases in which the simpler cubic-time TIG adjunction cannot be applied. In this paper,
we describe a parsing algorithm managing simultaneous adjunctions in TAG and TIG.

1 Introduction

Tree Adjoining Grammar (TAG) [5] and Tree Insertion Grammar (TIG) [7] are grammatical

formalisms that make use of a tree-based operation called adjunction. TAG generates tree

adjoining languages, a strict superset of context-free languages, and the complexity of parsing

algorithms is in O(n6) for time and in O(n4) for space with respect to the length n of the input

string. In contrast, TIG generates context-free languages and can be parsed in O(n3) for time

and in O(n2) for space, due to restrictions on the form of trees.

Formally, a TAG is a 5-tuple G = (VN , VT , S, I,A), where VN is a finite set of non-terminal

symbols, VT a finite set of terminal symbols, S the axiom of the grammar, I a finite set of

initial trees and A a finite set of auxiliary trees. I ∪ A is the set of elementary trees. Internal

nodes are labeled by non-terminals and leaf nodes by terminals or the empty string ε, except

for just one leaf per auxiliary tree (the foot) which is labeled by the same non-terminal used as

the label of its root node. The path in an elementary tree from the root node to the foot node

is called the spine of the tree. New trees are derived by adjunction: let γ be a tree containing a

node Nγ labeled by A and let β be an auxiliary tree whose root and foot nodes are also labeled

by A. Then, the adjunction of β at the adjunction node N γ is obtained by excising the subtree

of γ with root Nγ , attaching β to Nγ and attaching the excised subtree to the foot of β. We

illustrate the adjunction operation in Fig. 1, where we show a simple TAG with two elementary

trees: an initial tree rooted S and an auxiliary tree rooted VP. The derived tree obtained after

 S

 S

Adv
NP
 VP

VP

VP

runs
 slowly
John

NP
 VP

John
 VP
 Adv

slowly
runs

spine

Inital tree
 Auxiliary tree

Derived tree

Figure 1: Adjunction operation

adjoining the VP auxiliary tree on the node labeled by VP located in the initial tree is also

shown.

We can consider the set A as formed by the union of the sets AL, containing left auxiliary

trees in which every nonempty frontier node is to the left of the foot node, AR, containing right

auxiliary trees in which every nonempty frontier node is to the right of the foot node, and AW ,

containing wrapping auxiliary trees in which nonempty frontier nodes are placed both to the

left and to the right of the foot node. Given an auxiliary tree, we call spine nodes to those

nodes placed on the spine and left nodes (resp. right nodes) to those nodes placed to the left

(resp. right) of the spine. The set ASL ⊆ AL (resp. ASR ⊆ AR) of strongly left (resp. strongly

right) auxiliary trees is formed by trees in which no adjunction is permitted on right (resp. left)

nodes and only strongly left (resp. right) auxiliary trees are allowed to adjoin on spine nodes.

Figure 2 shows three derived trees resulting from the adjunction of a wrapping, left and right

auxiliary tree, respectively. We denote by A
′ the set A − (ASL ∪ ASR).

In essence, a TIG is a restricted TAG where auxiliary trees must be either strongly left or

strongly right and adjunctions are not allowed in root and foot nodes of auxiliary trees.

It has been found that most of the trees and adjunction operations involved in wide coverage

grammars like XTAG [4] are compatible with the TIG formalism [7]. As the full power of a

TAG parser is only put into practice in adjunctions involving a given set of trees, to apply a

parser working in O(n6) time complexity when most of the work can be done by a O(n3) parser

seems to be a waste of computing resources. Therefore, we propose to create mixed parsers

taking the best of both worlds: those parts of the grammar that correspond to a TIG should

be managed in O(n3) time and O(n2) space complexity, and only those parts of the grammar

involving the full kind of adjunction present in TAG should be managed in O(n6) time and

O(n4) space complexity.

