
Living up to standards

Margaret King
TIM/ISSCO

ETI
University of Geneva

Margaret.King@issco.unige.ch

Abstract

This paper attacks one part of the
question "Are evaluation methods,
metrics and resources reusable" by
arguing that a set of ISO standards
developed for the evaluation of software
in general are as applicable to natural
language processing software as to any
other. Main features of the ISO proposals
are presented, and a number of
applications where they have been
applied are mentioned, although not
discussed in any detail.

Acknowledgements

The work recorded here is far from being all my
own. I would like first to record my thanks to
Nigel Bevan, technical editor of the ISO
standards discussed for much interesting and
enlightening discussion. Then many thanks must
go to all my colleagues in the EAGLES and ISLE
projects, especially Sandra Manzi and Andrei
Popescu-Belis. Finally, I must thank all those
whose work on applying the standards reported
here provoked reflection and helped to convince
me of the value of the approach: Marc Blasband,
Maria Canelli, Dominique Estival, Daniele
Grasso, Véronique Sauron, Marianne Starlander
and Nancy Underwood.

1 Introduction

This paper is constructed around a syllogism:

1. ISO standards 9126 and 14598 are
applicable to the evaluation of any type
of software

2. Natural language processing software is
a type of software

3. ISO standards 9126 and 14598 are
applicable to the evaluation of natural
language processing software.

In support of the major premise, I shall set out
some of the major features of the ISO standards
in question. The minor premise needs no support:
indeed, it is almost a tautology. The truth of the
conclusion will logically depend therefore on
whether I have managed to convince the reader
of the truth of the major premise. There will be
little explicit argument in this direction: simply
setting out key features of the approach should
suffice. I will try, however, to reinforce the
conclusion by briefly reviewing a number of
natural language processing applications where
the ISO standards have been followed with
encouraging results. My hope, of course, is to
encourage readers to apply the standards
themselves.

2 ISO standards work on software
evaluation

ISO has been publishing standards on software
evaluation since 1991. The bibliography gives a
detailed picture of what standards have already
been published and of what standards are in
preparation. ISO/IEC 9126 was the first standard
to appear. It has subsequently been modified, and

mailto:Margaret.King@issco.unige.ch

in its new versions the original content of 1991
has been refined, modified and distributed over a
series of separate but inter-related standards.

The keystone of ISO work is that the basis of
an evaluation is an explicit and detailed statement
of what is required of the object to be evaluated.
This statement is formulated very early in the
process of defining an evaluation and is called a
“quality model”. The process of evaluation
involves defining how measurements can be
applied to the object to be evaluated in order to
discover how closely it meets the requirements
set out in the quality model.

“The object to be evaluated” is a clumsy
phrase. It has been used because, in the ISO
picture, evaluation may take place at any point in
the lifecycle of a software product, and may have
as its object not only the final product but
intermediate products, including specifications
and code which has not yet been executed. It
follows from this that a quality model may apply
to a set of specifications just as much as to a
piece of finished software. Indeed, one might
envisage using quality models as a way of
guiding the whole process of producing a
software product, from initial research and
prototyping through to delivering and field
testing the final product. That this is in line with
best practice in software engineering constitutes,
to my mind, an argument in favour of the ISO
proposals.

As well as a set of standards relating to the
definition of quality models (the 9126 series) ISO
also offers a set of standards relating to the
process of evaluation (the 14598 series). One
document sets out a standard for the evaluation
process seen at its most generic level, further
proposals relate definition of the process to the
particular viewpoints of software developers, of
acquirers of software and of evaluators typically
working as third party evaluators. Other
documents in the 14598 series provide supporting
material for those involved in evaluation,
offering standards for planning and management
of evaluations and for documentation of
evaluation modules. Of the 9126 series, only the
first document which directly deals with quality
models has as yet been published. Documents in
preparation deal with standards for the metrics
which form a critical accompaniment to any
quality model. It would be unrealistic in the

space of a single paper to discuss even the
documents already published in any detail. In
what follows, we concentrate on outlining the
foundations of the ISO proposals, the quality
model and the process of evaluation.

