Adapting Chart Realization to CCG

Michael White and Jason Baldridge
School of Informatics
University of Edinburgh
{mwhite, jmb}@inf.ed.ac.uk

Abstract

We describe a bottom-up chart re-
alization algorithm adapted for use
with Combinatory Categorial Grammar
(CCG), and show how it can be used to
efficiently realize a wide range of co-
ordination phenomena, including argu-
ment cluster coordination and gapping.
The algorithm has been implemented
as an extension to the OpenNLP open
source CCG parser. As an avenue for
future exploration, we also suggest how
the realizer could be used to simplify the
treatment of aggregation in conjunction
with higher level content planning com-
ponents.

1 Introduction

In this paper, we describe our initial efforts to de-
velop a practical, open source realizer for Com-
binatory Categorial Grammar (CCG, Steedman
(2000b)). While CCG provides theoretically at-
tractive accounts of numerous linguistic phenom-
ena — including unique accounts of coordination
and intonation, which is of particular interest to
builders of dialog systems' — its adoption by the
NLG community has been hindered by the lack of
a practical realizer. As a first step towards making
such a realizer available, we have implemented a

"We are primarily targeting the realizer for use in dia-
log systems, and intend to use it in the IST project COMIC
(COnversational Multimodal Interaction with Computers),
http://www.mpi.nl/comic/.

bottom-up chart realization algorithm (Carroll et
al., 1999) adapted for use with CCG. The imple-
mentation builds upon the Java-based OpenNLP
CCG parser? described in Baldridge (2002).

The paper is organized as follows. We provide
the rationale for our algorithm choice in §2. In §3
and §4, we provide background for the realization
algorithm and the algorithm itself. In §5, we show
how the realizer handles a wide range of coordina-
tion phenomena. In §6, we provide initial evidence
that the realizer can be reasonably efficient in prac-
tice. In §7, we discuss related work and conclude
with a discussion of future directions.

2 Rationale

Since our chart realization algorithm may not be
the most efficient algorithm one might consider
implementing, we provide the following rationale
for our choice:

Completeness The simple nature of our algo-
rithm makes it relatively straightforward to
achieve completeness;3 in contrast, it would
be more difficult to do so for all combinatory
rules with Hoffman’s (1995) adaptation of se-
mantic head driven realization for CCG.

Parser reuse Since the algorithm is entirely
bottom-up, it can directly reuse the parsing-
oriented optimizations of the CCG rules de-
scribed in Baldridge (2002).

2

“http://opennlp.sourceforge.net/

3That is, to ensure that all derivations licensed by the
grammar can be reversed.

119

LF order independence The algorithm does not
rely on the order of conjuncts in the input log-
ical form, and thus handles this oft-discussed
aspect of the logical form equivalence prob-
lem (Shieber, 1993).

Anytime search The use of an agenda makes it
easy to control the search for possible real-
izations, and thus to run the algorithm in any-
time mode.*

3 Background

3.1 Combinatory Categorial Grammar

We provide here a brief overview of CCG; see
Steedman (2000b) for an extensive introduction.
A given CCG grammar is defined almost en-
tirely in terms of the entries of the lexicon, which
are (possibly complex) categories bearing stan-
dard feature information (such as tense, agree-
ment, etc.) and subcategorization information.
Some (simplified) lexical entries are given below:

(1

mant n

that b (n\n)/(Suporm=sn/NP)
BobF np

d. SAW F (Siensec past, oformefin \NP) /NP

o o P

CCQG has a small set of rules which can be used
to combine categories in derivations. The two
most basic rules are forward (>) and backward
(<) function application:

>) X)¥Y = X

(<) YX\Y = X
CCQG also employs further rules based on the com-
position (B), type-raising (T), and substitution (S)
combinators of combinatory logic. Each combina-
tor gives rise to several directionally-distinct rules;
for example, there are forward and backward rules
for both composition and type-raising:

>B) X/Y Y/Z = X/Z
(<B) Y\Z X\Y = X\Z
>T) X = Y/(Y\X)
(<T) X = Y\(Y/X)

These rules are crucial for building the “non-
standard” constituents for which CCG is well-
known, and which are essential for CCG’s han-
dling of coordination, extraction, intonation, and

“That is, to allow the client program to request the best
solution found so far at any time. We are currently explor-

ing strategies for ranking partial solutions based on n-gram
measures (Varges, 2001).

