Automating Hinting in Mathematical Tutorial Dialogue

Armin Fiedler
Department of Computer Science
Saarland University
afiedler@cs.uni-sb.de

Thematic Session: Adaptation and learning in
spoken dialogue systems

Abstract

In spite of psychological substantia-
tion of hinting, most intelligent tutoring
systems do not systematically produce
hints. In this paper we present a taxon-
omy of hints for tutoring mathematics.
Based on this taxonomy, we suggest an
algorithm for the production of hints.

1 Introduction

Although there has been psychological evidence
(Chi et al., 1994; Rosé et al., 2001) for the high
educational effect of hinting, most intelligent tu-
toring systems do not take advantage of the find-
ings. Only little systematic research in automating
hinting has been done (Hume et al., 1996b; Fiedler
and Horacek, 2001; Tsovaltzi, 2001).

In the DIALOG project, we undertake the goal
of tackling some problems of mathematical tutor-
ing dialogue systems in the domain of naive set
theory (Pinkal et al., 2001). More specifically, DI-
ALOG aims at providing a mathematical knowl-
edge base that would serve as the basis for the
study material, a user-adaptive dialogue system
modelling tutorial dialogues and an advanced the-
orem prover fitting the needs of planning for tuto-
rials. In this framework, we have been investigat-
ing the automation of the hinting process.

A mathematical tutoring system must be able to
tutor proofs in a way that not only helps the student
understand the current proof, but also allows for a
high learning effect. What is meant by the latter is
the ability of the students not only to better under-
stand the problem at hand, but also to generalise

Dimitra Tsovaltzi

Department of Computational Linguistics

Saarland University
dimitra@coli.uni-sb.de

and apply the taught strategies on their own later
on. We propose to establish those tutoring aims by
making use of the socratic tutoring method (Per-
son et al., 2000; Rosé et al., 2001). The decisive
characteristic of the socratic method is the use of
hints in order to achieve self-explanation, as op-
posed to answers and explanations being provided
constantly by the tutor, which is characteristic of
the didactic method (Rosé et al., 2001; Tsovaltzi
and Matheson, 2002).

Hinting is a method that aims at encouraging
active learning. It can take the form of eliciting in-
formation that the student is unable to access with-
out the aid of prompts, or information which he
can access but whose relevance he is unaware of
with respect to the problem at hand. Alternatively,
a hint can point to an inference that the student is
expected to make based on knowledge available to
him, which helps the general reasoning needed to
deal with a problem (Hume et al., 1996b).

In this paper, we shall first give in Section 2 a
taxonomy of hints that we developed for the do-
main of mathematics tutoring. Next, in Section 3,
we shall propose an algorithm for producing hints
based on that taxonomy. This hinting algorithm
is envisaged as part of a dialogue manager, which
accounts also for other types of dialogues, such as
clarification sub-dialogues and question answer-
ing. Then, in Section 4, the algorithm will be sup-
plemented with an example, before we conclude
the paper.

2 A Taxonomy of Hints

In this section we shall explain the philosophy
and the structure of our hint taxonomy. We shall
also look into the most representative hints that
are used in the algorithm. The names of the cate-
gories are intended to be as descriptive of the con-

45

tent as possible, and should in some cases be self-
explanatory. Our taxonomy includes more than
the hint categories mentioned in this section. The
full taxonomy is given in Table 1. Some of the
strategies are not real hints (e.g., point-to-lesson),
but they have been included in the taxonomy be-
cause they are part of the general hinting process.

2.1 Philosophy and Structure

Our hint taxonomy was derived with regard to the
underlying function that can be common for differ-
ent surface realisations. The underlying function
is mainly responsible for the educational effect of
hints. The surface structure, which undoubtedly
plays its own significant role in teaching, is yet to
be examined in the naive set theory domain.

We defined our hint categories based on the
needs in the domain. In order to estimate those
needs we defined the relations between the ob-
jects in the domain. More specifically, we defined
the inter-relations between mathematical concepts
as well as between concepts and inference rules,
which are used in proving. An additional guide
for deriving hint categories that are useful for tu-
toring in our domain was a previous hint taxon-
omy, which was derived from the BE&E corpus
(Tsovaltzi, 2001).