3 Quality models (ISO 9126)

A quality model consists of a set of quality
characteristics, each of which is decomposed into
a set of quality sub-characteristics. Metrics
measure how an object to be evaluated performs
with respect to the quality characteristics and
sub-characteristics. The quality characteristics
and sub-characteristics making up the quality
model of ISO 9126-1/01 are shown in figure 1,
on the next page. All that figure 1 shows are
names: ISO 9126-1/01 gives both definitions and
discussion.
The quality characteristics are intended to be
applicable to any piece of software product or
intermediate product. They are thus necessarily
defined at a rather high level of generality, and
need to be made more specific before they are
applicable to any particular piece of software.
They are also defined through natural language
definitions, and are thus not formal in the
mathematical or logical sense. This being so,
they are open to interpretation. Defining a
specific evaluation implies deciding on an
appropriate interpretation for that evaluation.

ISO 9126/01, whilst not barring the
possibility that a quality model other than that
contained in the standard might be used, requires
that if another model is used, it should be clearly
described.

“Software quality shall be evaluated using a
defined quality model. A quality model shall be
used when setting quality goals for software
products and intermediate products. This part of
ISO/IEC 9126 provides a recommended quality
model which can be used as a checklist of issues
relating to quality (although other ways of
categorising quality may be more appropriate in
particular circumstances). When a quality model
other than that in this part of ISO/IEC 9126 is
used it shall be clearly described.” (ISO 9126/01,
1.5, Quality relationships).

Work within the EAGLES project on
defining a general framework for evaluation

design extended this model by allowing the
quality sub-characteristics in their turn to be

decomposed; the process of decomposition being
repeated if necessary.

 suitability
accuracy
interoperability
security

functionality

Figure 1

The structure thus obtained is hierarchical, and,
theoretically of unlimited depth. ISO 9126-1/01
does not rigidly specify the relationship between
quality characteristics and metrics. The EAGLES
extension requires that each terminal node of the
structure has at least one metric associated with
it. The structure then becomes a hierarchy of
attribute value pairs, where each node is labelled
with the name of an attribute. The values of the
attributes at the terminal nodes are directly
obtained by the application of metrics. The value

of a higher level node is obtained by combining
the values of attributes nodes immediately
dominated by the higher level node: values
percolate upwards. Exactly how the combination
of values is done is determined by a combining
function which reflects the relative importance of
the attributes in a particular evaluation. This
formalization provides an operational semantics
for any particular instantiation of the quality
model. Once the evaluation designer has decided
what attributes to include in his quality model

software
product
quality

reliability

usability

maturity
fault tolerance
recoverability

understandability
learnability
operability
attractiveness

time behaviour
resource utilisation

analysability
changeability
stability
testability

portability

efficiency

maintainability

adaptability
installability
co-existence
replaceability

and how to organise them, and once he has
defined and assigned metrics to the terminal
nodes, what functionality, for example, means

within that quality model is defined by the
decomposition of the functionality node and by
the associated metrics.

Metrics will be discussed only briefly here.
The ISO standard distinguishes between
internal metrics, external metrics and quality in
use metrics. The difference between them is
determined by what kind of an evaluation
object they are applied to.

Internal metrics apply to static properties of
software, that is software considered
independently of its execution. Examples
might be the number of lines of code or the
programming language used. As can be seen
from the inclusion of the programming
language in this list, metrics are not necessarily
quantitative in their nature, although they
should, of course, be as objective as possible.
(This is one of the points we shall not go into
further here.)

External metrics apply to software when it is
being executed, to the behaviour of the system
as seen from outside. Thus they may measure
the accuracy of the results, the response time
of the software, the learnability of the user
interface and a host of other attributes that go
to make up the quality of the software as a
piece of software.

Quality in use metrics apply when the
software is being used to accomplish a
particular task in a particular environment.
They are more concerned with the effects of
using the software than with the software
itself. Quality in use metrics are therefore very
dependent on a particular environment and a
particular task. Quality in use is itself a super-
ordinate aspect of quality, for these same
reasons. It is clearly influenced by the quality
characteristics which make up the quality
model, but is determined by the interaction of
different quality characteristics in a particular
task environment.

The ISO standards published so far say little
about what makes a metric a good metric.
Some work elsewhere (Popescu-Belis, 1999,
Hovy et al, 2003) has made some suggestions.