120

other phenomena. For example, CCG’s rules and
the categories given in (1) lead to the following
derivation of the relative clause man that Bob saw:

(2) man that Bob saw
n (n\n)/(s/np) L (s\np)/np
=/ (s\np) .
s/np }
n\n
<

n

The OpenNLP CCG system uses a multi-modal
version of CCG (Baldridge, 2002; Baldridge and
Kruijff, 2003), which has a fully universal rule
component that makes it possible to write more
efficient unification schemes for rule application
than for the original CCG framework.

3.2 Hybrid Logic Dependency Semantics

Like other compositional grammatical frame-
works, CCG allows logical forms to be built in
parallel with the derivational process. Tradition-
ally, the A-calculus has been used to express se-
mantic interpretations, but work in other frame-
works has moved to using more flexible represen-
tations in computational implementations, such
as the MRS framework (Copestake et al., 2001)
used for HPSG. In the context of categorial gram-
mar, Kruijff (2001) proposes a framework that
utilizes hybrid logic (Blackburn, 2000) to re-
alize a dependency-based perspective on mean-
ing. Baldridge and Kruijff (2002) show how this
framework, Hybrid Logic Dependency Semantics
(HLDS), relates closely to MRS, and show how
terms of HLDS can be built compositionally with
CCQG via unification. In the next section, we show
how HLDS’s flexibility enables an approach to se-
mantic construction that ensures semantic mono-
tonicity, simplifies equality tests, and avoids copy-
ing in coordinate constructions.

Hybrid logic provides a language for represent-
ing relational structures that overcomes standard
modal logic’s inability to directly reference states
in a model. It does so by using nominals, a new
sort of basic formula with which we can explic-
itly name states. In addition to propositions, nom-
inals are first-class citizens of the object language:
formulas can be formed using propositions, nomi-
nals, standard boolean operators, and the satisfac-
tion operator “@”. A formula @;(p A (F)(5 A q))

indicates that the formulas p and (F)(j A ¢) hold at
the state named by ¢ and that the state j is reach-
able via the modal relation F.

In HLDS, hybrid logic is used as a language for
describing discourse representation structures —
which have their own underlying semantics — as
follows. Each semantic head is associated with a
nominal that identifies its discourse referent, and
heads are connected to their dependents via de-
pendency relations, which are modeled as modal
relations. As an example, the sentence Bob saw
Gil receives the represention in (3).

(3) @c(see A (TENSE)past
A (ACT)(b A Bob) A (PAT)(g A Gil))

In this example, e is a nominal that labels the pred-
ications and relations for the head see, and b and
g label those for the the Bob and Gil, respectively.
The relations ACT and PAT represent the depen-
dency roles Actor and Patient, respectively.’

By using the @ operator, hierarchical terms
such as (3) can be flattened to an equivalent
conjunction of fixed-size elementary predications
(EPs), closely related to MRS terms:

(4) @.see\@.(TENSE)past A @.(ACT)bA @, (PAT)g
A @,Bob A @, Gil

As (4) shows, EPs come in three varieties: lexical
predications, (e.g. @.see); semantic features (e.g.
@.(TENSE)past); and relations, (e.g. @.(ACT)b).

3.3 Semantic Construction

To facilitate realization from HLDS terms, we
have slightly changed Baldridge and Kruijff’s
(2002) approach to semantic construction to one
which uses maximally flat representations such as
(4). In our revised approach, EPs are paired with
syntactic categories in the lexicon to form signs, as
shown in (5)—(7) below. Each atomic category has
an index feature which makes a nominal available
for capturing syntactically induced dependencies;
these indices are shown as subscripts on the cate-
gory labels.

