Multimodal Dialogue Management in the COMIC Project

Roberta Catizone, Andrea Setzer, Yorick Wilks
Department of Computer Science
University of Sheffield
{R.Catizone, A.Setzer, Y.Wilks}@dcs.shef.ac.uk

Abstract

The next generation internet applica-
tions will feature not only the ability
to understand spoken and written nat-
ural language text, (pen) gestures and
body postures, they will also and im-
portantly be able to engage with the
user in a natural dialogue about the ap-
plication. In this paper we will de-
scribe the design of a multimodal dia-
logue and action management module,
part of the COMIC demonstrator, which
is aimed at these next generation ap-
plications. The design uses well un-
derstood structures like stacks and aug-
mented transition networks in a novel
way to obtain the flexibility needed for
mixed-initiative dialogue. We also show
how this is applied to the application
of the COMIC demonstrator - bathroom
design.

1 Introduction

Even though the usage of the Internet has grown
over the last years, the usage of internet services
such as eCommerce and eWork did not meet the
expectations. One of the main factors is the steep
learning curve that users have to tackle before
they can effectively use the service. The basic
functionality, such as browsing through articles,
adding items to a shopping cart etc. are familiar
to the user, and thus the difficulty must lie in non-
intuitive interfaces.

Next generation applications aim to overcome
these immense difficulties by using ‘perceptual
user interfaces’ which combine human-like sens-
ing and perceiving capabilities with social skills
and conventions. This requires a rich multimodal
communication environment, in which natural lan-
guage can be freely used, or only with few con-
straints. With perceptual interfaces, the user is al-
ways given the opportunity to interact in the way
that is convenient to him or her.

To support a multimodal communication envi-
ronment, the system has to be able to understand
speech and natural language typed text, gestures,
pen input, facial expressions, and body posture.
One of the main features is the ability to engage
in a natural dialogue with regards to the applica-
tion with the user.

The COMIC project, addresses the problems
and has the objectives of (a) developing software
that will improve the usability of eCommerce and
eWork services and (b) demonstrating the usabil-
ity in form of a novel application for the support
of bathroom design.

In this paper we will concentrate on the di-
alogue and action management (DAM) module,
which is the module responsible for maintaining
a natural dialogue with the user. We will describe
our approach as well as justify the reasons for de-
signing it the way we did in section 3. The ba-
sic design of the DAM involves a stack, contain-
ing Augmented Transition Networks (ATNs) and
a control mechanism for pushing and popping the
ATNs. Section 4 will talk about how ATNs are
created. The dialogue relies also on an applica-

tion oriented ontology, which will be described in
section 4.1. The penultimate section of the paper,
section 4.2, addresses the issue of how particular
ATNs are chosen to deal with the task at hand.

2 The COMIC Project

COMIC (COnversational Multimodal Interaction
with Computers) is a recently launched IST
project' which will last for three years. The
main aim of COMIC is to define generic cognitive
models for multimodal interaction and to evaluate
these in a number of demonstrators.

The main demonstrator COMIC will build will
demonstrate the significantly increased usability
that is the result of adding multimodality to con-
ventional point and click applications. It is based
on an elaborate bathroom design tool, which was
developed by the COMIC partner ViSoft? and with
which bathrooms can be designed and decorated.
The demonstrator, which adds multimodality to
the tool, allows a naive user to design and deco-
rate his or her own bathroom. Using the modal-
ities of speech, pen gestures, and facial output,
the system assists the user in entering the mea-
surements and outline of the bathroom and choos-
ing the decoration and sanitary ware for the bath-
room. The demonstrator will be implemented in
both English and German, and will integrate sepa-
rate modules developed at the partner sites. A sim-
plified overview of the architecture, showing these
modules, can be seen in figure 1.

Automatic speech (ASR) and pen recognition
(APR) comprise the input processing module.
ASR focuses on the recognition of paralinguistic
information, whereas APR addresses handwriting
recognition, 2D and 2.5D pen gestures.

Fusion, the responsibility of DFKI, analyses
and interprets multiple concurrent input modes si-
multaneously to create a comprehensive represen-
tation of the communicative goals and actions of
the user. The meaning representations from this
processing stage are hypotheses for reasoning in
the dialogue and action module (DAM) in the con-
text of the ongoing human-computer interaction.

