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Abstract

The DIPPER architecture is a collection
of software agents for prototyping spoken
dialogue systems. Implemented on top
of the Open Agent Architecture (OAA),
it comprises agents for speech input and
output, dialogue management, and fur-
ther supporting agents. We define a for-
mal syntax and semantics for the DIP-
PER information state update language.
The language is independent of particular
programming languages, and incorporates
procedural attachments for access to ex-
ternal resources using OAA.

1 Introduction

Spoken dialogue systems are complex frameworks,
involving the integration of speech recognition,
speech synthesis, natural language understanding
and generation, dialogue management, and interac-
tion with domain-specific applications. These com-
ponents might be written in different programming
languages or running on different platforms. Fur-
thermore, with current developments in speech tech-
nology, many components for a dialogue system
can be obtained “off-the-shelf”, particularly those
involving speech recognition and speech synthesis,
and to a lesser extent those for parsing and genera-
tion. The overall behaviour of a dialogue system is
controlled by the dialogue management component,
where interaction between the different components
is managed in a flexible way. Allowing for plug-

and-play and easy adaptation to new domains is a
challenging task for dialogue system architectures.

This paper presents DIPPER, an architecture
tailored for prototyping spoken dialogue systems,
based on the Open Agent Architecture (OAA). Al-
though DIPPER supports many off-the-shelf com-
ponents useful for spoken dialogue systems, it
comes with its own dialogue management compo-
nent, based on the information-state approach to di-
alogue modelling (Traum et al., 1999; Larsson and
Traum, 2000).

The TrindiKit (Larsson et al., 1999; Larsson,
2002) is regarded as the first implementation of the
information-state approach. However impressive it
is, on many occasions the TrindiKit tends to give
the impression of a “Rube Goldberg” machine for
what is a relatively straightforward task: updating
the information state of the dialogue with the help of
declaratively stated update rules. What should be a
transparent operation is often obscured by the com-
plexity of the TrindiKit framework. The dialogue
management component of DIPPER borrows many
of the core ideas of the TrindiKit, but is stripped
down to the essentials, uses a revised update lan-
guage (independent of Prolog), and is more tightly
integrated with OAA. We argue that the resulting
formalism offers several advantages for developing
flexible spoken dialogue systems.

We will first introduce OAA and DIPPER agents
for building spoken dialogue systems, and explain
how dialogue management interfaces with compo-
nents in a flexible way (Section 2). Then we review
the information-state approach to dialogue mod-
elling, introduce the DIPPER update language (Sec-



tion 3), and compare it to the TrindiKit (Section 4).
Finally, we list some practical results obtained using
the DIPPER framework (Section 5).

2 The DIPPER Environment

This section gives an overview of DIPPER. First
we introduce the Open Agent Architecture, then we
present the various agents that play a role in spoken
dialogue systems. We focus on the dialogue move
engine in particular.

2.1 The Open Agent Architecture

The Open Agent Architecture, OAA for short, is a
framework for integrating several software agents,
possibly coded in different programming languages
(C/C++, Java, Prolog) and running on different plat-
forms (Unix, Linux, Windows), in a distributed en-
vironment (Martin et al., 1999). Because dialogue
systems are typically built out of a set of indepen-
dent components performing particular tasks (where
in many cases some of them are “out-of-the-box”
packages, such as speech recognition or speech syn-
thesis), the OAA framework forms an ideal medium
to allow easy integration of software agents for di-
alogue systems in a prototyping development envi-
ronment.

The term “agent” within OAA refers to a software
process meeting the conventions of the OAA frame-
work. Basically, this means providing services to
other agents in a particular form, using the Inter-
agent Communication Language (ICL). Within the
community of agents, service requests can be sub-
mitted to the “facilitator”. This is a special agent
with knowledge of available agents and their ca-
pabilities. It mediates all interactions between the
agents involved in submitting and fulfilling a re-
quest.