(5) saw + (s.\np.)/np, :

@,see \Q, (TENSE)past\Q. (ACT)zAQ, (PAT)y
(6) Bobt np,: @,Bob
(7 Giltnp, : @Q,Gil

5To refrain from committing to a particular set of depen-
dency roles, relations such as ARG1, ARG2, etc. can be used.

In derivations, applications of the combinatory
rules coindex the appropriate nominals via unifi-
cation on the categories, and the EPs are then con-
joined to form the resulting interpretation. For ex-
ample, (6) can type-raise and compose with (5) to
yield (8), where = has been coindexed with b, and
where the EPs have been conjoined; (8) can then
apply to (7) to yield (9), which has the same con-
junction of predications as (4).°

(8) Bobsaw + s./np,:

@.see N@Q. (TENSE)pastA@Q. (ACT)bA @, (PAT)y
A @Q,Bob

(9) BobsawGil F s, :
@.see A Q. (TENSE)past A@, (ACT)bA Q. (PAT)g
A @,Bob A @,Gil

Since the EPs are always conjoined by the com-
binatory rules, semantic construction is guaran-
teed to be monotonic — in the sense that no se-
mantic information can be dropped during the
course of a derivation — which is an essential
property for ensuring that the realization algorithm
is complete (Copestake et al., 2001).

Another benefit of this approach to semantic
construction is that it becomes easier to perform
equality tests on signs, since the flat conjunctions
of EPs can be sorted into a canonical order and
compared in turn. Such equality tests can be used
to avoid adding duplicate entries into the chart
when there are multiple equivalent derivations for
a given sign, thereby alleviating the problem of so-
called “spurious” ambiguity (Steedman, 2000b).

A final benefit of simply conjoining EPs in
derivations is that it avoids any copying of predica-
tions in coordinate constructions. In contrast, the
approach implicit in Baldridge and Kruijff (2002)
yields duplicate predications in examples such as
Bob heard and Ted saw Gil, where the proposition
Gil appears twice (ignoring tense):

(10) @, (hear A {(AcCT)(bABob) A (PAT)(gAGil)

A (COORD)(e2 A see
A (AcT)(tATed) A (PAT)(gAGil)))

As we will show in §5, by avoiding such dupli-
cate predications, the present approach to seman-
tic construction keeps the output of the parser in
line with the expected input of the realizer.

There is another more traditional (but less incremental)

derivation for Bob saw Gil, where saw combines first with the
object Gil before combining with the subject Bob.

121

4 The Algorithm

4.1 Data Structures

The input to the algorithm is a logical form en-
coded as an HLDS term. The input term is
flattened to a list of EPs, so that the extent to
which partial realizations cover the input LF can
be tracked positionally. For example, to realize
man that Bob saw, the hierarchically structured in-
put in (11) is flattened to (12):

(11) @, (man A (GENREL)(e A see A (TENSE)past
A (ACT)(b A Bob) A (PAT)x))

(12) 0:@,man, 1:@,(GENREL)e, 2: Q,see
3 : @Q.(TENSE)past, 4 : Q.(ACT)b
5: @, (PAT)z, 6 : @,Bob

The algorithm makes use of three principal data
structures: edges, an agenda and a chart. An edge
is just a CCG sign plus a couple of bit vectors
which record the sign’s coverage of the input LF
and the sign’s indices (nominals) that are syntacti-
cally available. These bit vectors make it possible
to instantly check whether two edges cover dis-
joint parts of the input LF and whether they have
any indices in common. For example, the edges
for the finite past and non-finite forms of see are
given below, with the bit vectors for the EPs and
indices shown in braces:

(13) {2737475} {€7b"’z"}

saw F (s.zn\NPs)/NPs :

@.see A@, (TENSE)past\ Q. (ACT)bA@Q, (PAT)x
(14) {2,4,5} {e,b,z}

see (Se,nanﬁn\npb)/npz :
@.see A Q.(ACT)b A Q. (PAT)x

The agenda is a priority queue of edges which
manages the edges that have yet to be added to the
chart. Using the agenda makes it easy to vary the
search order by changing the edge sorting strategy.