A first approach towards this aim has been shown in [2], where a Earley-like TAG parser has

been merged with an Earley-like TIG parser. Some questionable decisions were taken in order

to make both parsers compatible, the most important one being the disabling of simultaneous

adjunctions. The rationale behind this decision was to follow the standard TAG definition in

case of mismatching between TAG and TIG definitions. Albeit an important speed-up was

Wrapping

auxiliary tree

Left

auxiliary tree

Right

auxiliary tree

Figure 2: TAG vs. TIG adjunction operation

obtained by the resulting algorithm, its usefulness is limited by the fact that a lot of trees with

a TIG-skeleton do not satisfy the definition of strongly left or strongly right auxiliary trees

because we can not combine both types of trees on a single node. For example, determiners or

adjectives are usually modelled with left auxiliary trees but relative clauses are modelled with

right auxiliary trees. Then, we need to combine left and right auxiliary trees when a noun is

modified at the same time with determiners and relative clauses. The only way to do that is

using adjunction operations. If these adjunctions are not performed simultaneously at the same

node, auxiliary trees for determiners and relative clauses cannot be considered as strongly left

and strongly right auxiliary trees, respectively, and therefore the algorithm in [2] behaves like

a classical TAG parser with respect to these adjunctions.

1.1 Notation for parsing algorithms

We will describe parsing algorithms using Parsing Schemata, a framework for high-level de-

scriptions of parsing algorithms [9]. A parsing system for a grammar G and string a1 . . . an is a

triple 〈I,H,D〉, with I a set of items which represent intermediate parse results, H an initial

set of items called hypothesis that encodes the sentence to be parsed, and D a set of deduction

steps that allow new items to be derived from already known items. Deduction steps are of the

form η1,...,ηk

ξ
cond, meaning that if all antecedents ηi of a deduction step are present and the

conditions cond are satisfied, then the consequent ξ should be generated by the parser. A set

F ⊆ I of final items represent the recognition of a sentence. A parsing schema is a parsing

system parameterized by a grammar and a sentence.

In order to describe the parsing algorithms for tree-based formalisms, we must be able to rep-

resent the partial recognition of elementary trees. Parsing algorithms for context-free grammars

usually denote partial recognition of productions by dotted productions. We can extend this

approach to the case of tree-based grammars by considering each elementary tree γ as formed

by a set of context-free productions P(γ): a node N γ and its children Nγ
1 . . . Nγ

g are represented

by a production Nγ → Nγ
1 . . . Nγ

g . Thus, the position of the dot in the tree is indicated by the

position of the dot in a production in P(γ). The elements of the productions are the nodes of

the tree.

To simplify the description of parsing algorithms we consider an additional production > →

R
α for each α ∈ I and the two additional productions > → R

β and F
β → ⊥ for each β ∈ A,

where R
β and F

β correspond to the root node and the foot node of β, respectively. After

disabling > and ⊥ as adjunction nodes the generative capability of the grammars remains

γ

N

δ

R

γ

ν

i
 j
q
p

γ

F

Figure 3: Graphical representation of items

intact. We introduce also the following notation: given two pairs (p, q) and (i, j) of integers,

(p, q) ≤ (i, j) is satisfied if i ≤ p and q ≤ j and given two integers p and q we define p ∪ q as p

if q is undefined and as q if p is undefined, being undefined in other case.

We use β ∈ adj(Nγ) to denote that a tree β may be adjoined at node N γ of the elementary

tree γ. If adjunction is not mandatory at N γ then nil ∈ adj(Nγ) where nil /∈ I∪A is a dummy

symbol. If adjunction is not allowed at N γ then {nil} = adj(Nγ).

2 The parsing algorithm

In this section we define a parsing system PMix = 〈IMix,HMix,DMix〉 corresponding to a mixed

parsing algorithm for TAG and TIG in which the adjunction of strongly left and strongly right

auxiliary trees1 will be managed by specialized deduction steps. Simultaneous adjunctions are

allowed on any node, with the following ordering: the adjunction of strongly left auxiliary trees

will take place before the adjunction of other types of trees. This ordering has been established

for compatibility with the definition of simultaneous adjunctions in TIG [7].

For PMix, we consider a set of items IMix = I
(a)
Mix ∪I

(b)
Mix formed by the union of the following

subsets:

• A subset I
(a)
Mix with items of the form [Nγ → δ • ν, i, j | p, q | adj] such that Nγ → δν ∈ P(γ),

γ ∈ I ∪ A, 0 ≤ i ≤ j, (p, q) = (−,−) or (p, q) ≤ (i, j), and adj ∈ {true, false}. The boolean

component adj is needed to manage mandatory adjunction: adj = true if and only if one

or more adjunctions have taken place at N γ , otherwise adj = false. The two indices with

respect to the input string i and j indicate the portion of the input string that has been

spanned from δ (see figure 3). If γ ∈ A
′, p and q are two indices with respect to the input

string that indicate that part of the input string recognized by the foot node of γ if it is a

descendant of δ. In other case p = q = − representing they are undefined. Therefore, this