A prototypical spoken dialogue system built on
top of OAA consists of an agent for speech recog-
nition, an agent for dialogue management, an agent
for speech synthesis, and several supporting agents
for specific tasks such as parsing, semantic interpre-
tation, and generation. A distributed agent architec-
ture allows the implementation of flexible and adapt-
able dialogue systems, where individual agents can
easily be added (or substituted by others) to extend
functionality of the overall system. It also allows

the integration of multi-modal input or output in a
straightforward way.

The current collection of DIPPER agents consists
of the following: (1) agents for input/output modali-
ties, (2) agents for the dialogue move engine, and (3)
supporting agents. We will describe the functional-
ity of the DIPPER agents in the remainder of this
section in terms of the services they provide. We will
use the OAA term “solvable” to describe the services
offered by agents. The solvables of an agent are reg-
istered with the facilitator, and are implemented by
function calls (in C++ and Java) or predicate defi-
nitions (in Prolog) by the agents that provide them.
We will use + and - in front of arguments to indicate
passing or returning values.

2.2 Input/Output Agents

DIPPER supports agents for Nuance speech recog-
nition software (www.nuance.com) by providing
wrappers written in C++ or Java. The speech
recognition agent can be used in two different
modes: continuous speech recognition, calling
the solvableapply effects(+Effects) and
thereby updating the information state of the dia-
logue (see Section 3); and in callback mode, where
the solvablerecognize(+Grammar,+Time,-
Input) starts recognition using the speech gram-
mar Grammar and returnsInput , within a time
specified byTime . The value ofInput is deter-
mined by the grammar used as language model for
speech recognition. Callback mode makes it easy to
plug in new grammars during different stages of the
dialogue so as to increase speech recognition perfor-
mance.

On the output side, DIPPER provides
agents for the speech synthesisers Fes-
tival (Taylor et al., 1998) and rVoice
(www.rhetorical.com). The solvables for these
output agents aretext2speech(+Text) and
sable2speech(+Sable) . The latter can be
used to synthesise strings marked up in SABLE,
an XML schema for text-to-speech (Sproat et al.,
1998). A further agent is available to control Greta,
a three-dimensional talking head (Pasquariello and
Pelachaud, 2001).



2.3 Dialogue Management Agents

The dialogue manager forms the heart of a dialogue
system, reading the input modalities, updating the
current state of the dialogue, deciding what to do
next, and generating output. In terms of interac-
tion with other agents, it is the most complex com-
ponent. In fact, the DIPPER dialogue manager is
implemented as two cooperating OAA agents: the
dialogue move engine (DME), and a DME server.

The DME does the real work by dealing
with input from other agents (normally the in-
put modalities, such as speech recognition),
updating its internal state, and calling other
agents (normally the output modalities, such as
speech synthesis). The solvables of the DME
are check conds(+Conditions) and ap-
ply effects(+Effects) . The former is used
for other agents to check the current state of the di-
alogue, the latter is used to change the state (for in-
stance by integrating results of speech recognition).
(At this point these services might seem fairly ab-
stract, but they will be made more concrete in Sec-
tion 3.)

The DME server is an agent mediating between
the DME and other agents. It collects requests
submitted by the DME, waits for the results, and
posts these back to the DME. The DME server
enables the DME to manage information-state up-
dates in an asynchronous way. Because the DME
server is implemented as a multi-threaded system, it
is able to cope with multiple requests at the same
time. The solvable that the DME server supports is
dme(+Call,+Effects) . On receiving this call,
the DME server posts the solvableCall to the fa-
cilitator, waits for the result, and subsequently re-
turns the results to the DME using its solveableap-
ply effects(+Effects) .

Let’s illustrate this with an example. Suppose
that the dialogue system just asked the user a yes-no
question, and is ready to accept a yes-no answer. It
will need to tell the speech recognition agent to load
the grammar for yes/no-answers and return a result
(say, within 7 seconds) at theisˆinput field of the
dialogue state (see Section 3 for more details). This
is done by posting the solvable:

dme(recognize(’.YesNo’,7,X),
[set(isˆinput,X)])

To summarise the functionality of the DME,
there are three ways it is able to communi-
cate with other agents in a dialogue system:
(1) agents can call the DME agent directly, us-
ing check conds(+Conditions) and ap-
ply effects(+Effects) ; (2) the DME agent
can call other agents directly, in particular if it is
not interested in the results of those requests; (3) the
DME agent can use the DME server as a mediating
agent, normally when the results are needed for up-
dating the information state of the DME.