First, metrics should be coherent, in the
sense that they should respect the following
criteria:

• A metric should reach its highest value
for perfect quality (with respect to the

attribute being measured), and, reciprocally,
only reach its highest level when quality is
perfect.

• A metric should reach its lowest level only
for the worst possible quality (again, with
respect to the attribute being tested)

• A metric should be monotonic: that is, if the
quality of software A is higher than that of
software B, then the score of A should be
higher than the score of B.

We might compare two metrics (or more strictly
two rating functions: see the section on process
below) by saying that a metric m1 is more severe
than a metric m2 if it yields lower scores than m2 for
every possible quality level. Conversely, one metric
may be more lenient than another.

To these rather formal considerations, we might
add:

• A metric must be clear and intuitive

• It must correlate well with human
judgements under all conditions

• It must measure what it is supposed to
measure

• It must be reliable, exhibiting as little
variance as possible across evaluators or for
equivalent inputs

• It must be cheap to prepare and to apply

• It should be automated if possible

4 Evaluation process (ISO 14598)

A first section of ISO 14598-1/99 is concerned with
an overview of how all the different 9126 and
14596 documents concerned with software
evaluation fit together. This overview can be
summarized quite briefly. It is fundamental to the
preparation of any evaluation that a quality model
reflecting the user’s requirements of the object to be
evaluated be constructed. The 9126 series of
documents is intended to support construction of
the quality model.

The 14598 series is concerned with the
process of evaluation, seen from different
viewpoints. Separate documents in the series
tackle evaluation from the point of view of
developers, acquirers and (third party)
evaluators. All of these make use of the 9126
series, and are further supported by the second
half of 14598-1, which sets out a generic
picture of the process of evaluation, and by
two further documents, the first concerned
with planning and management of a software
evaluation process, the second with guidance
for documenting evaluation modules.

Although these other documents in the
series are clearly important, we limit ourselves
here to summarizing the process of evaluation,
as set out in ISO 14598-1.

The evaluation process is conceived as
being generic: it applies to component
evaluation as well as to system evaluation, and
may be applied at any appropriate phase of the
product life cycle.

The evaluation process is broken down into
four main stages, each of which is considered
separately below:

Stage I: Establish evaluation requirements.

This step is broken down into a further three
steps:

a) Establish the purpose of the

evaluation

The commentary on this point reveals just how
wide the scope of the standard is intended to
be. The purpose of evaluating the quality of an
intermediate product may be to:

• Decide on the acceptance of an
intermediate product from a sub-
contractor

• Decide on the completion of a process
and when to send products to the next
process

• Predict or estimate end product quality

• Collect information on intermediate
products in order to control and manage
the process

(The reader will remember that intermediate
product means, for example, specifications or code
before it is executed).
The purpose of evaluating an end product may be
to:

• Decide on the acceptance of the product

• Decide when to release the product

• Compare the product with competitive
products

• Select a product from among alternative
products

• Assess both positive and negative effects of a
product when it is used

• Decide when to enhance or replace the
product.

It follows from this very broad range of possibilities
that the standard is meant to apply not only to any
kind of intermediate or final software product, but
to any evaluation scenario, including comparative
evaluation.

b) Identify types of products to be evaluated

Types of products here does not mean application
software, but rather is concerned with the stage
reached in the product’s life cycle, which
determines whether and what intermediate product
or final product is to be evaluated.

c) Specify quality model

The quality model is, of course, to be defined using
ISO 9126-1/01 as a guide. However, a note quoted
again below adds:

“The actual characteristics and sub-characteristics
which are relevant in any particular situation will
depend on the purpose of the evaluation and should
be identified by a quality requirements study. The
ISO/IEC 9126-1 characteristics and sub-
characteristics provide a useful checklist of issues
related to quality, but other ways of categorising
quality may be more appropriate in particular
circumstances.” (ISO 14598-1/99)

An important word here is “checklist”: the basic

purpose of the ISO quality model is to serve as a

guide and as a reminder for what should be
included in evaluating software. Arguing about
the exact interpretation of the quality
characteristics is pointless. Their interpretation
is given by the model in which they are
incorporated.