1Given the set A of a TAG, we can determine the set ASL as follows: firstly, we determine the set AL

examining the frontier of the trees in A and we set ASL := AL; secondly, we eliminate from ASL those trees

that permit adjunctions on nodes to the right of their spine; and thirdly, we iteratively eliminate from ASL

those trees that allow adjoining trees in A − ASL on nodes of their spine. ASR is determined in an analogous

way.

kind of items satisfy one of the following conditions:

1. γ ∈ A
′, δ 6= ε, (p, q) 6= (−,−) and δ spans the string ai+1 . . . ap F

γ aq+1 . . . aj

2. δ 6= ε, (p, q) = (−,−) and δ spans the string ai+1 . . . aj .

3. δ = ε, (p, q) = (−,−), adj = true and there exists a sequence of strongly left auxiliary

trees that have been adjoined at Nγ . In this case, i and j indicate the portion of the input

string spanned by the strongly left auxiliary trees adjoined at N γ .

• A subset I
(b)
Mix with items of the form [Nγ → •υ, j, j | −,− | false] such that Mγ → δν ∈ P(γ),

γ ∈ I ∪ A and any auxiliary tree has been adjoined on N γ .

The hypotheses defined for this parsing system encode the input string a1 . . . an in the stan-

dard way:

HMix =
{

[a, i − 1, i] | a = ai, 1 ≤ i ≤ n
}

The set of deduction steps is formed by the following subsets:

DMix = DInit
Mix ∪ DScan

Mix ∪ Dε
Mix ∪ DPred

Mix ∪ DComp
Mix ∪

DLAdjPred
Mix ∪ DLAdjComp

Mix ∪ DRAdjPred
Mix ∪ DRAdjComp

Mix ∪ DLRFoot
Mix ∪

DAdjPred
Mix ∪ DFootPred

Mix ∪ DFootComp
Mix ∪ DAdjComp

Mix ∪ DComb
Mix

The parsing process starts by creating the items corresponding to productions having the root

of an initial tree as left-hand side and the dot in the leftmost position of the right-hand side:

DInit
Mix =

[> → •Rα, 0, 0 | −,− | false]
α ∈ I ∧ S = label(Rα)

Then, a set of deduction steps in DPred
Mix and DComp

Mix traverse each elementary tree, while steps

in DScan
Mix and Dε

Mix scan input symbols and the empty string, respectively:2

DPred
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj]

[Mγ → •υ, j, j | −,− | false]

DComp
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj],

[Mγ → υ•, j, k | p′, q′ | adj′]

[Nγ → δMγ • ν, i, k | p ∪ p′, q ∪ q′ | adj]

adj′ = true if nil 6∈ adj(Mγ)

adj′ = false if {nil} = adj(Mγ)

DScan
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj],

[a, j, j + 1]

[Nγ → δMγ • ν, i, j + 1 | p, q | adj]
a = label(Mγ)

Dε
Mix =

[Nγ → δ • Mγν, i, j | p, q | adj]

[Nγ → δMγ • ν, i, j | p, q | adj]
ε = label(Mγ)

The rest of steps are in charge of managing adjunction operations. If a strongly left auxiliary

tree β ∈ ASL can be adjoined at a given node Mγ , a step in DLAdjPred
Mix starts the traversal

2The conditions checked by steps in D
Comp

Mix
correspond to the special cases of mandatory adjunction and

forbidden adjunction.

of β. When β has been completely traversed, a step in DLAdjComp
Mix starts the traversal of the

subtree corresponding to Mγ . Simultaneous adjunction of several strongly left auxiliary trees

on a node Mγ is achieved by repeating this process for each tree.

DLAdjPred
Mix =

[Mγ → •υ, i, j | −,− | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ ASL ∧ β ∈ adj(Mγ)

DLAdjComp
Mix =

[Mγ → •υ, i, j | −,− | adj],

[> → R
β•, j, k | −,− | false]

[Mγ → •υ, i, k | −,− | true]
β ∈ ASL ∧ β ∈ adj(Mγ)

If a strongly right auxiliary tree β ∈ ASR can be adjoined at a given node Mγ , when the

subtree corresponding to this node has been completely traversed, a step in DRAdjPred
Mix starts

the traversal of the tree β. When β has been completely traversed, a step in DRAdjComp
Mix updates

the input positions spanned by Mγ taking into account the part of the input string spanned by

β. Simultaneous adjunction of several strongly right auxiliary trees on a node M γ is achieved

by repeating this process for each tree.