The structure of the hint taxonomy reflects the
function of the hints with respect to the informa-
tion that the hint addresses or is meant to trigger.
In order to capture different functions of a hint we
define hint categories across two dimensions.

Before we introduce the dimensions, let us clar-
ify some terminology. In the following, we dis-
tinguish performable steps from meta-reasoning.
Performable steps are the steps that can be found
in the formal proof. These include premises,
conclusion and inference methods such as lem-
mata, theorems, definitions of concepts, or calcu-
lus level rules (e.g., proof by contradiction). Meta-
reasoning steps consist of everything that leads to
the performable step, but cannot be found in the
formal proof. To be more specific, meta-reasoning
consists of everything that could potentially be ap-
plied to any particular proof. It involves general
proving techniques. As soon as a general tech-
nique is instantiated for the particular proof, it be-
longs to the performable step level.

The two hint dimensions consist of the follow-

46

ing classes:

1. active vs. passive hints

2. domain-relation vs. domain-object vs.
inference-rule vs. substitution vs. meta-
reasoning vs. performable-step hints

In the second dimension, we ordered the classes
with respect to their subordination relation. We
say, that a class is subordinate to another one if it
reveals more information. In addition, the class of
pragmatic hints belongs to the second dimension
as well, but we define it so that it is not subordinate
to any other class and no other class is subordinate
to it.

2.2 First Dimension

The first dimension distinguishes between the ac-
tive and passive function of hints. The difference
lies in the way the information to which the tu-
tor wants to refer is approached. The idea be-
hind this distinction resembles that of backward-
vs. forward-looking function of dialogue acts in
DAMSL (Core and Allen, 1993). The active func-
tion of hints looks forward and seeks to help the
student in accessing a further bit of information,
by means of eliciting, that will bring him closer
to the solution. The student has to think of and
produce the answer that is hinted at.

The passive function of hints refers to the small
piece of information that is provided each time in
order to bring the student closer to some answer.
The tutor gives away some information, which he
has normally unsuccessfully tried to elicit previ-
ously. Due to that relation between the active and
passive function of hints, the passive function of
one hint class in the second dimension consists of
hint categories that are included in the active func-
tion in its subordinate class.

2.3 Second Dimension

Domain-relation hints address the relations be-
tween mathematical concepts in the domain. An
example of a relation that we have defined is an-
tithesis, which captures that two concepts are op-
posites. For example, the element relation € is in
antithesis to its opposite €. The passive function
of domain-relation hints is the active function of
domain-object hints, that is, they are used to elicit
domain objects.

| active

| passive

domain-relation

elicit-antithesis
elicit-duality
elicit-junction
elicit-hypotaxis
elicit-specialisation
elicit-generalisation

give-away-antithesis
give-away-duality
give-away-junction
give-away-hypotaxis
give-away-specialisation
give-away-generalisation

domain-object

give-away-antithesis
give-away-duality
give-away-junction
give-away-hypotaxis
give-away-specialisation
give-away-generalisation

give-away-relevant-concept
give-away-hypotactical-concept
give-away-primitive-concept

inference rule

give-away-relevant-concept
give-away-hypotactical-concept
give-away-primitive-concept
elaborate-domain-object

give-away-inference-rule

substitution

give-away-inference-rule

spell-out-substitution

elicit-substitution

meta-reasoning spell-out-substitution

explain-meta-reasoning

performable-step
confer-to-lesson

explain-meta-reasoning

give-away-performable-step

ordered-list
unordered-list
elicit-discrepancy

pragmatic

take-for-granted
point-to-lesson

Table 1: The taxonomy of hints.

Domain-object hints address an object in the
domain. The hint give-away-relevant-concept
names the most prominent concept in the propo-
sition or formula under consideration. This might
be, for instance, the concept whose definition
the student needs to use in order to proceed
with the proof, or the concept that will in gen-
eral lead the student to understand which infer-
ence rule he has to apply. Other examples in
the class are give-away-hypotactical-concept and
give-away-primitive-concept. The terms hypotac-
tical and primitive concept refer to the relation,
based on the domain hierarchy, between the ad-
dressed concept and the original relevant concept,
which the tutor is trying to elicit. The passive
function of domain-object hints is used to elicit the
applicable inference rule, and, therefore, is part of
the active function of the respective class.