Stage II:Specify the evaluation

This too breaks down into three steps:

a) Select metrics

b) Establish rating levels for metrics

c) Establish criteria for assessment

Quality characteristics and sub-characteristics
cannot be directly measured. Metrics must
therefore be defined which correlate to the
quality characteristic. Different metrics may be
used in different environments and at different
stages of a product’s development. Metrics
have already been discussed to some extent in
the section on quality models above.

A metric typically involves producing a
score on some scale, reflecting the particular
system’s performance with respect to the
quality characteristic in question. This score,
uninterpreted, says nothing about whether the
system performs satisfactorily. To illustrate
this idea, consider the Geneva education
system, where marks in examinations range
from 1 to 6. How do you know, without being
told, that 6 is the best mark and 1 the worst? In
fact, most people guess that it is so: they may
then have a difficult time in Zurich where 1 is
the highest mark. Establishing rating levels for
metrics involves determining the
correspondence between the uninterpreted
score and the degree of satisfaction of the
requirements. Since quality refers to given
needs, there can be no general rules for when a
score is satisfactory. This must be determined
for each specific evaluation.

Each measure contributes to the overall
judgement of the product, but not necessarily
in a uniform way. It may be, for example, that
one requirement is critical, whilst another is
desirable, but not strictly necessary. In this
case, if a system performs badly with respect
to the critical characteristic, it will be assessed
negatively no matter what happens to all the

other characteristics. If it performs badly with
respect to the desirable but not necessary
characteristic, it is its performance with respect to
all the other characteristics which will determine
whether the system is acceptable or not.

This consideration feeds directly into the third
step, establishing criteria for assessment, which
involves defining a procedure for summarizing the
results of the evaluation of the different
characteristics, using for example decision tables or
weighting functions of different kinds.

Stage III: Design the evaluation

Designing the evaluation involves producing an
evaluation plan, which describes the evaluation
methods and the schedule of the evaluator action.
The other documents in the 14598 series expand on
this point, and the plan should be consistent with a
measurement plan, as described and discussed in
the document on planning and management. (ISO
14598-2/00)

Stage IV: Execute the evaluation

This final stage again breaks down into three stages:

a) Measurement

b) Rating

 c) Assessment

These steps are intuitively straightforward in the
light of the discussion above. Measurement gives a
score on a scale appropriate to the metric being
used. Rating determines the correlation between the
raw score and the rating levels, in other words, tells
us whether the score can be considered to be
satisfactory. Assessment is a summary of the set of
rated levels and can be seen as a way of putting
together the individual ratings to give an overall
picture which also reflects the relative importance
of different characteristics in the light of the
particular quality requirements. Final decisions are
taken on the basis of the assessment.

5 ISO, EAGLES and natural language
applications in practice.

It would be impossible of course to claim
knowledge of all applications of the ISO standards,

even within the limited area of work on natural
language. In this concluding section only those
applications that came to the author’s
cognisance through her involvement with work
in the EAGLES, ISLE and Parmenides projects
are mentioned.

The ISO model of 9126/91 as extended and
formalized by the first EAGLES project has
been tested by application to a number of
different language engineering applications.
Within the TEMAA project it was applied to
the evaluation of spelling checkers, and initial
work was done on quality models for grammar
checkers and translation memory systems. As
part of the EAGLES project itself, a number of
projects in the general field of information
retrieval were asked to apply the framework,
and produced, in those cases where the project
included a substantial evaluation component,
encouraging results. The second EAGLES
project was, for the evaluation group,
essentially a consolidation and dissemination
project, where an attempt was made to
encourage use of earlier results. During this
time, the model was also applied in the context
of the ARISE project, which developed a
prototype system whereby information on
railway timetables could be obtained through
spoken dialogue. Similarly, an Australian
manufacturer of speech software used the
framework to evaluate a spoken language
dialogue system. Case studies undertaken in
the context of post-graduate work have applied
the ISO/EAGLES methodology to the
evaluation of dictation systems, grammar
checkers and terminology extraction tools. One
part of the ISLE project, now coming to an
end, has been applying the methodology to the
construction of a large scale quality model of
machine translation systems. Many of the
results of this work can be consulted by
looking at the EAGLES and ISLE web sites.

Recently, work has begun on the
Parmenides project. This project is concerned
with ontology based semantic mining of
information from web based documents, with a
special interest in keeping track of information
which changes over time. Evaluation plays an
important role in the project. Three separate
user groups are supplying the basis for case
studies. At the time of writing, user

requirements are being defined, which will be
translated into quality requirements for the software
to be developed within the project and which will
serve as the basis for the quality models to be used
in on-going and final evaluation.