DRAdjPred
Mix =

[Mγ → υ•, i, j | p, q | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ ASR ∧ β ∈ adj(Mγ)

DRAdjComp
Mix =

[Mγ → υ•, i, j | p, q | adj],

[> → R
β•, j, k | −,− | false]

[Mγ → υ•, i, k | p, q | true]
β ∈ ASR ∧ β ∈ adj(Mγ)

No special treatment is given to the foot node of strongly left and right auxiliary trees and so,

it is simply skipped by a step in the set DLRFoot
Mix .

DLRFoot
Mix =

[Fβ → •⊥, j, j | −,− | adj]

[Fβ → ⊥•, j, j | −,− | adj]
β ∈ ASL ∪ ASR

A step in DAdjPred
Mix predicts the adjunction of an auxiliary tree β ∈ A

′ in a node of an elementary

tree γ and starts the traversal of β. Once the foot of β has been reached, the traversal of β is

momentary suspended by a step in DFootPred
Mix , which re-takes the subtree of γ which must be

attached to the foot of β. At this moment, there is no information available about the node

in which the adjunction of β has been performed, so all possible nodes are predicted. When

the traversal of a predicted subtree has finished, a step in DFootComp
Mix re-takes the traversal of β

continuing at the foot node. When the traversal of β is completely finished, a deduction step

in DAdjComp
Mix checks if the subtree attached to the foot of β corresponds with the adjunction

node. The adjunction if finished by a step in DComp
Mix , taking into account that p′ and q′ are

instantiated if and only if the adjunction node is on the spine of γ. It is interesting to remark

that we follow the approach of [6], splitting the completion of adjunction between DAdjComp
Mix

and DComp
Mix .

DAdjPred
Mix =

[Mγ → •υ, i, j | −,− | adj]

[> → •Rβ , j, j | −,− | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DFootPred
Mix =

[Fβ → •⊥, k, k | −,− | adj]

[Mγ → •υ, k, k | −,− | false]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DFootComp
Mix =

[Fβ → •⊥, l, l | −,− | adj],

[Mγ → υ•, l,m | p′, q′ | adj′]

[Fβ → ⊥•, l,m | l,m | adj]
β ∈ A

′ ∧ β ∈ adj(Mγ)

DAdjComp
Mix =

[> → R
β•, k, r | l,m | false],

[Mγ → υ•, l,m | p′, q′ | adj]

[Mγ → υ•, k, r | p′, q′ | true]
β ∈ A

′ ∧ β ∈ adj(Mγ)

Simultaneous adjunction of several auxiliary trees in β ∈ A
′ is achieved by applying steps in

DAdjPred
Mix taking as antecedent the consequent item of a DFootPred

Mix step.

The subset DComb
Mix is needed to put together the results corresponding to the simultaneous

adjunctions of strongly left and wrapping auxiliary trees:

DComb
Mix =

[Mγ → •υ, i, j | −,− | true],

[Mγ → υ•, j, k | p, q | true]

[Mγ → υ•, i, k | p, q | true]

The input string belongs to the language defined by the grammar if and only if a final item

in the set F =
{

[> → R
α•, 0, n | −,− | false] | α ∈ I ∧ S = label(Rα)

}

is generated.

3 An example

Figure 4 illustrate the adjunction of a strongly-left auxiliary tree βl1, a strongly right auxiliary

tree βr1, two wrapping trees βw1 and βw2, a strongly-left auxiliary tree βl2 and a strongly

right auxiliary tree βr2, enumerated in a top-down view of the resulting derived tree, which is

obtained as follows:

1. Once the adjunction node Mγ is reached at position j1, a step in DPred
Mix generates the item

[Mγ → •υ, j1, j1 | −,− | false]. Then, a step in DLAdjPred
Mix is applied in order to start

the adjunction of βl1, which is finished by a step in DLAdjComp
Mix that generates the item

[Mγ → •υ, j1, j2 | −,− | true].

2. Strongly right auxiliary trees do not span anything to the left of their spine, therefore no

action is performed with respect to βr1 at this moment. Instead, a step in DAdjPred
Mix predicts

the adjunction of βw1, generating the item [> → •Rβw1 , j2, j2 | −,− | false].