The advantage of this architecture is the flexibil-
ity imposed by it, while at the same time allow-
ing asynchronous interaction of the input/output and
supporting agents with the dialogue move engine.

2.4 Supporting Agents

OAA itself comes with agents for parsing and gen-
erating based on the Gemini system (Dowding et
al., 1993). DIPPER provides a further set of agents
to deal with natural language understanding, based
on Discourse Representation Theory (Kamp and
Reyle, 1993). There is an ambiguity resolution
agent that resolves underspecified DRSs into fully
resolved DRSs, and there is an inference agent that
checks consistency of DRSs, using standard first-
order theorem proving techniques, including the the-
orem prover SPASS (Weidenbach et al., 1999) and
the model builder MACE (McCune, 1998). DIPPER
also includes a high-level dialogue planning compo-
nent using O-Plan (Currie and Tate, 1991) which can
be used to build domain-specific content plans.

3 The Information-state Approach

In this section we will briefly review the
information-state approach and then introduce
a revised version of the TrindiKit’s dialogue move
engine (Traum et al., 1999), including a new update
language for information states.

3.1 Some History

Traditional approaches to dialogue modelling can
roughly be classified as dialogue state approaches
or plan-based approaches. In the former the dia-
logue dynamics are specified by a set of dialogue
states, each state representing the results of perform-
ing a dialogue move in some previous state. The lat-
ter are used for more complex tasks requiring flex-



ible dialogue behaviour. The information-state ap-
proach (Traum et al., 1999) is intended to combine
the strengths of each paradigm, using aspects of dia-
logue state as well as the potential to include detailed
semantic representations and notions of obligation,
commitment, beliefs, and plans.

The information-state approach allows a declara-
tive representation of dialogue modelling. It is char-
acterised by the following components:

1. a specification of the contents of the informa-
tion state of the dialogue,

2. the datatypes used to structure the information
state,

3. a set of update rules covering the dynamic
changes of the information state, and

4. a control strategy for information state updates.

As mentioned earlier, the first fully fledged imple-
mentation of the information-state approach was the
TrindiKit (Larsson et al., 1999). Written in Prolog,
the TrindiKit implements dialogue systems by defin-
ing information states, update and selection rules,
and control algorithms governing the rules to be ap-
plied to the information state. The DIPPER dialogue
move engine builds on the TrindiKit by adopting its
record structure and datatypes to define information
states. However, there are some fundamental dif-
ferences, the most important being that there are no
update algorithms in the DIPPER DME, there is no
separation between update and selection rules, and
the update rules are abstracted away from Prolog.
We will consider these differences in more detail in
Section 4.

3.2 Specifying Information States

The information state of a dialogue “represents the
information necessary to distinguish it from other di-
alogues, representing the cumulative additions from
previous actions in the dialogue, and motivating fu-
ture action” (Traum et al., 1999). The terminforma-
tion stateis very abstract, and concepts such as men-
tal model, discourse context, state of affairs, conver-
sational score, and other variations on this theme can
be seen as instances of an information state.

Like TrindiKit, DIPPER defines information
states using a rich set of datatypes, including

records, stacks, and queues.1 The TrindiKit allows
developers to define specific information states, tai-
lored to a particular theory or a special task. An
information state is normally defined as a recursive
structure of the formName:Type, whereNameis an
identifier, andTypea datatype. Here is a simple ex-
ample:

Example 1 Information State Definition

is:record([grammar:atomic,
input:queue(atomic),
sem:stack(record([int:atomic,

context:drs]))]).

