Handling Dependencies in Reorganizing Content Specifications
A Case Study of Case Analysis

Helmut Horacek
Universitit des Saarlandes, FR 6.2 Informatik
Postfach 151150, D-66041 Saarbriicken, Germany
email: horacek@cs.uni-sb.de

Abstract

Handling the dependencies among
alternatives in composing expressions
in an efficient and qualitatively accurate
manner is a fundamental problem of
NLG. To pursue this goal effectively,
simplifications are put forward in
practical approaches, but also ambitious
control regimes are tried out occasion-
ally. However, neither of these is able to
operate adequately on larger and
involved structures. Approaching this
issue in a methodological way, we
present a case study from the area of
mathematical proofs that illustrates the
rhetorically motivated reorganization of

machine-generated case analyses.

Ingredients of this investigation are the
design of optimization operations,
effect-minimizing orderings on groups
of operations, and tentative applications
of local operations to test the effects of
crucial dependencies. Our approach
conceives NLG as a standard pipe-line
architecture putting emphasis on
orderings, with local revisions as a
minor extension. This is particularly
effective when text planning is orga-
nized as an optimization rather than as
a construction process, such as for the
presentation of mathematical proofs.

1 Introduction

Handling the dependencies among alternatives
in composing expressions in an efficient and
qualitatively accurate manner is a fundamental
problem of NLG. To pursue this goal effect-
ively, simplifications are typically put forward
in practical approaches, following the standard,
pipe-line architecture (Reiter, 1994). In order
to handle dependencies in a more profound
manner, some ambitious control regimes have
been tried out to compute the best combination
of alternatives within a local task that satisfies
the constraints imposed by these dependencies.
Tasks addressed include lexicalization (Beale,
1997) and referring expression generation
(Gardent, 2002), which transfer the problem,
making it accessible to a general and fast
search procedure (on the lines of (Germann et
al. 2001) for machine translation). However,
neither of these approaches is able to operate
adequately on larger and involved structures.
Approaching this issue in a methodological
way, we present a case study from the area of
mathematical proofs, that illustrates the rheto-
rically motivated reorganization of machine-
generated case analyses. In order to adapt the
structure of machine-generated proofs better
on human needs, we have analyzed differences
between internal proof representations and
some structural properties underlying textbook
proofs, focusing on case analyses. The differ-

39

ences observed inspired us in defining a set of
restructuring operations for proof graph repre-
sentations whose contextually motivated appli-
cation enables expressing these reasoning
structures in a rhetorically adequate manner.
Ingredients of this investigation are the design
of optimization operations, effect-minimizing
orderings on groups of operations, and tenta-
tive applications of local operations to test the
effects of crucial dependencies. Our approach
conceives NLG as a standard pipe-line archi-
tecture putting emphasis on orderings, with
local revisions as a minor extension. This is
particularly effective when text planning is
organized as an optimization rather than as a
construction process, such as for the presen-
tation of mathematical proofs.

This paper is organized as follows. We exam-
ine the role of case analysis in book presen-
tations. We formalize a set of reorganization
operations, and describe their contextually
motivated application. We illustrate the effect
of these operations by reorganizing a moder-
ately complex proof for NL presentation.
Finally, we discuss impacts of our approach.

2 Motivation — Needs of the Domain

Representations of results of automatically
found proofs differ from rhetorically adequate
natural language (NL) presentations of these
proofs not only in their format and
conventions but more fundamentally in their
content and structure. While the adequacy of a
presentation's content has been addressed by a
number of transformation and abstraction
techniques, a proof's structure is typically
preserved by today's proof presentation
systems. This is hardly surprising — preserving
given structures in specifications is also what
NL generation systems typically do.

If either a or b is O, then both labl and lallbl are equal to O.
Ifa>0and b >0, then ab > 0 so that labl = ab = lallbl.
Ifa>0and b <0, then ab < 0 so that labl = -ab = a(-b) =
lallbl. The other two cases are treated similarly.