3. When the foot node of βw1 is reached at position j3, a DFootPred
Mix step generates the item

[Mγ → •υ, j3, j3 | −,− | false], which is taken as antecedent by a step in DAdjPred
Mix to start

the adjunction of βw2, generating the item [> → •Rβw2 , j3, j3 | −,− | false].3 When the foot

node of βw2 is reached at position j4, the traversal of γ is re-taken at Mγ by means of the

application of a step in DFootPred
Mix , generating the item [Mγ → •υ, j4, j4 | −,− | false].

4. The adjunction of βl2 is then predicted by a step in DLAdjPred
Mix . The completion of this

adjunction by a step in DLAdjComp
Mix yields the item [Mγ → •υ, j4, j5 | −,− | true]. It

3It is interesting to remark that the adjunction of strongly left auxiliary trees could also be predicted at this

moment, but this is not the case in our example.

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �� � � �� � � �� � � �� � � �� � � �

� � � �� � � �� � � �� � � �� � � �� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

M γ

1

6

7

8

9

4

3

2

βr2:

βl2 :

βw2:

βw1:

βr1:

βl1 :

5

j1

k6

k5j5

k9

k8

k7

j4

j3

j2

γ:

Figure 4: An example of simultaneous adjunctions

is interesting to remark that the ordering imposed on the trees involved in simultaneous

adjunctions has been preserved due to the adjunctions of βl1 and βl2 have been completely

performed before the adjunction of other types of auxiliary trees.

5. βr2 is not considered at this moment. Once the subtree rooted by M γ has been completely

traversed, we get the item [Mγ → υ•, j4, k5 | −,− | true].

6. At this moment, a step in DRAdjPred
Mix starts the adjunction of βr2 by generating the item

[> → •Rβr2 , k5, k5 | −,− | false]. The item [Mγ → •υ, j4, k6 | −,− | true] is produced by a

step in DRAdjComp
Mix as a result of the completion of this adjunction.

7. At this point, a step in DFootComp
Mix re-takes the traversal of βw2, generating the item [Fβw2 →

⊥•, j4, k6 | j4, k6 | false] which means that the subtree corresponding to the adjunction node

of this auxiliary tree is expected to span the substring aj4+1 . . . ak6
. The complete traversal

of βw2 is indicated by the item [> → R
βw2•, j3, k7 | j4, k6 | false], which is used by a step in

DAdjComp
Mix to generate the item [Mγ → υ•, j3, k7 | −,− | true] indicating that the adjunction

corresponding to βw2 has been completed.

8. A step in DFootComp
Mix re-takes the traversal of βw1, generating the item [Fβw1 → ⊥•, j3, k7 |

j3, k7 | false] which means that the subtree corresponding to the adjunction node of this

auxiliary tree is expected to span the substring aj3+1 . . . ak7
. The adjunction of βw1 is finished

by a step in DAdjComp
Mix , yielding the item [Mγ → υ•, j2, k8 | −,− | true].

9. At this moment we have two possibilities in order to adjoin βr1:

(a) A step in DComb
Mix combines the item [Mγ → •υ, j1, j2 | −,− | true] and the item [Mγ →

υ•, j2, k8 | −,− | true] to obtain [Mγ → υ•, j1, k8 | −,− | true]. Then, the adjunction of

βr1 can be predicted by a step in DRAdjPred
Mix . Once this strongly right auxiliary tree has

been completely traversed, the item [Mγ → υ•, j1, k9 | −,− | true] is generated by a a step

in DRAdjComp
Mix .

(b) A step in DRAdjPred
Mix starts the adjunction of βr1. Once this auxiliary tree has been com-

pletely traversed, the item [Mγ → υ•, j2, k9 | −,− | true] is generated by a step in

DRAdjComp
Mix . Then, a step in DComb

Mix combines the items [Mγ → •υ, j1, j2 | −,− | true]

and [Mγ → υ•, j2, k9 | −,− | true] to obtain the item [Mγ → υ•, j1, k9 | −,− | true].

This spurious ambiguity could be eliminated by imposing a more restrictive ordering of trees

in simultaneous adjunctions: one possibility is to force that trees in A
′ should be adjoined

first, then trees in ASL and finally trees in ASR; other possibility is to force that trees in

ASL should be adjoined first, then trees in A
′ and finally trees in ASR.