The dialogue and action Management, being
developed at the University of Sheffield, is the fo-

'Contract number IST-2001-32311
Zwww.visoft.de

cus of this paper and will be described in detail in
the following sections.

A Fission module then receives meaning rep-
resentations from the DAM which represent the
goals and actions of the system which can be user
or system-driven. Fission decides the actual lex-
ical content and which output channels to use.
Three main output channels are available: verbal
channels, including speech and text; head chan-
nels, including facial expressions, gaze, lip move-
ments, and whole-head gestures such as nodding;
and other visual channels, including drawings and
graphics.

The output processing module consist of three
sub-modules reflecting these output channels.
Speech Generation realises the verbal channel, the
avatar is the vehicle for the head, and the ViSoft

3 Designing the Dialogue and Action
Management Module in COMIC

3.1 Initial Considerations

Any survey of this field right now might suggest
that we may be in something of the same posi-
tion as the field of Information Extraction (IE)
when Jerry Hobbs(Hobbs, 1993) wrote his brief
note on a generic IE systems, on the assumption
that all functioning IE systems contained roughly
the same modules doing the same tasks, and that
the claimed differences were largely matters of
advertising, plus dubious claims to special theo-
ries with trademarked names. However, we may
be in a worse position with dialogue systems be-
cause, unlike IE, there is little or no benchmarked
performance with which to decide which modules
and theoretical features aid robust dialogue per-
formance. The lack of an established evaluation
methodology is, by common consent, one of the
main features holding back robust dialogue devel-
opment methodology.

We cannot even appeal to some accepted pro-
gression of systems towards an agreed level of ma-
turity, as one can in some areas on NLP: even very
primitive dialogue systems from long ago contain
features which many would associate with very so-
phisticated systems: Carbonell’s POLITICS (Car-
bonell, 1979) seems to be just a series of ques-
tions and answers to a complex knowledge base,

Speech

Speech

Recognition \ m
Gesture /7
Recognition
) w

Generation | % /
Bathroom
=
Application
Avatar =

Action
Management

Figure 1: Simplified COMIC architecture

and might therefore be deemed a very simple dia-
logue grammar, lacking even a global structure of
greetings and goodbyes. But it is clear that he con-
siders the system to deploy coded forms of goals,
beliefs and plans, which one might take as a suf-
ficient property for a more developed class of sys-
tems.

Again, PARRY (Colby, 1971) the most devel-
oped and robust of the early dialogue systems,
might also seem to be simply a dialogue grammar
at heart, yet it very clearly had the goal of inform-
ing the user of certain things and, even though it
had no explicit representation of goals and beliefs,
it did have a primitive but explicit model of the
user.

We have assumed in COMIC that a plausible
DAM system must be able to have at least the fol-
lowing functionalities:

(a) determine the form of response locally,
where appropriate, to dialogue turn pairs, where
appropriately means in both pragmatic (i.e. dia-
logue act functional) and semantic terms (i.e. give
correct answers to questions if known).

(b) have some form of representation of a whole
dialogue, which means not only opening and clos-
ing it appropriately, but knowing when a topic has
been exhausted, and also how to return to it, if nec-
essary, even though it is exhausted from the sys-
tem’s point of view. This functionality need not
imply an explicit global representation or ’gram-
mar’ of a dialogue.

(c) have appropriate access to a data base if
there is to be question answering on the basis of
stored (usually application relevant) knowledge.

(d) have appropriate access to a database that
can be populated if information is to be elicited
from the user as part of a basic task.

(e) have some form of reasoning, goal/intention
representation, user modelling and planning suffi-
cient to perform these tasks, though this need not
imply any particular explicit form of representa-
tion or mechanism for implementing these func-
tionalities.

(f) have some general and accessible notion of
where in the performance it is at any moment: this
can take the form of where in the dialogue it is or
where in the overall task performance (if there is a
task) or both. The only exception to this would be
Loebner type systems, whose only function is to
keep talking coherently and not repeat themselves.