Figure 1. The proof of the lemma labl = lallbl
in an analysis textbook (Bartle, Sherbert, 1991)

40

Case analysis is a common reasoning structure
in several areas of mathematics. It is applied to
solve subproblems which require distinct infer-
encing in dependency of the values that some
expression can take. The simplest and rather
common distinction is truth or falsity of a
logical expression. Another common situation
is the distinction of values of a numerical
expression when broken down into intervals.
As an example, consider a proof of the ele-
mentary lemma labl = lallbl. In an introduc-
tory book on analysis (Bartle, Sherbert, 1991),
it runs as indicated in Figure 1. A verbalization
in the style of the proof presentation system
P.rex (Fiedler, 2001) is given in Figure 2. In
contrast to the stereotype machine-generated
text, the textbook version is better for two main
reasons: (1) each case conveys a reasoning
chain distinct from other cases, and (2) concise
conditional clauses are formulated instead of
overloaded textual markings of underlying
case structures. Further effective presentation
means used in the textbook are leaving out
easily inferable intermediate steps (1051, 1aOl,
01b1, lal0 in the machine-generated version),
referring to analogy, thereby trusting the
addressee to be able to make use of it, and
extraposing crucial justifications (ab < 0, ab >
0). In order to present case analyses of auto-
matically found proofs in a similar manner,
making adequate use of these presentation
means is required. The inference issue, that is

To prove the lemma, let us consider the cases where a = 0,
a >0, and a < 0, respectively.
Case 1: a = 0. Then labl = 105l = 0 = 01l = lallbl.
Case 2: a > 0. Let us consider the cases where b =0, b > 0,
and b < 0, respectively.
Case 2.1: b = 0. Then labl = 1a0l = 0 = 1al0 = lallbl.
Case 2.2: b > 0. Then labl = ab = lallbl.
Case 2.3: b < 0. Then labl = -ab = a(-b) = lallbl.
Case 3: a < 0. Let us consider the cases where b =0, b > 0,
and b < 0, respectively.
Case 3.1: b = 0. Then labl = 1a0l = 0 = 1al0 = lallbl.
Case 3.2: b > 0. Then labl = -ab = (-a)b = lallbl.
Case 3.3: b < 0. Then labl = ab = (-a)(-b) = lallbl.

Figure 2. The proof of the lemma labl = lallbl
in the style of the system P.rex (Fiedler, 2001)

crucial for many machine-found proofs, can
be handled reasonably well (Horacek, 1999).
Therefore, we can concentrate our effort on
transducing case analysis structures underlying
machine-found proofs into structures that
mimic those found in textbooks. For this
purpose, we have analyzed presentations of
comparably simple proofs in two textbooks: a
book on analysis (Bartle, Sherbert, 1991) and
another one on algebra (Lamprecht, 1981).
The proofs examined are likely to be subject to
explanations or to exercises in tutorial sessions.

The central issue is to characterize situations
for the use of implicit forms of expressing case
analyses, in terms simple enough for estimating
them on the level of the proof graph. Implicit
forms may be sequences of conditional clauses,
followed by stating that the conclusion is inde-
pendent of the conditions, or preceding a
critical case, introduced by “it remains to show
that this also holds for <condition>". There-
fore, we have looked at complexities of the
inference chains and expressions involved. For
the formal account, we have approximated
these properties in terms of the number of
clauses (a series of equations was counted as a
single clause). We found out that case analyses
are expressed explicitly only if the presentation
of two or more individual cases requires a
certain degree of complexity. Therefore, we
consider the length of the second largest
branch a crucial parameter (P;, default value 2)
according to the results in Table 1 (26
examples found in the two books). Short case
analyses marked explicitly contain untypically
large expressions (we neglect this because of
the low frequency), or they combine several
cases (e.g., by the union of intervals).

Further characterizations gained from the
textbook proofs are as follows: The case anal-
yses contain mostly two, rarely more than three

length of inference chain per case non-largest cases
1 2345>512345>5
860000

350322

number of clauses
frequencies implicit forms 121231 1 1

frequencies explicit forms 1 9 52 4 4

Table 1. Textual forms of expressing case
analyses and number of clauses

cases. Therefore, we limit the number of cases
by P; (with default 5), for case analyses built
by reorganization. Moreover, case expressions
found are not more complex than a disjunction
of two relations of compatible type (as in
Figure 1). We take this into account by using a
parameter for the maximum number of oper-
ators in case expressions, P; (with default 3).
Furthermore, all case expressions with an equi-
valence treated as a conjunction of two impli-
cations with opposite directions were marked
explicitly, which is easy to obey as a qualitative
criterion. Finally, we encountered only one
nested case analysis (a longer induction proof),
although it is clear from the literature that this
occurs more frequently in advanced proofs.
The estimated parameter values guide
pursuing the requirements for a rhetorically
adequate presentation of case analyses:

* Be economic by keeping the number of
cases small.

e Produce structures that enable the use of
implicit textual forms.