The chart is a collection of edges that enables
a dynamic programming search for realizations.
Whereas a chart for parsing uses string positions
to track partial parses, one for realization uses an
edge’s coverage vector to track partial realizations.

4.2 Lexical Lookup

In the first phase of the algorithm, for each EP
in the flattened input LF, relevant lexical entries
are accessed according to the following indexing
scheme. Most lexical items are indexed by the

122

principal lexical predicate which they introduce.
However, if a lexical item (e.g. a relative pronoun)
only introduces a dependency relation or a seman-
tic feature, it is indexed by the relation or feature.
Semantically null lexical items, i.e. ones which
introduce no EPs (e.g. infinitival 7o), are not in-
dexed at all; instead, they receive special handling
in the combinatory rule phase (see step 4 in fig-
ure 1). Case marking prepositions and particles
are only considered when there is a matching fea-
ture on one of the indexed lexical items indicating
that they may be needed.

Once a lexical entry indexed by the current EP
has been accessed, instantiation is attempted. Dur-
ing instantiation, the current EP is unified first, and
then unification of the remaining EPs in the lexical
entry is attempted against the remaining EPs in the
input LF. The lexical entry is allowed to introduce
extra semantic features, enabling some limited un-
derspecification in the input LF.

For example, the predicational EP @.see trig-
gers the lookup of the edges shown in (13) and
(14). Note that the present tense form sees is ac-
cessed as well, but instantiation fails due to its in-
compatible (TENsE) value (whereas the non-finite
form see has no (Tense) value). The relational EP
@, (GENREL)e triggers the lookup and instantiation
of the two edges for the relative pronoun shown
in (15) and (16) below. Similarly, the featural EP
@, (TENSE)past triggers the introduction of the aux-
iliary did.

(15) {1} {e,x}
that + (n,\n.)/(sc.sn\Np:) : @, (GENREL)e

(16) {1} {e,a}
that + (n,\n.)/(sc.fm/np.) : @z (GENREL)e

4.3 Combinatory Rules

In the second, main phase of the algorithm — at a
high level — edges are successively moved from
the agenda to the chart and combined with the
edges already on the chart, with any resulting new
edges added to the agenda, until no more combina-
tions are possible and the agenda becomes empty.
Figure 1 describes the main loop in more detail.
Continuing our example, some of the edges
generated during the combinatory rule phase are
shown in (17)—(21) below, without the bit vectors.
The edge for Bob is type-raised, yielding (17), and

Until the agenda is empty:

1. Remove the first edge from the agenda and set it to be
the current edge. If the chart contains an already de-
rived equivalent edge, skip the rest of the loop.

2. Combine the current edge with the edges already on the
chart. More specifically, for each chart edge:

(a) Check the coverage bit vectors for the current
edge and the chart edge for intersection. If they
overlap, skip the chart edge.

(b) Check the index bit vectors for intersection. If
they do not overlap, only combine the current
edge with the chart edge if the input LF con-
tains an appropriate (PAIREDWITH) relation (cf.
85 for discussion).

(c) Combine the current edge with the chart edge us-
ing all available binary combinatory rules, and
add any resulting new edges to the agenda.

3. Apply all unary combinatory rules to the current edge,
adding any resulting new edges to the agenda.

4. Combine the current edge with edges for all semanti-
cally null lexical items, as if these were chart edges.

5. Add the current edge to the chart.

Figure 1: Main loop

the edge for see (14) combines with the seman-
tically null infinitival ro, yielding (18); (17) then
forward composes with both saw (13) and to see
(18), yielding (19) and (20). Since Bob fo see (20)
is marked syntactically as infinitival rather than fi-
nite, the relative pronoun edge (16) will only com-
bine (via forward application) with Bob saw (19),
before combining (via backward application) with
man to yield the complete edge in (21).