Inference-rule hints refer to the inference rules
in the domain that need to be applied in the cur-
rent proof. An additional active inference rule
hint is elaborate-domain-object. 1t asks the stu-
dent to elaborate on the domain object at hand
in order to elicit the inference rule. The passive
function, give-away-inference-rule, names the in-
ference rule to be used. It is used to elicit the sub-

stitution of the rule for the problem at hand.

The active function of substitution hints consists
of the passive function of the inference-rule hint
plus the hint elicit-substitution. The latter asks the
student to bind variables of the inference rule. The
passive function spell-out-substitution explains to
the student the way the substitution is done.

The active function of meta-reasoning hints is
spell-out-substitution. It is, thus, the last hint that
leads to the completion of the hints about the meta-
reasoning employed. Therefore, its passive func-
tion explains the meta-reasoning employed so far.

The active function of performable-step hints
consists of the passive function of meta-reasoning
hints plus the hint confer-to-lesson, which points
the student to the section in the study material
where the answer can be found. Since there is
no meta-reasoning left to be explained, the passive
function is give-away-performable step.

Finally, the class of pragmatic hints is some-
what different from other classes in that it makes
use of minimal domain knowledge. It rather refers
to pragmatic attributes of the expected answer.
The active function hints are ordered-list, which
specifically refers to the order in which the parts of
the expected answer appear, unordered-list, which

47

only refers to the number of the parts, and elicit-
discrepancy, which points out that there is a dis-
crepancy between the student’s answer and the ex-
pected answer. The latter can be used in place of
all other active hint categories. Take-for-granted
asks the student to just accept something as a fact
either when the student cannot understand the ex-
planation or when the explanation would require
making use of formal logic. Point-to-lesson points
the student to the lesson in general and asks him
to read it again when it appears that he cannot be
helped by tutoring because he does not remember
the study material. There is no one-to-one cor-
respondence between the active and passive prag-
matic hints. Some pragmatic hints can be used in
combination with hints from other classes.

3 A Hinting Algorithm

A tutorial system ideally aims at having the stu-
dent find the solution to a problem by himself.
Only if the student gets stuck should the system
intervene. There is pedagogical evidence (Chi et
al., 1994; Rosé et al., 2001) that students learn
better if the tutor does not give away the answer
but instead gives hints that prompt the student for
self-explanations. Accordingly, based on the work
by Tsovaltzi (2001) we have derived an algorithm
that implements an eliciting strategy that is user-
adaptive by choosing hints tailored to the students.
Only if hints appear not to help does the algorithm
switch to an explaining strategy, where it gives
away the answer and explains it. We shall fol-
low Person and colleagues (2000) and Rosé and
colleagues (2001) in calling the eliciting strategy
socratic and the explaining strategy didactic.

To determine which parts of the solution need to
be addressed the algorithm has to examine the stu-
dent’s answer. Therefore, we shall briefly present
the student answer categories we use in the algo-
rithm in Section 3.1 before we introduce the hint-
ing algorithm in more detail in Section 3.2.

3.1 Student Answer Categories

The algorithm that determines if a hint is to be pro-
duced and chooses the hint takes into account the
last answer the student has given. In particular, we
need to categorise the student’s answer in terms of
its completeness and accuracy with respect to the
expected answer. We say that an answer is com-

48

plete if and only if all desired parts of the answer
are mentioned. We say that a part of an answer
is accurate if and only if the propositional content
of the part is the true and desired one. Based on
these notions, we define the following student an-
swer categories:

Correct: The answer is complete and all parts are
accurate.

Incomplete-Accurate: The answer is incom-
plete, but all parts that are there are accurate.

Inaccurate: The answer is complete or incom-
plete, but some parts of the answer are inac-
curate.!

Wrong: The answer is incomplete and all parts
are inaccurate.

We consider over-answering as several distinct
answers, that is, if the student’s answer has more
parts than needed, these parts are considered as an-
other answer, which can be categorised in turn.