* Avoid nested case analyses, values of P, and
P; permitting.

In order to fulfill these requirements, some
measures are applied, including the reduction
of inference chains within individual cases,
aggregation of nearly identical cases, and the
linearization of nested case analyses. The
structures obtained can be explored in a
human-oriented way by focusing on crucial
distinctions, and they can be expressed more
naturally and concisely by NL texts.

3 Restructuring Operations

As the texts in Figures 1 and 2 demonstrate,
automatically generated proofs typically meet
these requirements to an insufficient degree
only. Since there are several logically equi-
valent forms of a proof, building alternative
representations can be pursued that are prefer-
able in rhetorical terms. This is done by
condensing a proof, to meet the constraints just
elaborated. Three operations aim at this goal,
through reducing case analyses in terms of
their length, number of cases, and depth:

41

42

Operation 1. The length of the reasoning
line within a single case can be reduced if a
subsequence heading this inference line is
independent of the case assumption. This
subsequence can be lifted out of the scope
of the case analysis, and precede the case
analysis in the presentation. This operation
may be applicable several times, to multiple
branches within the same case analysis.
Lifting out subsequences is then delicate due
to coherence matters, since reasoning chains
that are originally sequential would become
interleaved. Therefore, if several cases can be
reduced by this operation, it is only applied
to the one leading to the largest reduction,
provided the second largest branch gets
reduced enough so that its length falls below
threshold P; (see the example in Section 5).

Operation 2. The number of cases can be
reduced if the reasoning lines in some of the
cases are identical but for references to the
corresponding case assumptions. Such cases
can be aggregated by building a disjunction

of their assumptions, and by substituting this

expression for the references to the original
assumptions, provided that case expression is
less complex than P3; allows. Remaining
within complexity limits may be possible by
simplifications (e.g., union of overlapping or

adjacent intervals). If not only some cases,
but all cases can be aggregated this way, the
entire case analysis collapses into a single
inference chain. This can occur frequently
in connection with calls to external systems,
such as computer algebra systems — a case
analysis has to be carried out for each value

separately, but it turns out that the inference

lines differ only in these values. We encount-

ered such a situation for categorizing residue
classes (Meier, Pollet, and Sorge, 2002). In
our current context, operation 2 is applicable
to cases 2.1 and 3.1 in the proof in Figure 2,

provided these cases are lifted from the
embedding case analyses (through operation

3). Operation 2 would also be applicable to
any of these cases and case 1, provided the
intermediate expressions (la0], lalO, 10bl,
01bl) are left out — this illustrates the impor-

tance of handling the inferability issue.

Operation 3. The depth of a case analysis
with further embedded case analyses can be
reduced by lifting an embedded case anal-
ysis to the level of the embedding one. This
is done by moving copies of the inferences
of the embedding case that precede the
embedded case analysis into that structure,
and by merging the case assumption asso-
ciated with the embedding case with each of
the case assumptions associated with the
embedded structure. Requirements for this
operation are that the types of relations in
the merged case assumptions are compatible,
that the resulting expression is less complex
than P; and P; allow, and that the original
structures would be expressed explicitly;
otherwise, nested structures are maintained.
Moreover, if a length increase is the result of
copying inference sequences, subsequent
applications of operation 2 to cases from
different levels in the original structure must
yield reductions compensating that increase.

These operations are formally defined in
Figure 3, using generalized case schemata with
an arbitrary number of cases n:

[Fil

AlLvE; A Fil-G CASE

i=1,n

A represents a set of assumptions, and F, G, and
H (with or without indexes) are metavariables
representing expressions. The case schema
represents the conclusion that G is derivable
from the assumptions A (A |- G), on the basis of
two premises: 1) there is a case split, that is, one
of the cases F; holds, given the assumptions A
(A |- vF;) for 1<i<n, and 2) asssuming an
arbitrary one of these cases ([F;]) enables the
derivation of G from the assumptions A and
the case assumption F; (A, F;I- G).