(17) Bob F s,/(s:\nps) : @,Bob

(18) tosee F (s.m\nps)/nps :
Qcsee N Q. (ACT)b A @, (PAT)z
(19) Bobsaw F s, p/np. :
@.see A Q. (TENSE)past
A @, (ACT)b A Q. (PAT)z A @,Bob
(20) Bobtosee F s, /np. :
@csee A Q. (ACT)b A Q. (PAT)z A\ @;Bob
(21) man that Bob saw + n, :

@,man A @, (GENREL)e
A @.see A\ Q. (TENSE)past
A @, (ACT)b A Q. (PAT)z A @,Bob

5 Coordination

5.1 Sentential Coordination

CCG’s flexible approach to constituency delivers
derivations for a wide variety of coordinate struc-
tures, often involving the coordination of such
“non-standard” constituents as s/np, as in the fol-
lowing right node raising example:

(22) [Bob saw] /np and [Ted heard] /np Gil.

Examples like (22) can be handled using the cate-
gory for and given in (23), where s$ schematizes
over functions into s:’

(23) and F (s.$1\sc, $1)/se, %1 :
@cand A @, (LIST)e; A @, (COORD)e2

Category (23) enables Bob saw and Ted heard to
coordinate as follows:

(24) Bob saw and Ted heard +

Se/nps :

@cand A @, (L1ST)e; A @, (COORD)es
A @, see A ...Q, (PAT)z

A @ hear A ... Q,, (PAT)z

Category (24) can then be combined with Gil to
yield a flat conjunction of HLDS terms equivalent
to the one below (ignoring tense), which has been
collapsed into hierarchical form for readability:
(25) @.(and
A (L1ST)(e1 Asee A (ACT)(mABob) A (PAT)g
A (COORD)(e2 A hear

A (ACT)(tATed) A (PAT)g)))
A @yGil

Since the present approach to semantic con-
struction does not produce duplicate EPs for Gil,
the output of the CCG parser for (22) shown in
(25) can be directly reversed by the realizer. In
contrast, the duplicate EPs seen in (10) (cf. §3.3)
would cause problems for the realizer’s tracking of
input LF coverage. Indeed, the LF in (10) is per-
haps more similar to the one for the clause-level

coordination in (26) below than it is to (25):3
(26) Bob heard Gil and Ted saw Gil +

s: @.(and A (L1ST)(e1 A heard A (ACT)(bABob)

A (PAT)(g1AGil) A (COORD) (e2 A see

A (ACT) (tATed) A (PAT) (g2/Gil))))

"The relations (L1ST) and (COORD) encode a linked list;
(L1ST) points to the first item in the list, and (COORD) points
from one item to the next.

8Note that each use of a lexical item gives rise to a distinct
index nominal, similarly to DRT.

123

The HLDS terms in (25) and (26) show how
differences in the realizer’s input logical form —
which are reminiscent of the differences between
reduced and unreduced A-terms — can be used to
control the choice of coordination options made
available by the grammar.’

5.2 NP Coordination

Of the multiple possible readings involving NP co-
ordination, we will only focus on the distributive
reading here. As Moore (1989) points out, NPs
such as Ted and Gil in (27) below pose a challenge
for first-order unification—based approaches to se-
mantic construction, since the index x cannot be
unified with the referents for both Ted and Gil:'

(27) [Bob saw]s, /,p, Ted and Gil.