Not all the above are essential, since some de-
pend on the overall application/functional environ-
ment: e.g. (c) above is needed only for systems
that know something and can answer questions
about it, and (d) above applies only to tasks that
can be described as ‘form filling’. The COMIC
application, and most conceivable ones, requires
both of those. A trickier matter will be (f) where
it is by no means agreed what applications require
explicit models of users and of their goals, beliefs
and intentions etc. Again, the power of any rea-
soning system implied by (f) is by no means clear,
given both the certainty, from Church, that incon-
sistencies cannot in general be detected, as well
as the overall mediocre performance of general Al
reasoning systems.

Our proposal in this most complex and inviting
area will be to so design the DAM so that min-

imal systems can serve some of these functions
initially, though without preventing the substitu-
tion of richer ones later on. At every stage, our
prejudice will be in favour of limited, constrained,
knowledge-based systems, rather than general in-
ference mechanisms of unconstrained power.

The functionalities above will probably not give
rise to much dispute, nor will the sorts of mod-
ule in a DAM to implement them, at least not if
the Hobbs-vanilla assumption at the beginning is
broadly right. However, something must be said
about other desiderata and constraints (before pro-
ceeding to a DAM sketch), ones that follow both
from our own theoretical prejudices and from the
global design of COMIC within which we now
have to work.

The global design of COMIC implies (unsur-
prisingly) what one might term an (almost) fully
interlingual DAM: one in which the DAM deals
only with coded representations of content and
function as input and output (i.e. “first order En-
glish” more or less) and not with surface language
strings (in German in this case). We write “al-
most” because we expect the COMIC DAM to get
the German input string (though we do not want
to attempt a second parsing of it) but not the Ger-
man output string, which is the job of Fission to
create (or its other-modal equivalent). However,
this conventional (indeed archaic) modularisation
of the DAM leads to two well-known problems.

(g) (We will continue to label key issues alpha-
betically, even though they are not all of the same
type) There is the issue of a DAM not knowing the
output string, and the problem that E.M.Forster ex-
pressed as “How do I know what I think till I see
what I say”. DAM does not know what COMIC
says, so how can it know what it thinks?

In a sense this is absurd, at least in terms
of AI/NLP orthodoxy, but there are other seri-
ous problems attendant on no-string-access that
we will later call the “information retrieval prob-
lem”: how do we find the relevant task/response
structure without the surface information in in-
put and potential output? There is also the psy-
chological problem for researchers, known since
the 1960s and immortalised in McDermott’s paper
(McDermott, 1981), that NLP researchers cannot
work with, or even create, structures they cannot

understand, and structures in first order English
may or may not be comprehensible to the DAM
team, particularly if made up by another (Fu-
sion team) working in another natural language.
Let’s call this just a minor development prob-
lem, known to everyone outside the purely statis-
tical/connectionist NLP camp (if that still has any
members).

The DAM, in our view is thus a Chinese Room,
in Searle’s sense (REF), receiving and emitting
coded forms it may not understand, and that may
include the researchers as well as the algorithm it-
self. The solution is obvious and we shall just an-
nounce it as a principle:

(h) The DAM team will decorate its own struc-
tures and rules with strings of arbitrary length con-
sisting of English and German words, for both re-
trieval and mnemonic functions. These may in
many cases correspond to the most plausible gen-
erated output in English or German or both and
these will be passed on to Fission who can do with
them what they like. It should be obvious that
retrieval of relevant action frames is more likely
with a set of retrieval terms/wider than the inter-
nal predicate set. An important research issue is
how Fusion, DAM and Fission teams in a highly
modularised dialogue system are to understand re-
cursive expressions in the first-order content lan-
guage in the same way, as developers and as con-
sumers of those codings. One could compare here
the little discussed issue in machine translation as
to how analysis and generation teams in an inter-
lingual MT project know they understand the in-
termediate representations in the same way.

Another assumption follows naturally here and,
if accepted, will have considerable consequences
for Fission:

(i) the format and range of slots to be filled
in the interface objects that pass from a DAM
to a Fission module should be identical to those
that pass from Fusion to DAM. In some sense
this is obvious, and anyone who dislikes it should
produce convincing cases where it is inadequate,
which will mean finding information types beyond
the standard Fusion-to-DAM information set of
(roughly): semantic content, dialogue act, (possi-
bly) intention form, language string, modality. It
may well be inappropriate to pass the latter from

DAM-to-Fission except as a record of the original
input (and unless that is independently unavailable
to Fission from the dialogue history itself).