This example defines an information state as a
record namedis , consisting of the fieldsgrammar ,
input , andsem. The fieldinput is itself defined
as a queue of atomic typed structures, and the field
sem is defined as a stack of records containing the
fields int andcontext .

As in the TrindiKit, DIPPER uses a system of ref-
erences to anchor conditions and actions in the infor-
mation state. Each record consists of a set of fields.
Following the convention of the TrindiKit, we use
the operator̂ , whereaˆb refers to the value of field
b in recorda, and call thesepaths. For instance, the
path isˆinput in the above example refers to a
queue of terms of typeatomic. Note that paths can
be arbitrarily long and may be used in conjunction
with functions defined in the update language, which
we will introduce in the next section.

3.3 The DIPPER Update Language

We will present the DIPPER update language here
in a rather informal way, merely by using examples.
(The reader is referred to the appendix for a precise
definition of the update language.) The update lan-
guage defines the core of the formalism underlying
the information state approach: the update rules.

An update rule is a triple〈name, conditions, ef-
fects〉, with namea rule identifier,conditionsa set of
tests on the current information state, andeffectsan
ordered set of operations on the information state.
Update rules specify the information state change
potential in a declarative way: applying an update

1For the purpose of this paper, we restrict ourselves to a
small number of datatypes, although the implementation sup-
ports further types including sets, ordered sets, numbers, and
discourse representation structures.



rule to an information state (assuming a shared vo-
cabulary of fields) results in a new state.

The conditions and effects of update rules are both
recursively defined overterms. The terms allow one
to refer to a specific value within the information
state, either for testing a condition, or for applying
an effect. There are two kinds of terms:standard
termsandanchored terms. The standard terms de-
fine the data structures for the types (atomic types,
queue, stack, records, and so on), whereas the an-
chored terms allow us to refer to sub-structures of
the information state (such asfirst and last to
refer to the first respectively last item of a queue).
A particularly useful anchored term is of the form
Tˆf , referring to a fieldf in a recordT.

As we saw earlier the information state itself is a
structure of typerecord. We refer to the information
state object with the unique fixed nameis (which
belongs to the anchored terms). To illustrate refer-
ence of terms with respect to a certain information
state, consider the following example, using the def-
inition as given in Example 1.

Example 2 Information State
is: grammar: ’.YesNo’

input: <>
sem: < int: model(...)

drs: drs([X,Y],[...]) >

As defined in the Appendix, we will use the
interpretation function[[.]]s for (standard and an-
chored) terms with respect to an information state
s. Now, with respect to the information state in
Example 2, the value of[[isˆgrammar ]]s denotes
’.YesNo’ , whereas the value of[[grammar ]]s
denotesgrammar , because the term is not an-
chored. Similarly,[[top(isˆsem)ˆdrs ]]s yields
drs([X,Y],[...]) . However, note that
[[top(sem)ˆdrs ]]s is undefined. This term is not
well-formed sincesem is of typeatomicand not of
typerecord.

This example (and the ones that follow) illustrates
the power and ease with which we can refer to spe-
cific attributes of the information state, and thereby
specify the conditions and effects of update rules.
The crucial property of conditions is that they must
not change the content of the information state, and
are only used to inspect values denoted by paths in
the record defining the information state (such as
checking identity of terms or whether a queue is

empty or not), in order to trigger the effects of an up-
date rule. Effects, on the other hand are responsible
for changing the information state. There are two
kinds of effects: operations (defined over terms),
and solvables. The former include assignments of
values to information state attributes and operations
on datatypes such as stacks and queues. The latter
are OAA-solvables that allow us to fulfil requests
by supporting agents or input/output agents of the
dialogue system, which is a useful way of incorpo-
rating procedural attachment using the functionality
provided by OAA as described in Section 2. As a re-
sult, external actions are able to update the informa-
tion state, giving the properties of an asynchronous
architecture while maintaining a central unit for data
processing.