3.2 The Algorithm

We shall now present an algorithm that imple-
ments the socratic strategy. In intuitive terms, the
algorithm aims at having the student find the proof
by himself. If the student does not know how to
proceed or makes a mistake, the algorithm prefers
hinting at the right solution in order to elicit the
problem solving instead of giving away the an-
swer. An implicit student model makes the algo-
rithm sensitive to students of a different level by
providing increasingly informative hints. Only if
the hinting does not effect correct student answers
after several hints does the algorithm switch to a
didactic strategy, and, without hinting, explains
the steps that the student cannot find himself. Nev-
ertheless, the algorithm continues to ask the stu-
dent for the subsequent step. If the student gives
correct answers again and, thus, the tutor need not
explain anymore, the algorithm switches back to
the socratic strategy. In effect, hints are provided
again to elicit the step under consideration.

"Note that this category is in fact an aggregation of several
categories, which we need not distinguish for the purposes of
this paper.

The Main Algorithm

The algorithm takes into account not only current
and previous student answers and the number of
wrong answers, but also the previous hints it pro-
duced both with respect to the hint category and
the number of hints produced. The essentials of
the algorithm are as follows:

1. if the proof is not completed
then prompt for the next step
else stop
2. analyse the student answer
3. if the student’s answer is correct
then accept the answer and go to step 1.
else call the function socratic on the
inaccurate and missing parts of the
student’s answer

The Function socratic

The bulk of the work is done by the function so-
cratic, which we only outline here. The function
takes as an argument the category C' of the stu-
dent’s current answer. If the origin of the student’s
mistake is not clear, a clarification dialogue is initi-
ated, which we shall not describe here. Note, how-
ever, that the function stops if the student gives the
correct answer during that clarification dialogue,
as that means that the student corrected himself.
Otherwise, the function produces a hint in a user-
adaptive manner.

The function socratic calls several other func-
tions, which we shall explain subsequently.

Let H denote the number of hints produced so
far and C'_; the category of the student’s previous
answer. The hint is then produced as follows:

Case H=0
if C' is wrong or inaccurate then call elicit
if C' is incomplete-accurate
then produce an active pragmatic hint
{that is, ordered-list, or unordered-list}
Case H =1
if C'is wrong
then if C'_1 is wrong or incomplete-accurate
then call up-to—inference-rule
if C_, is inaccurate
then call elicit-give-away
if C_q is correct
then call elicit
else call elicit
Case H =2
if C is wrong
then if this is the third wrong answer
then produce explain-meta-reasoning
else if previous hint was an active
substitution hint
then produce spell-out-substitution
else if previous hint was
spell-out-substitution

then produce
give-away-performable-step
else call up-to-inference-rule
else call elicit-give—away
Case H =3
if C is wrong and it is at least the third wrong
answer
then produce point-to-lesson and stop
{The student is asked to read the lesson

again. Afterwards, the algorithm starts
anew.}
else produce explain-meta-reasoning
Case H > 4

give away the answer and switch to didactic
strategy; switch back after three consecutive cor-
rect answers with all counters reset
{After four hints, the algorithm starts to guide the student
more than before to avoid frustration. If the student is able
to follow again the tutor’s plan for addressing the task, the
algorithm switches back to the socratic strategy again and
lets the student take over. If the student carries on giving
correct answers the main algorithm guarantees that the tu-
tor just accepts the answer and does not intervene further.
Only if the student makes a mistake again will the hinting
start anew with all counters reset. }
After having produced a hint the function so-
cratic analyses the student’s answer to that hint.
If the student’s answer is still not right the func-
tion socratic is recursively called. However,
if the student answers correctly and at least two
hints have been produced the algorithm re-visits
the produced hints in the reverse order to recapitu-
late the proof step and to make sure the student un-
derstands the reasoning so far. This is done by pro-
ducing a sequence of active meta-reasoning hints,
one for each hint that have addressed the current
step of the proof, in the reverse order. If the active
meta-reasoning hints get the student to say any-
thing but the right answer, the algorithm produces
an explain-meta-reasoning hint. This is done to
avoid frustrating the student as his performance is
poor.
The function socratic calls several functions,
which we shall present now. The functions are

self-explanatory.