None of this prolegomenon reaches the core of
the DAM design, but just (re)states assumptions,
many of them obvious. We can now add some fur-
ther ones, not normally discussed in the literature
much but well-known to those who have had to
produce working systems, particularly those sub-
ject to evaluation or assessment, as we have.

The key problems for dialogue system perfor-
mance, and therefore reasons for failure, are:

(j) the inability of a dialogue system to find the
relevant structure/frame that encapsulates what is
known to the system about the subject under dis-
cussion, normally one introduced by user initia-
tive. This is the main form of what we referred
to earlier as the information retrieval (IR) problem
in dialogue management and, unsurprisingly, we
shall use IR methods to solve it, by using, as one
main determinant of what structure to load as the
current structure, overlap of terms between input
and (our own indexing of potential) output. The
same method will be asked to provide constant
confirmation that the current structure is the ap-
propriate one, over and above considerations from
heuristics about expected input and global/local
dialogue act sequencing.

This last can be thought of as principles of not-
getting-lost or knowing-where-we-are, yet it is not
a problem that can be solved by any single consid-
eration or simply assigned to any magic module.
Another problem that may be no more than (j) un-
der another description is that of knowing-what-
to-do-now:

(k) this is a problem central to all dialogue sys-
tems, and quite different strategies are out in the
field: e.g. the Rochester-style strategy (Allen and
Perrault, 1980) of the system taking a definite, and
possibly wrong, line with the user, relying on ro-
bust measures for revision and recovery if wrong,
as opposed to a hesitant (and potentially irritat-
ing) system that seeks constant confirmation from
the user before deciding on any action. We shall
also opt for the former strategy, and hope for suffi-
ciently robust recovery, while building in implicit
confirmations wherever appropriate.

But the issue here is narrower than simply one

of having additional modules: it requires a core di-
alogue engine that is both a simple and perspicu-
ous virtual machine (and not a lot of data/links and
functionalities under no clear control) and which
can capture (given good data structures) the right
compromise between push (user initiative) and
pull (system initiative) that any robust system must
have. Our COMIC DAM sketch below, now being
implemented, is intended above all to capture this
combination of perspicuity (for understanding the
system and allowing data structures to be written
for it) and compromise.

3.2 Choosing a Level of Structure

The opening remark above about vanilla-DAMs
was not strictly true in one respect: there still is
no consensus over whether a DAM should be ex-
pressed as a set of rules (from finite state to con-
text sensitive) or as some forms of script/frame or
network that expresses a set of rules, rather in the
way a syntactic RTN expressed a set of context
free rules. The same opposition was present in Al
planning theory between rule-driven planners and
systems like SRI’s STRIPS that pioneered more
structural objects consisting of expected default
actions. The TRINDI system (Cooper et al., 1999)
is expressed as basically a set of rules (plus other
structures, such as QUD, Questions Under Discus-
sion) whereas the WITAS system (Lemon et al.,
2001) was initially, at least, based on ATN-like
structures.

The argument between them is, at bottom, is
about (i) how much stereotopy one expects in a
dialogue and (b) how much is it worth collect-
ing all rules relevant to a subtopic together, within
some structure or partition? Stereotopy in dia-
logue is closely connected to the notion of system-
initiative or top-down control, which is strongest
in “form-filling” systems and weakest in chatbots.
If there is little stereotopy in dialogue turn or-
dering then any structure, like an ATN, risks be-
ing over-repetitious, since all possibilities must be
present in many nodes. If one must always be
ready to change topic at any turn, it can be ar-
gued, then what is the purpose of being in a higher
level structure that one may have to leave; the an-
swer being that it is possible to be always ready
to change topic but to continue on if change is not

forced. As with all frame-like structures since the
beginning of Al, they express no more than de-
faults or preferences. To have QUDs is no more or
less than to express this preference in a different
way.