3.4 A simple example

The following (extremely simple) example illus-
trates the DIPPER architecture and the information
state update language. The example implements a
“parrot”, where the system simply repeats what the
user says. Four OAA agents are involved: one agent
for the speech recogniser, one for the synthesiser,
and an agent each for the DME and the DME server.
We will use the following information structure:

is:record([input:queue(basic),
listening:basic,
output:queue(basic)]).

That is, there are three fields: a queue containing
the input of the speech recogniser (we’re assuming
that the objects returned by the speech recogniser are
strings), an auxiliary field keeping track of whether
speech recognition is active or not, and an output
field for the text-to-speech synthesiser.

There are four update rules. The first rule,
timeout , deals with the situation where the
speech recognition returned ‘timeout’ (no speech
was recognised in the given time). In that case we
simply remove it from the queue.

urule(timeout,
[first(isˆinput)=timeout],
[dequeue(isˆinput)]).

By virtue of the second rule,process , we sim-
ply move the string from the input queue to the out-
put queue. (This is just done for the sake of the ex-
ample, we could have directly sent it to the synthe-
siser).



urule(process,
[non-empty(isˆinput)],
[enqueue(isˆoutput,first(isˆinput)),

dequeue(isˆinput)]).

The third rule,synthesise , gives the string to
the synthesiser, by posting an OAA solvable. We are
not interested in any result that could be yielded by
the solvable, so the set of effects is empty here.

urule(synthesise,
[non-empty(isˆoutput)],
[solve(text2speech(first(isˆoutput)),[]),

dequeue(isˆoutput)]).

A slightly more complicated rule isrecog-
nise . It activates the speech recognition agent
(with the grammar’.Simple’ ) when the system
is currently not listening, then sets the listening flag
to yes (to prevent application of the update rule
again). The results of speech recognition will be in-
tegrated by the effects stated as the third argument
of solve : the results will be placed in theinput
field, and the flaglistening is set tono again.

urule(recognise,
[isˆlistening=no],
[solve(X,recognise(’.Simple’,10),

[enqueue(isˆinput,X),
assign(isˆlistening,no)]),

assign(isˆlistening,yes)]).

Finally, we would like to make a remarks about
the dynamics of effects in update rules. The effects
are ordered, because the information state is updated
after each single effect, and hence the order in which
the effects are applied to the information state mat-
ters. Conditions in update rules, however, are not
ordered.

4 Comparison with TrindiKit

Now that we have introduced the DIPPER informa-
tion state update language, we are in a good position
to compare DIPPER’s approach to dialogue man-
agement that of the TrindiKit. We will consider the
use of variables, controlling update rules, and dis-
tributed processing.

4.1 Use of Variables

The DIPPER update language is essentially a
variable-free language (apart from the variables that
are used insolve/3 to return answers which are
then substituted for the variable’s occurrences in the
effects). In the TrindiKit, Prolog variables are used
for references to objects in the information state.
The scope of such variables includes the conditions

and effects of the update rule. The system of refer-
ence in DIPPER is functional rather than relational,
which we will illustrate with two examples.

Example 3 In DIPPER, pushing the top el-
ement of stackisˆa on another stackisˆb ,
and consequently pop the first stack, the effects
[push(isˆb,top(isˆa)), pop(isˆa)]
will be the way to achieve this. In the TrindiKit,
one would need the effects[is::fst(a,X),
is::pop(a) , is::push(b,X)] to get the
same result, whereX denotes a Prolog variable.

Example 4 Given the information state struc-
ture presented at the beginning of this section,
the term assign(top(isˆsem)ˆint,m)
picks the first record out of a stack, and refers
to one of its fields (here, the fieldint ).
In the TrindiKit, this needs to be coded as
[is::fst(sem,X),X::set(int,m)] ,
where againX denotes a Prolog variable.

In both examples the TrindiKit relies on Prolog
unification to obtain the correct results. As a con-
sequence, the order of conditions in the TrindiKit
is crucial. Furthermore, in the TrindiKit it is com-
mon practice to use variables in the conditions to re-
fer to values in the effects of update rules. Unifica-
tion combined with Prolog’s backtracking can some-
times lead to unexpected behaviour, causing errors
that are difficult to debug (Burke et al., 2002). The
DIPPER update language does not rely on Prolog,
and therefore poses no such problems for dialogue
system developers unfamiliar with Prolog.