In operation 1, the derivation Ay |- Fy, is
lifted out of the scope of the embedding case
analysis, since it is independent of the case
assumption [Fi]. In operation 2, the two cases
[F;] and [F] are aggregated into a single case
[F; v Fy], provided the associated derivation
trees (tree(A, F; I- G) and tree(A, Fi I- G),
respectively), are identical but for the appear-
ances of Fj and Fy, so that substituting F; v Fy

Operation Original case schema Modified case schema Constraints
[Fi] [Fiz] Aol Fp [Fil [Fiz]
i=tln Aol Fo A Fyl-Aj i=1,n A {F} - A
1) ALvE; Fo.M V-G AFiul-Gcase = ALVF, ALFg-G A Fiul-G CASE AD Ay
Al-G Al-G
i=l,n [Fj] [Fk] [Fizj k] i=ln [Fj VFr]l [Fizkl tree(4, Fjl- G) [FjIFj v F]

2) ALVFiAFil-GA Fyl-GA Fiziil-G casE = AlLVFi A Fiv Fil-GA Fizixl- G caASE =

Al-G Al-G tree(4, Fi - G) [FilFj v Fi]
[Fi] [Fiz=] i=1,n (izk): Hi= Fi
@MQ J=1,m [Gj] [H]] i=n+1,n+m: Hi= FrV Gia
i=l,n VG Go. Gj. Fi |- Fo i=1n+m (i2k) tree(A, H; - G) =
3) ALvF; A FG A Fiz |- G caseE = AlLVvH; A Hjl-G casE Adjoin(tree(Ag - Go),
Al-G Al-G tree(Gj, Go, Fx |- Fo, A - G))

Figure 3. Proof reorganizing operations that reduce case analyses in terms of length (1), number
of cases (2), and depth (3)

for each of them leads to identical derivation
trees. Finally, operation 3 merges the cases [Gj]
with the embedding case [Fk], which replaces
case Fy by m new cases in the embedding case
analysis. The new case assumptions are Fy v
Gi.n, and the derivation trees (tree(Ao |- Go)
from Fy, and tree(Gy, Gj, Fi I- Fo, A |- G) from
each G;) are composed through adjoinment.

4 Organizing the Reorganization

Judging the adequacy of individual operation
applications in context is delicate since it is not
locally clear whether or not a case analysis can
ultimately be expressed by a concise sentence
pattern. There are two reasons for this diffi-
culty, which are typical for processes in NL
generation and organizing their specifications:

External dependencies, which appear in
terms of how inference chains within a case
analysis are verbalized. This is determined
by decisions about the content (building
abstractions due to the inferability issue)
and about form, the verbalization proper.

Internal dependencies, since reductions are
usually brought about by the composition
of several operation applications.

In order to handle external dependencies, the
content-related processes (here: the abstraction
process as defined in (Horacek, 1999)) are

carried out prior to dealing with reorgani-
zation, since this usually leads to significant
length reductions that are unforeseeable other-
wise. Doing this independently of case analysis
reorganizations is also possible, because the
inferability addresses sequences of inferences
rather than tree-like structures. Conversely,
effects of proper verbalization have to be anti-
cipated, because interleaving them with reorga-
nization would be very expensive — verbalizing
some substructures several times would be
required, since the reorganization process uses
local backtracking (see below). Therefore,
length estimates are required for the resulting
structures. We obtain them by simply counting
the number of inference steps, adding one
point for required structural markings. The
numbers obtained this way are comparable to
the threshold parameters estimated on the basis
of the empirical analysis.