Function elicit

if the student knows the relevant concept
then if the student knows the inference rule
then call up-to-substitution
else call up-to-inference-rule
else call elicit-relevant-concept

Function elicit-give-away

if previous hint was an active domain-object
hint

then call up-to-inference-rule

else if previous hint was a passive

49

domain-object hint
then produce elaborate-domain-object
else if previous hint was
elaborate-domain-object
then call up-to-substitution
else produce give-away-performable-step
and spell-out-substitution
{this is to explain the substitution}

Function up-to-inference-rule

if previous hint was
give-away-hypotactical-concept
then produce give-away-inference-rule
else if previous hint was
give-away-relevant-concept
then produce elaborate-domain-object
else if previous hint was
elaborate-domain-object
then produce
give-away-hypotactical-concept
else produce
give-away-relevant-concept

Function up-to-substitution

if previous hint was elicit-substitution
then produce spell-out-substitution
else if right inference rule known

then produce elicit-substitution

else produce give-away-inference-rule

Function elicit-relevant—-concept

if the student knows a concept that is related
to the relevant concept

then produce an active domain-object hint

else produce give-away-relevant-concept

4 An Example Dialogue

To elucidate how the algorithm for the socratic tu-
toring strategy proceeds, let us consider the fol-
lowing dialogue as it might occur between a tu-
toring system and a student. The tutoring sys-
tem, denoted as tutor in the following, is supposed
to teach the proof of the proposition A N B €
P(A U B), where P(X) stands for the powerset
of the set X, that is, the set of all subsets of X,
including the empty set and X itself. The proof is
as follows: Obviously, AN B C AU B. Thus, the
proposition follows by the definition of powerset.

When the algorithm starts, the counter H for the
hints produced so far is initialised to 0. Since the
proof is not completed, the tutor prompts for the
first step by introducing the task.

Tutor (1): Provethat AN B € P(AU B).
The expected answer is that by the application

of the definition of powerset it suffices to show that
AN B C AU B. However, the student answers:

50

Student (2): | don’t know how to prove that.

This utterance is categorised as a wrong answer,
since it does not contain any accurate part. Thus
the algorithm calls the function socratic. Since
H = 0, it calls the functions elicit and, thus,
elicit-relevant—concept and eventually pro-
duces a hint of type give-away-relevant-concept
(where powerset is the relevant concept) to elicit
the inference rule (namely, the application of a
definition).

Tutor (3): Think of using powerset.

With the production of this hint, the counter H
is incremented by 1. However, this hint is not suf-
ficient to help the student:

Student (4): How can | use it?

This again is categorised as a wrong answer.
Thus, the function socratic is called recursively.
Since H = 1, the function up-to-inference—
rule is called, which produces a hint of type
elaborate-domain-object to elicit the inference
rule.

Tutor (5): What are the properties of powerset?

Again, the counter H is incremented by 1. The
student answers:

Student (6): | don't know.

This answer is also considered as wrong. Since
this is the third wrong answer and H = 2, the al-
gorithm now produces an explain-meta-reasoning
hint and explains the reasoning behind this step.

Tutor (7): You can start by applying the definition of
powerset, which connects powerset to subset.
This will simplify the problem.

The counter H is again incremented by 1.

Student (8): | don’t understand.

This is again a wrong answer. Since H = 4, the
algorithm produces a give-away-performable-step
hint:

Tutor (9): According to the definition, the powerset of
a set X is the set of all subsets Y of X. That
is, if Y C X then Y € P(X). Now, you need to
substitute X and Y with the right formulae from
the proposition you want to prove.

Subsequently, the system switches to the didac-
tic strategy, which we will not pursue in this pa-
per. After having completed the explanation of
this proof step, the system re-visits all hints pro-
duced by the socratic strategy while explaining the
step, and makes the student aware of why they
were produced. However, we will not go into such
detail here, since it is not in the focus of this paper.

Instead, let us examine what happens if the stu-
dent gives partial answers. Let us assume that the
first hint uttered in (3) leads the student into the
right direction:

Student (4°): | can try to apply the definition of power-
set.