6 Conclusion.

The workshop for which this paper has been written
addresses the question of whether there is anything
that can be shared between evaluations. The answer
which I hope to have made convincing is that one
thing which can be shared is a way of thinking
about how evaluations should be designed and
carried out. Adhering to an acknowledged standard
in the construction of quality models and in
developing the process of a specific evaluation can
only make it easier to share more detailed aspects of
evaluation and provides a common framework for
discussion of such issues as metrics and their
validity.

References.
Blasband, M. 1999. Practice of Validation: the ARISE

Application of the EAGLES Framework. EELS
(European Evaluation of Language Systems)
Conference, Hoevelaken, The Netherlands.

EAGLES Evaluation Working Group. 1996. EAGLES
Evaluation of Natural Lnaguage Processing Systems.
Final Report, Center for Sprogteknologi, Copenhagen,
Denmark.

Hovy, E, King, M and Popescu-Belis, A. 2002.
Computer-aided Specification of Quality Models for
MT Evaluation. Third International Conference on
Language Resources and Evaluation (LREC).

Hovy, E, King, M and Popescu-Belis, A. 2003.
Principles of Context Based Machine Translation
Evaluation. ISLE report.

ISO/IEC 9126-1:2001 Software engineering – product
quality – Part 1: Quality Model. Geneva, International
Organization for Standardization and International
Electrotechnical Commission.

ISO/IEC DTR 9126-2 (in preparation): Software
engineering – product quality – Part 2: External
metrics. . Geneva, International Organization for
Standardization and International Electrotechnical
Commission

ISO/IEC CD TR 9126-3 (in preparation): Software
engineering – product quality – Part 3: Internal
metrics. . Geneva, International Organization for

Standardization and International
Electrotechnical Commission

ISO/IEC CD 9126-4 (in preparation): Software
engineering – product quality – Part 4: Quality
in use metrics. . Geneva, International
Organization for Standardization and
International Electrotechnical Commission

ISO/IEC CD 9126-30 (in preparation): Software
engineering – Software product quality
requirements and evaluation – Part 30: Quality
metrics – Metrics reference model and guide. .
Geneva, International Organization for
Standardization and International
Electrotechnical Commission

ISO/IEC 14598-1:1999 Information technology –
Software product evaluation – Part 1: General
Overview. Geneva, International Organization
for Standardization and International
Electrotechnical Commission

ISO/IEC 14598-2:2000– Software engineering -
product evaluation – Part 2: Planning and
Management. Geneva, International
Organization for Standardization and
International Electrotechnical Commission

ISO/IEC 14598-3:2000– Software engineering -
product evaluation – Part 3: Process for
developers. . Geneva, International Organization
for Standardization and International
Electrotechnical Commission

ISO/IEC 14598-5:1998 Information technology –
Software product evaluation – Part 5: Process
for evaluators Geneva, International
Organization for Standardization and
International Electrotechnical Commission

ISO/IEC 14598-4:1999– Software engineering -
product evaluation – Part 4: Process for
acquirers Geneva, International Organization
for Standardization and International
Electrotechnical Commission

ISO/IEC 14598-6:2001– Software engineering -
product evaluation – Part 6: Documentation of
evaluation modules Geneva, International
Organization for Standardization and
International Electrotechnical Commission

King, M. 1996. Evaluating Natural Language
Processing Systems. Communications of the
Association for Computing Machinery (CACM),
Vol. 39, Number 1.

Popescu-Belis, A. 1999. Evaluation of natural
anguage processing systems: a model for
coherence verification of quality measures. M.

Blasband and P. Paroubek, eds, A Blueprint for a
General Infrastructure for Natural Language
Processing Systems Evaluation Using Semi-Automatic
Quantitative Approach Black Box Approach in a
Multilingual Environment. ELSE project. (Evaluation
in Speech and Language Engineering).

Sparck-Jones, K. and Galliers J.R. 1996. Evaluating
Natural Language Processing Systems:An Analysis
and Review. Lecture Notes in Artificial Intelligence
1083. Springer-Verlag.