Concerning internal dependencies, deter-
mining the local suitability is only difficult for
operation 1. In theory, multiple applications to
the same case may be possible and required to
be tested; in practice, it is mostly a single appli-
cation. However, testing multiple applications
in an efficient manner is not trivial. It is done
by traversing the proof subgraphs of each case
separately, starting from the leaf nodes, until a
use of the case assumption is encountered; the
size of the remaining portion of the proof

43

[P(c.d)] a1

[P(d.b)] a1 (2D
=P(a,b). Transitive(P) MT
2P(a,d) v_~P(d,b). P(d,b) DE
-P(a.d), Transitive(P) mp —P(a.d), Alternate(P.Q) pg
aP(a.c) v 2P(c,d). P(c.d) DE
—P(a,c). Alternate(P.Q) pg
Q(a.c), Commutative(Q) mp

aP(d,b), Alternate(P,Q) pE
Q(d,b). Commutative(Q) mp
Q(b,d), Q(c,b). Transitive(Q) mp

(19 [-P(c.d)] a1 (1f)
[-P(d,b)] a1 (2f) _=P(c,d). Alternate(P.Q) pg

[Qe.0)] a1 (31) [=Q(c.0)] a1 (3)

=Q(¢,b). Alternate(P,Q) pe =P(d,b). Transitive(P) mt

P(c,b). =P(d,c) v_=P(c,b) DE

—P(d,c). Alternate(P,Q) pg
Q(d,c). Commutative(Q) mp

Q(c.a). Transitive(Q). Q(a.d) mp (3) Qgc,b)iy -Q(c,b). Qle,d), Q(c,d) cASE
(2) Pb)v-PdDb). Qlcd Q(c,d) cASE
(D) Ped) v=Pcd). Qlc,d). Q(c.d) cASE

Q(c.d)

Figure 5.

Initial representation of the proof, abstracted to applications of commutativity,

transitivity, and alternativity axioms

subgraph is then compared with P;. That leaves
the dependencies among these operation to be
dealt with. Within a full proof, this is done by
traversing the entire proof graph starting from
its leaf nodes. If a case analysis is encountered,
operation 2 is tried first, for all pairs of cases
(quadratic complexity). Next, operation 1 is
tested for each branch, and the suitability can
be decided due to the prior application of
operation 2. Finally, linearization with eventu-
ally embedded case analyses is treated. If this
application of operation 3 leads to a number of
cases larger than P, it is applied tentatively,
testing the effect of operation 2 for the combi-
nations of cases not yet considered (one from
each of the case analyses combined tentati-
vely). If this leads to a sufficient reduction, the
process is resumed with the structures built
tentatively; otherwise, with those built before.

S A Moderately Complex Example

In this section, we illustrate the capablities of
our method by a proof to the problem speci-
fied in Figure 4. The abstracted proof repre-
sentation is given in Figure 5, with abbre-
viations for the use of axioms: the predicates

Let Q be a transitive and symmetric relation and P a
transitive relation. Let P and Q hold 'alternatively’, i.e.,
P(x,y) v Q(x,y) for all x and y. Let also =P(a,b) for some
arbitrary a and b.

Then Q(c,d) holds for arbitrary ¢ and d.

Figure 4. Problem definition

44

transitive, commutative, and alternate (of P or
Q) stand for the instantiated forms of these
axioms in the specific proof line. Moreover,
MP, MT, DE, Al, and CASE stand for modus
ponens, modus tollens, disjunction elimination,
assumption introduction, and case analysis,
respectively. This form is obtained from the
machine-oriented proof by abstracting to the
partial assertion representation level according
to (Horacek, 1999), that is, applications of
axioms, unless their use is considered cogniti-
vely difficult (e.g., modus tollens, as motivated
in (Johnson-Laird, Byrne, 1990)).

The proof contains three case analyses,
discriminating according to the truth values of
P(c,d) (1), P(d,b) (2), and Q(c,b) (3), with true
(t) and false (f), labeled accordingly in Figure
5. Due to their nestings, a completely explicit
verbalization of this structure would result in a

[=P(c.d)] a1 [P(c.d)] A1

[P(d.b)] A1 [=P(d.D)] a1
—P(d,b). Alternate(P,Q) pE
Q(d,b). Commutative(Q) mp
Qb.d)
[Q(e.D)] A1 [Q(c.D)] A1
Q(b.d). Q(c,b). Transitive(Q) mp

Qle.b) v =Q(c,b). Qle.d). Qlc.d) cASE

P(d.b) v =P(d,b)). Q(c,d) Q(c.d) cASE
Plc.d) v =P(c,d). Q(c.d). Q(c,d) cASE

Q(c.d)