Since the student names the correct inference
rule, but does not give the instantiation, this is con-
sidered as an incomplete-accurate answer. Hence,
the algorithm calls the function elicit. Since the
student already knows both the right relevant con-
cept and the right inference rule, the tutor produces
an elicit-substitution hint:

Tutor (5°): Can you spell out the application?

Student (6’): From the definition of the powerset fol-
lowsthatif ANB C AUBthen ANB € P(AUB).
Thatis, all | have to do is prove that ANB C AUB.

This is the correct answer, which also completes
the first proof step. Since only one hint was pro-
duced, the recapitulation is omitted. Thus the al-
gorithm proceeds with prompting for the next step.

5 Related Work and Discussion

Several other tutorial systems tackle hinting strate-
gies as well. The BE&E project (Core et al., 2000)
investigated multi-turn tutorial strategies in basic
electricity and electronics. Some of these strate-
gies are motivated by similar theoretical interests
to the ones presented here. However, the number
of strategies is small and no emphasis is given to
the way information is made salient, which is the
aim of our taxonomy. Moreover, there are no crite-
ria, equivalent to our algorithm, for choosing one
strategy over another.

Ms. Lindquist (Heffernan and Koedinger,
2000), a tutorial system for high-school algebra,
also has some domain specific types of questions

that resemble the BE&E strategies in form. Al-
though there is some mention of hints, and the no-
tion of gradually revealing information by rephras-
ing the question is prominent, there is no taxon-
omy of hints or any suggestions for dynamically
producing them.

An analysis of hints can also be found in the
CIRCSIM-Tutor (Hume et al., 1996a; Hume et al.,
1996b), an intelligent tutoring system for blood
circulation. Our work has been largely inspired by
the CIRCSIM project both for the general plan-
ning of the hinting process and for the taxonomy
of hints. CIRCSIM-Tutor uses domain specific
hint tactics that are applied locally, but does not
include a global hinting strategy that models the
cognitive reasoning behind the choice of hints.
We, instead, make use of the hinting history in
a more structured manner. Our algorithm takes
into account the kind of hints produced previ-
ously as well as the necessary pedagogical knowl-
edge, and follows a smooth transition from less
to more informative hints. Furthermore, we have
defined a structured hint taxonomy with refined
definition of classes and categories based on the
passive vs. active distinction, which is similar to
active-passive continuum in CIRCSIM. We have
distinguished these from functions, which resem-
ble CIRCSIM tactics, but are again more detailed
and more clearly defined. All this facilitates the
automation of the hint production.

AutoTutor (Person et al., 2000) uses curriculum
scripts on which the tutoring of computer literacy
is based. There is mention of hints that are used
by every script. Although it is not clear exactly
what those hints are, they seem to be static. More
emphasis seems to be put on the pedagogically ori-
ented choice of dialogue moves, prosodic features
and facial expression features, but not on hints. In
contrast, we have presented in this paper a hint tax-
onomy (cf. Section 2) and a tutoring algorithm (cf.
Section 3) that models the dynamic generation of
hints according to the needs of the student.

AutoTutor also uses a cycle of prompting-
hinting-elaborating. This structure relies on the
different role of the dialogue moves involved to
capture the fact that the tutor provides more and
more information if the student cannot follow the
tutoring well. However, it does not provide hints
that themselves reveal more information as the tu-

51

toring process progresses, which we have mod-
elled in our algorithm for the Socratic teaching
method (cf. Section 3). Thus, the student is not
merely made to articulate the expected answers, as
is the case in AutoTutor, but he is also encouraged
to actively produce the content of the answer itself.
Furthermore, the separation of the study material
and the tutoring session facilitates the production
of the answers by the student, since the tutor does
not have to present the material and re-elicit it in
one and the same session. The student is guided
through making use of the study material that he
has already read in order to solve the problem.

6 Conclusion and Future Work

There is psychological evidence that hinting in tu-
torial dialogue has a positive effect on the student’s
learning (Chi et al., 1994; Rosé et al., 2001). To
take advantage of this effect, we have been devel-
oping a taxonomy of hints and a socratic algorithm
for hint production in tutorial dialogues in mathe-
matics. This algorithm should be easily adaptable
to other tutoring domains as well.