In the COMIC DAM we shall opt for an ATN
system with a single stack (with one slight modi-
fication) and argue that the WITAS argument for
abandoning ATNs—namely, that structure was lost
when a net is popped—is easily overcome, and that
their alternative (dialogue trees) brings new prob-
lems of its own. We envisage ATNs of radically
different sizes and types: complex ones for large
scale information eliciting tasks, and small ones
for dialogue control functions such as seeking to
reinstate a topic.

Our argument will be that the simplicity and
perspicuity of this (well understood and easily
written and programmed) virtual machine has ben-
efits that outweigh any disadvantages, and in par-
ticular the ability to leave and return to a topic in
a natural and straightforward way. As we shall
see below, this is a complex issue, and the need
to return to unpopped syntactic ATNs, so as to en-
sure completeness of parsing, is quite different in
motivation from that of returning to an interrupted
topic in dialogue processing. In syntactic parsing
one must so return, but in dialogue one can some-
times return in a way that is pragmatically inap-
propriate and we must deal with that below.

3.3 A Modest DAM Proposal

() We propose a single pop-push stack archi-
tecture that loads structures of radically differing
complexities but whose overall forms are ATNs
at most (though this power will not always be
needed). The algorithm to work such a stack is
reasonably trivial and well understood, though be-
low we will need to suggest one amendment to the
classical algorithm so as to deal with a dialogue re-
vision problem that cannot be dealt with by struc-
ture nesting.

(m) The argument for such a structure is its
combination of power, simplicity and perspicuity
(we used it in the simple mini-CONVERSE sys-
tem designed for an interactive child’s toy). Its
key language-relevant features (known back to the
time of Woods (Woods, 1970) in practical parsing)

are:

(n) the fact that structures can be pushed down
to any level and re-entered via suspended execu-
tion allows nesting of topics as well as features like
barge-in and revision with a smooth and clear re-
turn to unfinished materials and topics. This is so
well known that it has entered the everyday lan-
guage of computer folk as “stack that topic for a
moment”. The note of caution is that, although
in recursive syntax, incomplete parsing structures
must be returned to and completed, in dialogue not
all incomplete structures should be re-entered for
completion.

(o) the ATN structures (to be stacked) have Tur-
ing Machine power, and are subject to no limita-
tions of a finite state sort: i.e. a command on a
transition arc can do anything from filling a data
slot to causing a new structure to be pushed; they
can naturally be seen as “update rules” in terms of
the systems discussed earlier, which suggests that
‘Dialogue Move Engine’ may be little more than
a renaming of conventional structures. They are
also perspicuous to write and understand (given
our ability in our Chinese room to make any notes
on our structures we like).

Turing Machine formal power is a diversion
here: it may well be the case that, for efficiency,
some later COMIC should have all its struc-
tures reimplemented as finite state rules or graphs.
But that is irrelevant here, since such structures,
though easy to write, are hard to understand in the
absence of any context dependence.

(p) There will be such ATNs corresponding to
each of the system-driven sub-tasks (i.e. form
filling—the form the bathroom salesman aims to
end up with at the end of a client session) which
are for information eliciting (and whose ATN
commands write direct to the output database),
as well as ATNs for standard Greetings and
Farewells, and for complex tasks like revisions and
responses to conversational breakdowns. Mini-
ATNs will express simple dialogue act pairs (such
as QA) which can be pushed at any time (from user
initiative) and will be exhausted (and popped) af-
ter an SQL query to the bathroom database.

We propose that the stack be preloaded with a
(default) ordered set of system initiative nets, with
Greeting at the top, Farewell at the bottom and

such that the dialogue ends with maximum success
when all these and all the information eliciting net-
works have been popped. This would be the sim-
plest case of a maximally cooperative user with
no initiative whatever; he may be rare but must be
catered for if he exists!

An obvious problem arises here (noted in earlier
discussion), which may require that we adapt the
overall DAM control structure:

(q) If the user proposes an information eliciting
task before the system does (e.g. the client wants
to discuss tile-colour-choice before that structure
is reached in the stack) then that structure must be
pushed into the stack and executed till popped, but
obviously its homologue in the stack must not be
executed again when it reaches the top. The in-
tegrity of the stack algorithm needs to be violated
only to the extent that any task-driven structure at
the top of the stack is only executed if the relevant
part of the database is empty.