4.2 Control in DIPPER

In contrast to the TrindiKit, which comes with a spe-
cial language to define the update control algorithm,
the control strategy used in DIPPER to select up-
date rules is simple and completely determined by
the update rules. Furthermore, there is no distinc-
tion between update and selection rules (used for
selecting a new dialogue move to be made by the
system) which the TrindiKit makes. The DIPPER
update algorithm is characterised by the following
pseudo-code:

1 WHILE running
2 deal with OAA-events;



3 IF there is a rule whose condi-
tions are satisfied by the informa-
tion state
4 THEN apply its effects;
5 ENDWHILE

Line 2 deals with external OAA agents requesting
a service from the DME, in this case the solvable
apply effects(+Effects) . If there are any
such requests, the information state gets updated,
and the algorithm proceeds with line 3. Here we
simply choose the first rule in the database whose
conditions are satisfied by the information state and
apply its effects to the information state (line 4).
If there is no such rule, no updates take place and
only an external event can change the information
state. Note that the effects of at most one rule will
be applied before proceeding to the end of the while-
loop, ensuring that incoming OAA-events are regu-
larly checked.

4.3 OAA Integration

Allowing OAA-solvables in the effects of update
rules, a facility that the TrindiKit lacks, is an intu-
itive way of interfacing other components of a dia-
logue system (see the example update rules in Sec-
tion 3.4). This feature allows components to be eas-
ily replaced by others with the same functionality,
which is defined purely in terms of the OAA solv-
ables. For instance, changing the synthesiser does
not affect the dialogue management component.

The direct handle on OAA technology further al-
lows one to implement advanced functionality for
dialogue systems such as dealing with barge-in and
multi-modal input. Most spoken dialogue systems
exhibit a pipelined architecture with the following
components: automatic speech recognition→ nat-
ural language understanding→ dialogue manage-
ment→ natural language generation→ speech syn-
thesis. Because DIPPER builds on the OAA frame-
work, it allows developers to design asynchronous
dialogue systems in a relatively straightforward way.

5 Practical Results

5.1 Prototyping

As the example in the previous section demon-
strated, relatively little effort is required to build the
core of a new dialogue system. First of all, the de-
veloper needs to select the OAA agents. A skeleton

for a spoken dialogue system could consists of the
Nuance speech recognition agent, the DME, and a
synthesiser. Further work involves defining the in-
formation state, and the update rules. Once a core
system has been built, it is often easy to switch to
new domains, using a similar configuration as in pre-
viously implemented systems.

5.2 Debugging

A disadvantage of the information-state approach is
that it makes testing and debugging of dialogue sys-
tems notoriously difficult. The more advanced ap-
plications require at least a couple of dozen update
rules, and even for a relatively small set of rules de-
velopers tend to lose the overview of the intended
behaviour of their system.

Formal testing is one possibility, where intended
effects of update rules could be verified by future in-
formation states, or testing whether the conditions
of an update rule guarantee that its effects can be ap-
plied to any information state defined over the same
vocabulary. Given the formal specification of con-
ditions and effects, an interesting topic for future
research would be to apply model checking tech-
niques to dialogue system development. Most of
the model checking tools do not work on the more
complex datatypes required by the information-state
approach, although these probably can be translated
into some kind of propositional representation.

Practically, the DIPPER environment offers a
graphical user interface that assists during develop-
ment (Figure 1). This GUI starts and stops the DME
and keeps a history of updates. In addition, the de-
veloper is able to engage in “time-travelling”, by
backtracking in the dialogue and restarting the di-
alogue from any point in the past.

Further functionality of the GUI includes the
‘Step’ function, which applies just one update rule
before returning control to the GUI. This function
is particularly helpful in verifying the intended ef-
fect of an update rule. Finally, the ‘Spy’ function
displays all rules that are satisfied by the current in-
formation state.