Before we implement the algorithm in an intel-
ligent system for tutorial dialogues, we chose to
perform Wizard-of-Oz experiments to test the ade-
quacy of the taxonomy and the effectiveness of the
socratic algorithm. The experiments have already
been completed and are currently being evaluated.

The socratic algorithm presented in this paper
does not deal with the realisation of the hints. We
are currently investigating the surface structure of
hints and their generation. Moreover, the pro-
duced hints do not necessarily complete the tutor’s
dialogue turn. Further examination is needed to
suggest a model of dialogue moves and dialogue
specifications in our domain.

References

Michelene T. H. Chi, Nicholas de Leeuw, Mei-Hung
Chiu, and Christian Lavancher. 1994. Eliciting self-
explanation improves understanding. Cognitive Sci-
ence, 18:439-477.

Mark G. Core and James F. Allen. 1993. Coding dia-
logues with DAMSL annotation scheme. In AAAI
Fall Symposium on Communicative Action in Hu-
mans and Machines, pages 28-35, Boston, MA.

52

Mark G. Core, Johanna D. Moore, and Claus Zinn.
2000. Supporting constructive learning with a feed-
back planner. In Proceedings of the AAAI Fall Sym-
posium: Building Dialogue Systems for Tutorial Ap-
plications, Falmouth, MA. AAAI Press.

Armin Fiedler and Helmut Horacek. 2001. Towards
understanding the role of hints in tutorial dialogues.
In BI-DIALOG: 5th Workshop on Formal Semantics
and Pragmatics in Dialogue, pages 40-44, Biele-
feld, Germany.

Neil T. Heffernan and Kenneth R. Koedinger. 2000.
Building a 3rd generation ITS for symbolization:
Adding a tutorial model with multiple tutorial strate-
gies. In Proceedings of the ITS 2000 Workshop on
Algebra Learning, Montréal, Canada.

Gregory Hume, Joel Michael, Allen Rovick, and
Martha Evens. 1996a. Student responses and fol-
low up tutorial tactics in an ITS. In Proceedings of
the 9th Florida Artificial Intelligence Research Sym-
posium, pages 168—172, Key West, FL.

Gregory D. Hume, Michael A. Joel, Rovick A. Allen,
and Martha W. Evens. 1996b. Hinting as a tactic
in one-on-one tutoring. Journal of the Learning Sci-
ences, 5(1):23-47.

Natalie K. Person, Arthur C. Graesser, Derek Harter,
Eric Mathews, and the Tutoring Research Group.
2000. Dialog move generation and conversation
management in AutoTutor. In Proceedings of the
AAAI Fall Symposium: Building Dialogue Systems
for Tutorial Applications, pages 45-51, Falmouth,
MA. AAAI Press.

Manfred Pinkal, Jorg Siekmann, and Christoph
Benzmiiller. 2001. Projektantrag Teilprojekt MI3
— DIALOG: Tutorieller Dialog mit einem mathe-
matischen Assistenzsystem. In Fortsetzungsantrag
SFB 378 — Ressourcenadaptive kognitve Prozesse,
Universitit des Saarlandes, Saarbriicken, Germany.

Carolyn P. Rosé, Johanna D. Moore, Kurt VanLehn,
and David Allbritton. 2001. A comparative eval-
uation of socratic versus didactic tutoring. In Jo-
hanna Moore and Keith Stenning, editors, Proceed-
ings 23rd Annual Conference of the Cognitive Sci-
ence Society, University of Edinburgh, Scotland,
UK.

Dimitra Tsovaltzi and Colin Matheson. 2002. Formal-
ising hinting in tutorial dialogues. In EDILOG: 6th
workshop on the semantics and pragmatics of dia-
logue, pages 185-192, Edinburgh, Scotland, UK.

Dimitra Tsovaltzi. 2001. Formalising hinting in tu-
torial dialogues. Master’s thesis, Division of Infor-
matics, University of Edinburgh, Scotland, UK.