However, a closely related, (indeed inverse) is-
sue (and one that caused the WITAS researchers
to change their DAM structure, wrongly in our
view) is the situation where a user-initiative forces
the revision/reopening of a major topic already
popped from the stack; i.e. the user chooses pink
tile but later, and at her own initiative, decides she
would prefer blue and brings up the topic again.
This causes, our proposal, no problems: the tile-
colour-choice structure is pushed again (empty
and uninstantiated) but with an entry subnetwork
(no problem for ATNs) that can check the data-
base, see it is non-empty, and begin the subdia-
logue in a way that shows it knows a revision is
being requested. It seems clear to us that a sim-
ple stack architecture is proof against simple argu-
ments based on the need to revisit popped struc-
tures.

A similar device will be needed when a long
dormant, partly executed, net on the stack is re-
entered after a long delay; a situation analogous
to a very long syntactic dependency or long range
coreference. In such cases, a user should be asked
whether he wishes to continue (to completion) the
suspended network. This will require, at every net-
work node, a loop that checks some timer and asks
a confirming question if the time lag since the exe-
cution of the preceding node is too great, at which

point it could respond with a prefix like “I know
it’s been a while but should we finish up the dis-
cussion of <net_name>"?

What has not been touched upon here is the
provision, outside the main stack and content-
structures, of DAM modules that express models
of the users goals/beliefs/intentions and which rea-
son over these. We shall postpone this as inessen-
tial for getting a DAM started provided what we
ultimately propose can transition from simpler to
more complex structures and functions without
radical redesign. At this stage, we do not believe
anything as complex as the ViewGen system (Bal-
lim and Wilks, 1991) will ever be required for nor-
mal applications. To use it for bathroom advice
would require an implausible scenario where the
advisor has to deal e.g. a client couple, possibly
talked to separately so that the system has to con-
struct a couple’s views of each other’s wishes.

We do not believe we should start by taking ac-
count of the needs of this scenario, fun though it
would be for research. However, we will expect
to build into the DAM some explicit representa-
tion of plan tasks, and this will give no problem to
an ATN since recursive networks can be, and of-
ten have been, a standard representation of plans,
which makes it odd that some soi-disant radical
redesigners of DAM’s have argued against ATNs
as DAM models, wrongly identifying them with
low-level dialogue grammars, rather than, as they
are, structures (ATNs) more general than those
for standard plans (RTNs). It is worth remember-
ing here that twenty-five years ago, Schank mod-
elled his text-processing scripts on the SRI plan-
ning structures of STRIPS, of which they were no
more than a “linguistic version”. It is time to bring
the modelling of planning and dialogue modelling
back together, long after they were split apart by
the plan-analysis approach to dialogue of Allen et
al. (Allen et al., 1995)

4 How the ATNs are Created

At the moment the ATNs are created manually us-
ing expert knowledge of the application domain.
Since our application task is goal-driven, we pro-
duced a schema of sub-tasks that the user will ad-
dress in order to complete the final task (in this
case, designing a bathroom). The sub-tasks pro-

vide an inherent modular structure for the cre-
ation of ATNs. Given the conversational nature
of the interface, the user may stray from the in-
tended task and sub-tasks. For such cases we will
be building general purpose ATNs that capture the
gist of the utterance, and try to give a reasonable
response. To do this, we may use a general re-
source such as EuroWordnet to capture the essence
of the topic words that are not part of our applica-
tion domain and interpret them in a context taken
from hypernyms of Wordnet (Miller (Ed.), 1990).
We will, of course, then try to steer the user back to
their point of departure from the application task.

As was explained earlier, we will start the pro-
gram with a stack of ATNs that represent the
tasks/sub-tasks that the user needs to satisfy in or-
der to complete the overall task of our applica-
tion. When our program is using system-initiative
to drive the program, we will know which ATNs
to run to fulfil each particular sub-task. Due to the
stack structure, we also know the order of ATNs
to process. However, like most user-friendly sys-
tems today, this system is mixed-initiative so that
the user may drive the order of tasks (or non-tasks)
at any point. It is this issue that brings us to con-
sider how we will select the most relevant ATN in
our system in order to address the user’s utterance.