5.3 DIPPER Prototypes

The number of successful spoken dialogue proto-
types implemented using DIPPER is a convincing
proof-of-concept. Applications include conversa-



Figure 1: The Graphical User Interface of the DIP-
PER DME, showing the current information state,
the last applied update rule, and system messages.

tion with domestic appliances, as initiated by the
EU project D’Homme (Bos and Oka, 2002), ex-
plaining route descriptions to a mobile robot in a
miniature town, an EPSRC-funded project (Lauria
et al., 2001), and meaningful conversation with a
mobile robot in the basement of our department
(Theobalt et al., 2002). Currently we are work-
ing on a prototype dialogue system including the
Greta three-dimensional talking head (Pasquariello
and Pelachaud, 2001) as part of the EU project Mag-
iCster.

6 Conclusion

We presented the DIPPER framework for build-
ing spoken dialogue systems, based on the infor-
mation state theory of dialogue management. In
comparison to TrindiKit, we showed that DIPPER
provides a transparent and elegant way of declar-
ing update rules—independent of any particular pro-
gramming language, and with the ability to use ar-
bitrary procedural attachment via OAA. The sys-
tem incorporates many off-the-shelf OAA agents,
which we described, as well as a variety of sup-

port agents. The DIPPER resources are available at
http://www.ltg.ed.ac.uk/dipper .

We also presented the formal syntax and seman-
tics of our information-state update language. Al-
though it is up to the developer to ensure the va-
lidity of update rules, this formalisation could form
the basis of implementing an interpreter that proves
validity of update rules. This is an attractive task
for future work, and similar directions have been
suggested by (Ljungl¨of, 2000; Fern´andez, 2003) for
proving generic properties of dialogue systems.
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Appendix: Syntax and Semantics of the
DIPPER Update Language

The terms of the update language refer to a specific
value within the information state, either for testing
a condition, or for applying an effect. There are two
kinds of terms: standard terms and anchored terms.

Definition: Standard Terms.

1. All constants are standard terms of typeatomic.

2. If T1, . . . ,Tn are standard terms of typeτ , then
〈T1, . . . ,Tn〉 is a standard term of typestack(τ ).

3. If T1, . . . ,Tn are standard terms of typeτ , then
(T1, . . .Tn) is a standard term of typequeue(τ ).

4. If f1, . . . ,fn are record fields, T1, . . . ,Tn

are terms of type τ1, . . . , τn, then
[f1:T1, . . . ,fn:Tn] is a standard term of
typerecord(f1:τ1,. . .,fn:τn).

5. Standard Terms are only defined on the basis of
(1)–(4).

Definition: Anchored Terms.

1. is is an anchored term of type
record(f1:τ1,. . .,fn:τn).

2. If T is an anchored term of type
record(. . .,f:τ ,. . .), then T̂ f is an anchored
term of typeτ .

3. If T is an anchored term of typequeue(τ ), then
first (T) andlast (T) are anchored terms of
typeτ .

4. If T is an anchored term of typestack(τ ), then
top (T) is an anchored term of typeτ .

5. If T is an anchored term of typequeue(τ ) or
stack(τ ), thenmember(T) is an anchored term
of typeτ .

6. Anchored terms are only defined on the basis
of (1)–(5).

The interpretation function[[.]]s for (standard and an-
chored) terms with respect to an information states
is defined as follows.

Definition: Reference of Terms.

1. [[T]]s = T iff T is a standard term.

2. [[is ]]s = s.

3. [[Tˆ f]]s = the value of field f in[[T]]s.

4. [[top (T)]]s = the top member of[[T]]s iff T is of
typestack().



5. [[first (T)]]s = the first member of[[T]]s iff T
is of typequeue().

6. [[last (T)]]s = the last member of[[T]]s iff T is
of typequeue().

7. [[member(T)]]s = a member of[[T]]s iff T is of
typestack() or of typequeue().