4 Complexity

The worst-case space complexity of the algorithm is O(n4), as at most four input positions are

stored into items corresponding to auxiliary trees belonging to A
′. Initial trees and strongly

left and right auxiliary trees contribute O(n2) to the final result. With respect to the worst-case

time complexity:

• TIG adjunction, the adjunction of a strongly left or right auxiliary tree on a node of a tree

belonging to I ∪ ASL ∪ ASR, is managed in O(n3) by steps in DLAdjComp
Mix and DRAdjComp

Mix .

• Full TAG adjunction is managed in O(n6) by deduction steps in DAdjComp
Mix , which are in

charge of dealing with auxiliary trees belonging to A
′. In fact, O(n6) is only attained when

a wrapping auxiliary tree is adjoined on a spine node of a wrapping auxiliary tree. The

adjunction of a wrapping auxiliary tree on a right node of a wrapping auxiliary tree is

managed in O(n5) due to deduction steps in DComp
Mix . The same complexity is attained by the

adjunction of a strongly right auxiliary tree on a spine or right node of a wrapping auxiliary

tree, due to deduction steps in DRAdjComp
Mix .

• Other cases of adjunction, e.g. the adjunction of a strongly left or right auxiliary tree on a

spine node of a tree belonging to (AL − ASL) ∪ (AR − ASR), are managed in O(n4).

5 Experimental results

We have incorporated the parsing algorithms described in this paper into a naive implementa-

tion in Prolog of the deductive parsing machine presented in [8]. As a first experiment, we have

compared the performance of the Earley-like parsing algorithms for TIG [7] and TAG [1] with

respect to TIGs. For this purpose, we have designed two artificial TIGs Gl (with ASR = ∅)

Table 1: XTAG results, in seconds, for PMix and PMix0
parsers

Sentence PMix PMix0
Reduction

(1) Srini bought a book 0.08 0.13 38.46%
(2) Srini bought Beth a book 0.11 0.17 35.29%
(3) Srini bought a book at the bookstore 0.15 0.21 28.57%
(4) he put the book on the table 0.13 0.18 27.78%
(5) *he put the book 0.07 0.10 30.00%
(6) the sun melted the ice 0.11 0.17 35.29%
(7) the ice melted 0.07 0.10 30.00%
(8) Elmo borrowed a book 0.08 0.13 38.46%
(9) *a book borrowed 0.06 0.08 25.00%
(10) he hopes Muriel wins 0.14 0.21 33.33%
(11) he hopes that Muriel wins 0.20 0,27 25.93%
(12) the man who Muriel likes bought a book 0,24 0,32 25.00%
(13) the man that Muriel likes bought a book 0.21 0.28 25.00%
(14) the music should have been being played for the president 0.29 0.33 12.12%
(15) Clove caught a frisbee 0.09 0.12 25.00%
(16) who caught a frisbee 0.09 0.12 25.00%
(17) what did Clove catch 0.07 0.13 46.15%
(18) the aardvark smells terrible 0.07 0.10 30.00%
(19) the emu thinks that the aardvark smells terrible 0.27 0.32 15.63%
(20) who does the emu think smells terrible 0.12 0.21 42.86%
(21) who did the elephant think the panda heard the emu said smells terrible

0.39 0.58 32.76%
(22) Herbert is angry 0.07 0.09 22.22%
(23) Herbert is angry and furious 0.09 0.14 35.71%
(24) Herbert is more livid than angry 0.08 0.12 33.33%
(25) Herbert is more livid and furious than angry 0.10 0.13 23.08%

and Gr (with ASL = ∅). For a TIG, the time complexity of the adjunction completion step

of a TAG parser is O(n4), in contrast with the O(n3) complexity of left and right adjunction

completion for a TIG parser. Therefore, we expected the TIG parser to be considerably faster

than the TAG parser. In effect, for Gl we have observed that the TIG parser is up to 18 times

faster than the TAG parser, but in the case of Gr the difference becomes irrelevant.

These results have been corroborated by a second experiment performed on artificial TAGs

with the mixed (PMix) and the TAG parser: the performance of the mixed parser improves

when strongly left auxiliary trees are involved in the analysis of the input string.