When we are in the greeting ATN and prompt-
ing for the users’ name, we will expect a name as
input. If, in return, we get an utterance without
a name, then we must scan for change of topic.
we can only be sure that we don’t have a name
if we have a category such as NAME with a list
of all possible names to check against. Likewise,
we will need categories for COLOUR and STYLE
which will contain all members of each category.
But of course, it is not enough to recognise that a
member of a class is part of the user’s utterance,
because it may be a negation - ’I don’t like the
classical style’ or ’show me anything but the coun-
try style’

Each ATN has associated with it a list of topics
and events. Every arc of each ATN has associ-
ated with it a category which indicates the type of
response we are expecting to receive. The cate-
gories for each arc of an ATN taken all together
give an indication of the function/meaning of that
ATN. This gives the ATN an identifier which we

can use in deciding which ATN is best suited to a
particular user utterance.
Examples of our ATNs are:

e Bathroom Styles ATN- allows a user to
choose one of 4 general bathroom categories

e Bathroom Style Projects ATN- allows a user
to choose one of six projects done in a partic-
ular bathroom style

e Bathroom Measurements ATN - allows a user
to input their own bathroom measurements.
This ATN has sub-ATNs for getting the dif-
ferent parts of the bathroom - wall vs. floor
etc.

4.1 The COMIC Ontology

The COMIC Ontology serves two purposes. It
links the user terminology to the concepts used in
the COMIC application. For example, users may
refer to a toilet (concept toilet) using different lex-
ical items - toilet, loo, john, comode, etc. It also
links the Bathroom application specific Database
(ViSoft) to the concepts in the COMIC applica-
tion; thus style and colour features stored for dif-
ferent kinds of sanitary ware in the Database are
linked to the COMIC directly to the COMIC On-
tology.

The COMIC Ontology will be built manu-
ally using corpus-based studies of user interac-
tions with bathroom design applications as well
as the existing bathroom database classification
scheme.(ViSoft). The corpora will be gathered
through a set of WOZ experiments that simulate
our application capturing the language, style and
multimodality of the users.

4.2 Identifying the Most Appropriate ATN
for an Utterance

The ATNs are selected using the COMIC Ontol-
ogy and the semantic information extracted during
the language processing module (Fusion).

There will be a list of words associated with
each of the concepts in the COMIC Ontology.
This will be done in an early stage of processing.
An example concept is sanitary ware and the asso-
ciated lexical items are bathroom furniture, bath-
room furnishings, bathroom china, etc. It is im-
portant to note that the lexical items are not only

Figure 2: Sample COMIC Ontology

single words, but also include phrases with multi-
ple words. We will identify significant words and
phrases using a corpus-driven approach. Using
WOZ experiments, we will identify the relation-
ship between concepts in our ontology and lexi-
cal items closely linked to such concepts. Most
of the nodes in our ontology signify nouns, which
although contentful, are not all we need to estab-
lish the context of the user’s utterance. What the
user wants to do with the bathroom object is neces-
sary information that we need in order to establish
which ATN should be accessed at any given time.

But it is not enough to index/select the ATNs by
keywords alone. There are many activities/tasks
that can be achieved given any particular keyword.
For example, given the topic of tiles, a user may
want to 1) change the colour, change 2) size of
the tiles, 3) swap for completely different tiles etc.
This shows that the activity or task that the user
wants to perform also acts to narrow down the con-
text of an interaction.

As we said earlier, this interaction is a task-
based scenario, where the user undertakes a series
of subtasks to complete the overall task of our ap-
plication (bathroom design). As such, we will re-
fer to the tasks as events and have listed below an
example list of events that will be used in our do-
main.

The information returned from the language
processing module (Fusion) will be put into the

form of subject-verb-object triples. Through this
formalism, we can decide how to index the list of
ATNs that we have.