Following (Moore, 1989), we tackle this problem
by introducing a A-binder into the semantic repre-
sentation for (27), while still eschewing the use of
A’s in variable binding:

(28) @,(and A (LiST)(t A Ted A (COORD)(gAGil))

A (PRED) (I A lambda A (BOUNDVAR)z
A(BODY)(eAseeA(ACT)(bABob)A(PAT)z)))

The HLDS term in (28) is intended to be equiv-
alent to the conjunction of the terms formed by
distributing the \-term across each member of the
list. (27) can be parsed and realized with the se-
mantics in (28) using the category (29), which
takes the two NPs and forms a type-raised NP:
(29) and F ((s:8\(s.8/np.))\np.,)/nps, :
@,and A @, (LIST)z1 A @4, (COORD)x2

A @Q4(PRED)! A @;lambda
A @Q;(BOUNDVAR)z A @;(BODY)e

5.3 Argument Clusters and Gapping

The above approach to distributive NP coordina-
tion can be extended to handle argument clusters
— as in (30) below — without the need to invoke

otherwise unnecessary deletion operations.
(30) [Bob gavel(s, /np,) /np.

[Ted; a dogals\(and

' s/npa/npt)
[Gllg a Catc]s\(s/npc/npg)

9Cf. (Prevost, 1995) for a related use of unreduced A-
terms in the context of representing information structural
units.

%In the collective reading, also plausible in (27), = can
simply be unified with a set-valued referent for Ted and Gil;
with Ted or Gil, in contrast, only the distributive reading is
possible.

124

To handle (30), we introduce a (PAIREDWITH) re-
lation to connect pairs of NP referents and bound
variables, in the following category for and:

(3l) and F ((s:$\((s:8/np,)/np.))
\(s$\((s8/npy,)/np:,)))
J\((s$/np,,) /np,))

@gand A @ (LIST)z1 A @, (PAIREDWITH) Y1

A @4, (COORD)x2 A @, (PAIREDWITH) Y2
A @4 (PRED)! A @;lambda A @;(BODY)e

A @Q;(BOUNDVAR)z A @, (PAIREDWITH)y

Category (31) enables (30) to be parsed into a
semantic representation analogous to (28). The
derivation of (30) requires the base NPs Ted; and
a dog to type raise and compose together into the
category s\(s/npy/np,), as indicated (and simi-
larly for Gil, and a cat.). Reversing this derivation
during realization thus requires Ted; and a dogg
to combine, even though they have no indices in
common. Since removing the index intersection
filter from the realization algorithm entirely would
let all NPs combine via type-raising and composi-
tion in all possible orders, we instead require the
indices to be in a (PAIREDWITH) relation in the input
LF in order for the NPs to combine.

To handle gapping examples like (32), a similar
category can be supplied for and, as shown in (33)
without the semantics, which remains unchanged:

(32) Ted; receiveds,\np,)/np,
[Gily a catels\ ((s\np,)/npe)

and + (((s;\npz,)\((s:\np.)/npy))\npy,)
/(s\((s\npx,)/npy,))

Category (33) combines first with the pair of NPs
Gil a cat on the right, then successively with the
NP a dog, the transitive verb received and the
NP 7ed on the left. As such, it handles gapping
without appealing to reanalysis, as in Steedman
(2000Db), though at the expense of requiring and to
coordinate unlike categories, suggesting that (33)
should be viewed as a compiled-out version of
Steedman’s (2000b) approach to gapping.

a dogy and

(33)

6 Efficiency

As Moore (2002) notes, it appears that the real-
ization problem is inherently exponential in worst
case complexity unless one is willing to rely on

| First Al
0.19 132
098 13.0

Avg
Max

Table 1: Realizer Timing (in seconds)

| First All
Avg | 050 133
Max | 3.84 349

Table 2: Realizer Timing Without Index Filter

the potentially arbitrary order of LF conjuncts.
In practice, as Carroll et al. (1999) explain, the
main complexity issue is the factorial number
of possible word orders that can arise when the
grammar leaves modifier order relatively uncon-
strained. Our current strategy to address this issue
is to concentrate on reliably finding good realiza-
tions in a reasonably short time span when running
the algorithm in anytime mode, rather than worry-
ing about the amount of time it might take on oc-
casion to find all possible realizations. We suggest
that this anytime focus is appropriate for practical
use in dialog systems.