Figure 6. Final representation of the proof,
focusing on modified parts

rather cumbersome text. Since operation 2 is
not applicable to any substructure here, we
focus on the other operations. Starting with the
most embedded case analysis, (3), the applic-
ability of operation 1 is tested for both of its
branches. In (3t), the first three inference steps
are independent of Q(c,b), while it is only the
first one in (3f) for =Q(c,b). Since the structure
resulting from lifting the longer inference
subsequence (of (3t)) out of the scope of (3)
remains within the limits P> and P3, operation 1
is applied within (3t). Moving on to the
embedding case analysis, (2), operation 1 is
only applicable to the first inference step in
(2t), but with an insufficient reduction. Oper-
ation 3 is not applied because of the expect-
ation that the embedded case analysis can be
expressed in an implicit form. Conversely, this
operation is also not applied in (1), because
this expectation holds for the embedding case
analysis. Figure 6 illustrates the structural
changes imposed on the proof graph in Figure
5, and the later reordering of (1). Figure 7
gives a possible verbalization. It is based on the
assumption that axiom uses, unless being in
modus tollens direction, are inferable and can
be omitted, and that facts used in inferences
need to be reintroduced after not being menti-
oned for some time (see the model in P.rex).
Altogether, the example demonstrates that only
a few of all possible operator applications are

If =P(c¢,d) holds, Q(c,d) follows. Hence, it remains to

show, that Q(c,d) also holds if P(c,d). To prove that, let

us consider the cases where P(d,b) and —P(d,b) hold,
respectively.

1. P(d,b) holds. Then =P(a,b) implies —P(a,d) v =P(d,b)
due to transitivity, which implies —P(a,d) and further
Q(a,d). -P(a,d) implies —P(a,c) v =P(c,d) due to
transitivity, and further —P(a,c) due to P(c,d). This
implies Q(a,c) and further Q(c,a). Then Q(a,d) implies
Q(c,d).

2. =P(d,b) holds. This implies Q(d,b) and further Q(b,d).
If Q(¢,b) holds, then Q(c,d) is valid. If =Q(c,b) holds,
then P(c,b). =P(d,b) implies =P(d,c) v —P(c,b) due to
transitivity. This implies —P(d,c) and further Q(c,d).

Hence Q(c,d) irrespective of the truth of P(d,b).

Figure 7. A possible verbalization of the proof
sketched in Figure 6

truly effective, guided by anticipations about
options available in subsequent processing.

6 Discussion

Proof presentation systems, as NLG systems in
general, tend to express all specifications expli-

citly and in a form widely corresponding to
these specifications. Text planning, notably
approaches based on Rhetorical Structure
Theory (RST) (Mann, Thompson, 1983)
address the choice of connectives and clause
structures, such as subordinates versus
embedding. Exceptions deal with differences
between intentional and ideational structures
(Maier, 1985) and elaborations on sequences
(Horacek, 1998). The latter measure is also
incorporated into skillful presentations of the
specific form of series of inequations, for
remarks on individual steps in such a series
(Fehrer, Horacek, 1997). Altogether, no
approach to proof presentation or to NLG in
general is able to deal with structures of a case
analysis in a rhetorically adequate manner.

The task of proof presentation in natural
language can be considered a special form of
NLG with restricted language and embedding
of formulas, where the machine-generated
proof is interpreted as a complete and correct,
but rhetorically inadequate text plan. Conse-
quently, reorganizations are essential contri-
butions for making machine-generated
solutions (here, proofs) better accessible for
tutorial purposes (Melis, Horacek, 2000). The
modified proofs indicate more adequately
which distinctions to make and what cases to
consider first — these are essential aids for
supporting humans when searching for a proof
in a tutorial environment.