Examples:

o [like this bathtub
Subj (user) verb (like) obj(bathtub)

e Show me the classical style
Subj(system) verb(show) obj (classi-
cal style)

e Show me project 5
Subj (system) verb (show) obj
(project 5)

e Please exchange the blue tiles for white ones.
Subj(system) verb(exchange) obj
(blue tiles) misc(white tiles)

We will have a pre-defined set of bathroom events
which correspond to verbs. We will enrich the
list of lexical items associated with each event us-
ing a thesaurus-like knowledge base called Eu-
roWordnet. Below, there is a list of bathroom
events with their corresponding lexical items taken
from Wordnet 1.6 (same as the English part of
EuroWordnet) . It is worth noting that since Eu-
roWordnet is a multilingual resource, we have a
way of associating multilingual lexical items to
our bathroom events and objects
Examples:

e show_event: show, display, list, present, re-
veal etc.

e exchange_event: exchange, substitute, swap,

e arrange_event: arrange, put, set, place, posi-
tion

e choose_event:
pick out

choose, prefer, like, select,

4.2.1 Changing Topic or Domain

The issue of changing topics is a very serious
one in any dialogue system. Given that a user can
change topic at any point in the conversation, a
human-computer system must always be scanning
for topic change. Although handling topic change
outside a domain is not fundamentally different
from handling topic change within a domain, the
former requires a potentially limitless amount of
knowledge and therefore has strong practical im-
plications. Our approach will handle topic shift
within a domain by attaching keywords and events
to topic areas (implemented as ATNS), but will not
handle topic shift outside of our application do-
main except to try to steer the user back to the task
at hand.

5 Conclusion

Whether a dialogue management system can be
completely general is a debatable point, but we
have presented a system that is aimed to that end
as much as possible. This was done by separat-
ing the application specific knowledge from the
control structure allowing for maximum reusabil-
ity across applications. We have shown how our
system is integrated into the EU COMIC project
and we have explained our choice of using well
known structures like ATNs and stacks in an inno-
vative way to support flexible next generation in-
ternet applications. In the future we intend to test
the reuseablity issue in two other dialogue inter-
face applications - a career/job matching system
and a personal/email organiser system.

6 Credits

Many thanks to the COMIC partners: Max
Planck Institute for Psycholinguistics, Nijmegen,
The Netherlands; Max Planck Institute for Bi-
ological Cybernetics, Tiibingen, Germany, Uni-
versity of Edinburgh, Division of Informatics,
United Kingdom; Deutsches Forschungszentrum

fiir Kiinstliche Intelligenz GmbH (DFKI), Intel-
ligent User Interfaces, Saarbriicken, Germany;
Katholieke Universiteit Nijmegen, Nijmegen In-
stitute for Cognition and Information, The Nether-
lands; ViSoft, Sindelfingen, Germany.

References

JF. Allen and C.R. Perrault.
Intentions in Utterances.
15(3):143-178.

1980. Analyzing
Artificial Intelligence,

J.E. Allen, L.K. Schubert, G. Ferguson, P. Heeman,
C. Hee Hwang, T. Kato, M. Light, N.G. Martin,
B.W. Miller, M. Poesio, , and D.R. Traum. 1995.
The TRAINS Project: A case study in building a
conversational planning agent. Journal of Experi-
mental and Theoretical Al (JETAI), 7:7-48.

A. Ballim and Y. Wilks. 1991. Artificial Believers.
Lawrence Erlbaum Associates, Hillsdale, New Jer-
sey.

J. G. Carbonell. 1979. Towards a Self-Extending
Parser. 17th Meeting of the Association for Com-
putational Linguistics, pages 3—7.

K.M. Colby. 1971. Artificial Paranoia. Artificial Intel-
ligence, 2.

R. Cooper, S. Larsson, C. Matheson, M. Poesio, , and
D. Traum, 1999. Coding in Structural Dialogue
for Information States : Deliverable D1.1. Trindi
Project.

J.R. Hobbs. 1993. The Generic Information Extrac-
tion System. In Proceedings of the Fifth Message
Understanding Conference (MUC-5), pages 87-91.
Morgan Kaufman.

O. Lemon, A. Bracy, A.R Gruenstein, and S. Peters.
2001. The Witas Multi-Modal Dialogue System 1.
Eurospeech2001, pages 1559-1562.

D. McDermott, 1981. Artificial Intelligence Meets Nat-
ural Stupidity. MIT Press.

G. A. Miller (Ed.). 1990. WordNet: An on-line lex-
ical database. International Journal of Lexicogra-
phy, 3(4):235-312.

W.A. Woods. 1970. Transition Network Grammars for
Natural Language Analysis. CACM, 3(10).