To test whether our realizer’s speed is in the
right ballpark for dialog applications, we have
measured its performance on a pre-existing set
of test phrases — namely all those discussed in
Baldridge (2002) — using a small but linguisti-
cally rich grammar covering heavy NP shift, non-
peripheral extraction, parasitic gaps, particle shift,
relativization, right node raising, topicalization,
and argument cluster coordination. On this test
suite, the performance is reasonably promising,
averaging under 200 ms. until the first realization
is found, on a Linux PC. Table 1 shows the aver-
age and maximum times until the first realization
is found and until all realizations are found.

Even with this small test suite, it is clear that the
index filter is essential for efficient realization. Ta-
ble 2 shows the comparable realization times with
the index filter turned off. As the table shows, the
average time until the first realization more than
doubles, and the maximum time until the first re-
alization is nearly four times worse. The expected
exponential increase in realization times (cf. §5)
can be seen in the times to find all realizations.

To increase performance, there is ample room to
make improvements to the unification algorithm.
While the index filter reduces the number of unifi-
cation operations attempted, unification still dom-
inates the realization time. The implementations
of the combinatory rules have been optimized as
described in Baldridge (2002), but unification is
otherwise naive and performs more copying than
necessary.

Employing packing and pruning strategies
could also improve performance. Currently, there
is no structure sharing among edges, and no means
to prune low ranked edges from the chart.

7 Conclusions and Future Work

Our approach to chart realization with CCG is
most closely related to Carroll et al. (1999),
which in turn builds upon much earlier work
cited therein, such as Kay (1996). Moore (2002)
presents a related algorithm for a broad class of
context free grammars.

Compared to Carroll et al. (1999), we have
employed a similar but more straightforward ap-
proach to semantic construction than described in
Copestake et al. (2001), since we do not allow
underspecification of the logical scope of quanti-
fiers,!! and since there is no need for special treat-
ment of external arguments to handle control phe-
nomena in CCG. We also have not tried delaying
the insertion of intersective modifiers (Carroll et
al., 1999), in part because doing so would compli-
cate the use of n-gram ranking strategies.

The primary novel contribution of our approach
is showing how to efficiently realize a wide range
of coordination phenomena with CCG. In particu-
lar, we have shown how to use an index filter sen-
sitive to paired entities in the input LF in order to
handle argument cluster coordination and gapping.

In future work, we plan to take several steps
to make the realizer more practical. As already
mentioned, we are currently exploring strategies
for ranking partial solutions based on n-gram mea-
sures, and we plan to improve efficiency via en-
hancements to our unification algorithm. We are
also currently investigating techniques for han-
dling Steedman’s (2000a) approach to information

1 Cf. Steedman (1999) for discussion.

125

structure and intonation. In addition, we plan to
bootstrap a wide coverage grammar for English
from the CCG Bank (Hockenmaier and Steedman,
2002), and to develop improved XML grammar
management tools.

Beyond these practically-oriented steps, we also
plan to investigate new techniques for coupling
CCQG realization with higher level planning com-
ponents. A particularly appealing direction is to
see whether the present approach to coordina-
tion can simplify the treatment of aggregation in
higher level planning components used in con-
junction with the realizer. Since current bottom-
up approaches to aggregation such as Dalianis
(1996) and Shaw (1998) combine simple syntac-
tic phrases into more complex ones by looking for
patterns of related semantic material, they do not
fit naturally into applications where it makes sense
to group semantic material during content plan-
ning, based on intentions or information structural
considerations. In contrast, working with our re-
alizer, content planning components could specify
their aggregation decisions via distinctions made
at the level of logical form, taking advantage of
the realizer’s ability to use differences in the input
LF to control the choice of coordination options
made available by the grammar.