In a third experiment, we have taken a subset of the XTAG grammar [4], consisting of 27

elementary trees that cover a variety of English constructions: relative clauses, auxiliary verbs,

unbounded dependencies, extraction, etc. In order to eliminate the time spent by unification,

we have not considered the feature structures of elementary trees. Instead, we have simulated

the features using local constraints. Every sentence has been parsed without previous filtering

of elementary trees.

First of all, we have implemented a combined parser PMix0
where simultaneous adjunctions

are forbidden and we have corroborated the results included in [2]: the parser PMix0
preserves

or improves the results obtained by a TAG parser. With this results, we have compared the

parser PMix0
with our approach to test the benefits of simultaneous adjunctions. Table 1 shows

the results of this experiment including information about the time in seconds spent by both

parsers. As we can observe in the table, our approach obtains a reduction in time that varies

in percentage from 12% to 46%, depending on the kind of trees involved in the analysis of each

sentence.

We would like to address the results obtained by our approach in sentences 12, 13 and 14

where simultaneous adjunctions of left and right auxiliary trees must be applied. In these cases,

the parser PMix0
needs to apply a classical wrapping adjunction.

6 Conclusion

We have defined a parsing algorithm which reduces the practical complexity of TAG parsing by

taking into account that a large part of actual TAG grammars can be managed as a TIG. The

resulting parser extends the classical adjunction operation in TAG by considering the possibility

of simultaneous adjunctions at a given node.

The performance of the algorithm could be improved by means of the application of practical

optimizations, such as the replacement of the components p and q of items [N γ → δ • ν, i, j |

p, q] ∈ I
(a)
Mix by the list of all adjunctions that are still under completion on N γ [3], albeit

this modification increase the worst-case complexity of the algorithm. As further work, we are

investigating a variant of the algorithm presented in this paper that preserves the correct prefix

property [6].

Acknowledgements

The research reported in this paper has been supported in part by Ministerio de Ciencia y Tec-

noloǵıa (grants TIC2000-0370-C02-01, FIT-150500-2002-416, HP2001-0044 and HF2002-0081),

Xunta de Galicia (grants PGIDT01PXI10506PN and PGIDIT02SIN01E) and Universidade da

Coruña.

References

[1] Miguel A. Alonso, David Cabrero, Eric de la Clergerie, and Manuel Vilares. Tabular algo-

rithms for TAG parsing. In Proc. of EACL’99, Ninth Conference of the European Chapter of

the Association for Computational Linguistics, pages 150–157, Bergen, Norway, June 1999.

[2] Miguel A. Alonso, Vicente Carrillo, and Vı́ctor J. Dı́az. Mixed parsing of tree insertion

and tree adjoining grammars. In Francisco J. Garijo, José C. Riquelme, and Miguel Toro,

editors, Advances in Artificial Intelligence - IBERAMIA 2002, volume 2527 of Lecture Notes

in Artificial Intelligence, pages 694–703. Springer-Verlag, Berlin-Heidelberg-New York, 2002.

[3] Eric de la Clergerie. Refining tabular parsers for TAGs. In Proceedings of Language Tech-

nologies 2001: The Second Meeting of the North American Chapter of the Association for

Computational Linguistics (NAACL’01), pages 167–174, Pittsburgh, PA, USA, June 2001.

[4] Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas, and Martin Zaidel. XTAG sys-

tem — a wide coverage grammar for English. In Proc. of the 15th International Conference

on Computational Linguistics (COLING’94), pages 922–928, Kyoto, Japan, August 1994.

[5] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozenberg and

Arto Salomaa, editors, Handbook of Formal Languages. Vol 3: Beyond Words, chapter 2,

pages 69–123. Springer-Verlag, Berlin/Heidelberg/New York, 1997.

[6] Mark-Jan Nederhof. The computational complexity of the correct-prefix property for TAGs.

Computational Linguistics, 25(3):345–360, 1999.

[7] Yves Schabes and Richard C. Waters. Tree insertion grammar: A cubic-time parsable for-

malism that lexicalizes context-free grammar without changing the trees produced. Com-

putational Linguistics, 21(4):479–513, December 1995.

[8] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and implementa-

tion of deductive parsing. Journal of Logic Programming, 24(1–2):3–36, July-August 1995.

[9] Klaas Sikkel. Parsing Schemata — A Framework for Specification and Analysis of Parsing

Algorithms. Texts in Theoretical Computer Science — An EATCS Series. Springer-Verlag,

Berlin-Heidelberg-New York, 1997.