Now we define the syntax and semantics of update
rule conditions in DIPPER. For the interpretation
of conditions we use a truth-conditional semantics
mapping conditions to one of the values 1 (‘true’) or
0 (‘false’), defined with the help of an interpretation
function I with respect to an information states.

Definition: Syntax of Conditions.

1. If T1 and T2 are (standard or anchored) terms
of the same type, then T1=T2 and T1 6=T2 are
conditions.

2. If T is a (standard or anchored) term of type
stack(τ ), or queue(τ ), then empty (T) and
non empty (T) are conditions.

3. Conditions are only defined on the basis of (1)
and (2).

Definition: Semantics of Conditions.

1. Is(T1=T2) = 1 iff [[T1]]s = [[T2]]s

2. Is(T1 6=T2) = 1 iff [[T1]]s 6= [[T2]]s

3. Is(empty (T)) = 1 iff [[T]]s denotes a stack or
queue containing no elements.

4. Is(non empty (T)) = 1 iff [[T]]s denotes a stack
or queue containing at least one element.

Definition: Information State Satisfaction.
An information states satisfies a set of conditionsC
iff ∀c : c ∈ C → [[c]]s = 1.

The effects in an update rule are responsible for
changing the information state. There are two kinds
of effects: operations defined over terms, and solv-
ables.

Definition: Syntax of Effects.

1. If T1 is an anchored term of typeτ and T2
a (standard or anchored) term of typeτ , then
assign (T1,T2) is an effect.

2. If T1 is an anchored term of typestack(τ ) and
T2 a (standard or anchored) term of typeτ ,
then clear (T1), pop (T1), andpush (T1,T2)
are effects.

3. If T1 is an anchored term of typequeue(τ )
and T2 a (standard or anchored) term of type
τ , thenclear (T1), dequeue (T1), anden-
queue (T1,T2) are effects.

4. If the term S is ann-place OAA-solvable,
T1,. . .,Tn are (standard or anchored) terms,
E(x) an ordered (possibly empty) set of
effects with free occurrences of x, then
solve (x,S(T1,. . .,Tn),E) is an effect.

5. Effects are only defined on the basis of (1)–(4).

The semantics of the effects are defined with the
help of the function U: s× E→s from an informa-
tion state and an effect to a new information state.
(Some notational conventions: We will use the nota-
tion s[T]s′ to mean that the information statess and
s′ are the same except for the value of[[T]]s. We will
use E[t/u] to mean substituting t for u in E).

Definition: Semantics of Effects.

1. U(s,assign (T,T′)) = s′ if s[T]s′ and [[T]]s′ =
[[T′]]s.

2. U(s,clear (T)) = s′ if s[T]s′ and[[T]]s′ = 〈〉.
3. U(s,pop (T)) = s′ if s[T]s′ and [[T]]s =

〈t1, t2, . . . , tn〉 and[[T]]s′ = 〈t2, . . . , tn〉.
4. U(s,push (T,T′)) = s′ if s[T]s′ and [[T]]s =

〈t1, . . . , tn〉 and[[T]]s′ = 〈[[T′]]s, t1, . . . , tn〉.
5. U(s,dequeue (T)) = s′ if s[T]s′ and [[T]]s =

(t1, t2, . . . , tn) and[[T]]s′ = (t2, . . . , tn).

6. U(s,enqueue (T,T′)) = s′ if s[T]s′ and [[T]]s =
(t1, . . . , tn) and[[T]]s′ = (t1, . . . , tn, [[T′]]s).

7. U(s,solve (x,S(T1,. . .,Tn),E)) = s if for all an-
swers a returned by solve(S([[T1]]s,. . .,[[Tn]]s))
there is ans′ such that the effects E[a/x] are ap-
plied tos′.

Definition: Update.
An ordered set of effects{e1, . . . , en} are success-
fully applied to an information states, resulting an
information states′ if U(e1,s)=s1 ,. . ., U(ei,si−1)=si
,. . ., U(en,sn−1)=s′.