Acknowledgements

We would like to thank Mark Steedman, Geert-Jan Kruijff,
Johanna Moore, Jon Oberlander and Mary Ellen Foster for
helpful discussions. This work was supported in part by the
COMIC (IST-2001-32311) and ROSIE (Edinburgh-Stanford
Link R36763) projects.

References

Jason Baldridge and Geert-Jan Kruijff. 2002. Coupling CCG
and Hybrid Logic Dependency Semantics. In Proc. of
40th Annual Meeting of the Association for Computational
Linguistics, pages 319-326.

Jason Baldridge and Geert-Jan Kruijff. 2003. Multi-Modal
Combinatory Categorial Grammar. In Proc. of 10th An-
nual Meeting of the European Association for Computa-
tional Linguistics.

Jason Baldridge. 2002. Lexically Specified Derivational
Control in Combinatory Categorial Grammar. Ph.D. the-
sis, School of Informatics, University of Edinburgh.

Patrick Blackburn. 2000. Representation, reasoning, and re-

lational structures: a hybrid logic manifesto. Logic Jour-
nal of the IGPL, 8(3):339-625.

126

John Carroll, Ann Copestake, Dan Flickinger, and Victor
Poznanski. 1999. An efficient chart generator for (semi-)
lexicalist grammars. In Proc. of the 7th European Work-
shop on Natural Language Generation, pages 86-95.

Ann Copestake, Alex Lascarides, and Dan Flickinger. 2001.
An algebra for semantic construction in constraint-based
grammars. In Proc. of the 39th Annual Meeting of the
Association of Computational Linguistics, pages 132—139.

Hercules Dalianis. 1996. Concise Natural Language Gen-
eration from Formal Specifications. Ph.D. thesis, Royal
Institute of Technology, Stockholm.

Julia Hockenmaier and Mark Steedman. 2002. Acquiring
compact lexicalized grammars from a cleaner treebank. In
Proc. of the Third International Conference on Language
Resources and Evaluation.

Beryl Hoffman. 1995. Computational Analysis of the Syntax
and Interpretation of ‘Free’ Word-order in Turkish. Ph.D.
thesis, University of Pennsylvania. IRCS Report 95-17.

Martin Kay. 1996. Chart generation. In Proc. of the 34th
Annual Meeting of the Association for Computational Lin-
guistics, pages 200-204.

Geert-Jan M. Kruijff. 2001. A Categorial Modal Architec-
ture of Informativity: Dependency Grammar Logic & In-
formation Structure. Ph.D. thesis, Charles University.

Robert C. Moore. 1989. Unification-based semantic inter-
pretation. In Proc. of the 27th Annual Meeting of the As-
sociation for Computational Linguistics, pages 33—41.

Robert C. Moore. 2002. A complete, efficient sentence-
realization algorithm for unification grammar. In Proc. of
the 2nd International Natural Language Generation Con-
ference.

Scott Prevost. 1995. A Semantics of Contrast and Informa-
tion Structure for Specifying Intonation in Spoken Lan-
guage Generation. Ph.D. thesis, University of Pennsyl-
vania. IRCS TR 96-01.

James Shaw. 1998. Clause aggregation using linguistic
knowledge. In Proc. of the Ninth International Workshop
on Natural Language Generation, pages 138-148.

Stuart Shieber. 1993. The problem of logical-form equiva-
lence. Computational Linguistics, 19(1):179-190.

Mark Steedman. 1999. Quantifier Scope Alternation in
CCG. In Proc. of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 301-308.

Information structure and
Linguistic Inquiry,

Mark Steedman. 2000a.
the syntax-phonology interface.
31(4):649-689.

Mark Steedman. 2000b. The Syntactic Process. MIT Press.

Sebastian Varges. 2001. Instance-based natural language
generation. In Proc. of the 2nd Meeting of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics, pages 1-8.