The use of reorganization operations can
be considered a first step towards a new
approach to text planning. It is conceptualized
as an optimization process to some externally
given highly structured specification, rather
than a homogeneous process (Marcu, 1997)
that is applied to sets of facts and relations.
Many choices are motivated by soft, size-
related criteria, as opposed to the more usual
qualitative rhetorical preferences. Text
planning is broken into a sequence of

45

subphases, so that the most intertwined depen-

dencies can be dealt within the same subphase
in a computationally reasonable manner. The
position of a subphase is determined by
assessing whether results from other subphases
should be available, or estimating them is suffi-

cient for well-motivated choices. Hence, we
would incorporate lemmatization into our
present model between the inferability and the
case analysis task. The deletions obtained by
the inferability task are the most crucial infor-

mation, while the effects of lemmatization are
more global than those of handling case anal-

yses. This process organization mediates
between opportunistic application of operators
and a systematic procedure (as (Dalianis, 1999)
and (Shaw, 1998) for aggregation, respect-

ively). It constitutes a compromise between
potentially considering all possible combi-

nations and a strict pipe-line.

7 Conclusion

In this paper, we have addressed dependencies
among alternatives in composing expressions,
for larger and involved structures. We have
presented a case study from the area of mathe-

matical proofs that illustrates the rhetorically
motivated reorganization of machine-gener-

ated case analyses. A set of restructuring oper-

ations is defined on the proof graph whose
contextually motivated application enables
expressing these reasoning structures in a
rhetorically adequate manner. Operations
include shortening inference chains within
individual cases, aggregation of nearly iden-

tical cases, and the linearization of nested case
analyses. We will soon integrate the stand-alone
process into the system P.rex. Our approach
shows a new kind of handling dependencies in
text planning, and it contributes to expressing
mathematical proofs for didactic purposes.

References

Bartle, R., Sherbert, D. 1991: Introduction to Real
Analysis.

Beale, S. 1997: HUNTER-GATHERER: Applying
Constraint Satisfaction, Branch-and-Bound and
Solution Synthesis to Computational Semantics.

46

PhD thesis, Carnegie-Mellon University.

Dalianis, H. 1999. Aggregation in Natural Language
Generation, Computational Intelligence 15(4).

Fehrer, D., Horacek, H. 1999. Presenting Inequations
in Mathematical Proofs. In Information Sciences
116, pp. 3-23.

Fiedler A. 2001. Dialog-driven Adaptation of Expla-
nations of Proofs. In Proc. of IJCAI-2001, pp.
1296-1300.

Gardent, C. 2002. Generating Minimal Definite
Descriptions. In Proc. of ACL-2002, pp. 96-103.

Germann, U., Jahr, M., Knight, K., Marcu, D.,
Yamada, K. 2001. Fast and Optimal Decoding for
Machine Translation. In Proc. of ACL-2001, pp.
228-235.

Horacek, H. 1998. Generating Inference-Rich
Discourse Through Revisions of RST-Trees. In
Proc. of AAAI-98, 814-820.

Horacek, H. 1999. Presenting Proofs in a Human-Ori-
ented Way. In Proc. of CADE-99, pp. 142-156.

Johnson-Laird, P., Byrne, R. 1990. Deduction. Ablex

Publishing.

Lamprecht E. 1981. Einfiihrung in die Algebra, Birk-
hiuser Verlag.

Maier, E. 1985. Textual Relations as Parts of

Multiple Links Between Text Segments. In
Trends in Natural Language Generation — An Arti-
ficial Intelligence Perspective, pp. 68-87.

Mann, W., Thompson, S. 1983. Rhetorical Structure
Theory: A Theory of Text Organization.
Technical Report, ISI/RR-83-115, ISI at Univer-
sity of Southern California.

Marcu, D. 1997. From Local to Global Coherence: A
Bottom-Up Approach to Text Planning. In Proc.
of AAAI-97, pp. 629-635.

Meier, A., Pollet, M., and Sorge V. 2002.
Comparing Approaches to Explore the Domain of
Residue Classes. Journal of Symbolic Compu-
tation, 34(4), pp. 287-306.

Melis, E., Horacek, H. 2000. Dialog Issues for a
Tutor System Incorporating Expert Problem
Solvers. AAAA-Fall Symposium on Building
Dialog Systems for Tutorial Applications.

Reiter, E. 1994. Has a Consensus Architecure
Appeared, and is it Psycholinguistically Plaus-
ible? In Proc. of the 7th International Workshop
on Natural Language Generation, pp. 163-170.

Shaw, J. 1998. Clause Aggregation Using Linguistic
Knowledge. In Proc. of the 9th International
Workshop on Natural Language Generation, pp.
138-147.

