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Abstract

The DIPPER architecture is a collection

of software agents for prototyping spoken
dialogue systems. Implemented on top
of the Open Agent Architecture (OAA),

it comprises agents for speech input and
output, dialogue management, and fur-
ther supporting agents. We define a for-
mal syntax and semantics for the DIP-
PER information state update language.
The language is independent of particular
programming languages, and incorporates

}@inf.ed.ac.uk

and-play and easy adaptation to new domains is a
challenging task for dialogue system architectures.

This paper presents DIPPER, an architecture
tailored for prototyping spoken dialogue systems,
based on the Open Agent Architecture (OAA). Al-
though DIPPER supports many off-the-shelf com-
ponents useful for spoken dialogue systems, it
comes with its own dialogue management compo-
nent, based on the information-state approach to di-
alogue modelling (Traum et al., 1999; Larsson and
Traum, 2000).

The TrindiKit (Larsson et al., 1999; Larsson,
2002) is regarded as the first implementation of the

procedural attachments for access to ex-
ternal resources using OAA.

information-state approach. However impressive it
is, on many occasions the TrindiKit tends to give
the impression of a “Rube Goldberg” machine for
what is a relatively straightforward task: updating
the information state of the dialogue with the help of
Spoken dialogue systems are complex frameworkégeclaratively stated update rules. What should be a
involving the integration of speech recognition,transparent operation is often obscured by the com-
speech synthesis, natural language understandiBlgxity of the TrindiKit framework. The dialogue
and generation, dialogue management, and interd®anagement component of DIPPER borrows many
tion with domain-specific applications. These comof the core ideas of the TrindiKit, but is stripped
ponents might be written in different programmingdown to the essentials, uses a revised update lan-
languages or running on different platforms. Furguage (independent of Prolog), and is more tightly
thermore, with current developments in speech tecffitegrated with OAA. We argue that the resulting
nology, many components for a dialogue systerfprmalism offers several advantages for developing
can be obtained “off-the-shelf”, particularly thoseflexible spoken dialogue systems.

involving speech recognition and speech synthesis, We will first introduce OAA and DIPPER agents
and to a lesser extent those for parsing and geneffar building spoken dialogue systems, and explain
tion. The overall behaviour of a dialogue system isiow dialogue management interfaces with compo-
controlled by the dialogue management componements in a flexible way (Section 2). Then we review
where interaction between the different componenthie information-state approach to dialogue mod-
is managed in a flexible way. Allowing for plug- elling, introduce the DIPPER update language (Sec-

1 Introduction



tion 3), and compare it to the TrindiKit (Section 4).the integration of multi-modal input or output in a
Finally, we list some practical results obtained usingtraightforward way.

the DIPPER framework (Section 5). The current collection of DIPPER agents consists

> The DIPPER Environment qf the following: (1) age_nts for mput/outpu_t modali-
ties, (2) agents for the dialogue move engine, and (3)
This section gives an overview of DIPPER. FirsUpporting agents. We will describe the functional-
we introduce the Open Agent Architecture, then w#Y Of the DIPPER agents in the remainder of this
dialogue systems. We focus on the dialogue movése the OAAterm “solvable” to describe the services

engine in particular. offered by agents. The solvables of an agent are reg-
istered with the facilitator, and are implemented by
2.1 The Open Agent Architecture function calls (in C++ and Java) or predicate defi-

The Open Agent Architecture, OAA for short, is nitions (in Prolog) by the agents that provide them.

framework for integrating several software agents eV\."” use + anq - in front of arguments to indicate
) oS : assing or returning values.

possibly coded in different programming Ianguageg

(C/C++, Java, Prolog) and running on different plat-

forms (Unix, Linux, Windows), in a distributed en- > Input/o A

vironment (Martin et al., 1999). Because dialogu@' hput’Output Agents

systems are typically built out of a set of indepen-

dent components performing particular tasks (wherd!PPER supports agents for Nuance speech recog-
in many cases some of them are “out-of-the-box?ition software yww.nuance.com) by providing
packages, such as speech recognition or speech sYiaPpers written in C++ or Java. The speech
thesis), the OAA framework forms an ideal mediun{©c0gnition agent can be used in two different
to allow easy integration of software agents for difedes: continuous speech recognition, - calling

alogue systems in a prototyping development envin€ solvableapply _effects(+Effects) and

ronment. thereby updating the information state of the dia-
The term “agent” within OAA refers to a software logue (see Section 3); and in callback mode, where

process meeting the conventions of the OAA framén€ solvablerecognize(+Grammar, +Time,-

work. Basically, this means providing services tdNPut)  starts recognition using the speech gram-

other agents in a particular form, using the InterMar Grammar and returnsinput , within a time

agent Communication Language (ICL). Within theSPecified byTime. The value ofinput is deter-

community of agents, service requests can be sufiinéd by the grammar used as language model for
mitted to the “facilitator”. This is a special agentspeech recognition. Callback mode makes it easy to

with knowledge of available agents and their caP!td in new grammars during different stages of the
pabilities. It mediates all interactions between th&ialogue so as to increase speech recognition perfor-

agents involved in submitting and fuffilling a re-Mance

quest. On the output side, DIPPER provides
A prototypical spoken dialogue system built onagents for the speech synthesisers Fes-

top of OAA consists of an agent for speech recogtival (Taylor et al, 1998) and rVoice

nition, an agent for dialogue management, an age(www.rhetorical.com). The solvables for these

for speech synthesis, and several supporting agemtstput agents ardext2speech(+Text) and

for specific tasks such as parsing, semantic interpreable2speech(+Sable) . The latter can be

tation, and generation. A distributed agent architeaised to synthesise strings marked up in SABLE,
ture allows the implementation of flexible and adaptan XML schema for text-to-speech (Sproat et al.,

able dialogue systems, where individual agents cd®98). A further agent is available to control Greta,

easily be added (or substituted by others) to exteral three-dimensional talking head (Pasquariello and
functionality of the overall system. It also allowsPelachaud, 2001).



2.3 Dialogue Management Agents To summarise the functionality of the DME,

The dialogue manager forms the heart of a dialogd8€re are three ways it is able to communi-
system, reading the input modalities, updating thgat€ With other agents in a dialogue system:
current state of the dialogue, deciding what to dél) agents can call the DME agent directly, us-
next, and generating output. In terms of interac"d check conds(+Conditions) and ap-
tion with other agents, it is the most complex comPly -effects(+Effects)  ; (2) the DME agent
ponent. In fact, the DIPPER dialogue manager igan_call other.agents directly, in particular if it is
implemented as two cooperating OAA agents: th80t interested in the results of those requests; (_3) 'the
dialogue move engine (DME), and a DME server. DME agent can use the DME server as a mediating
The DME does the real work by dealing@9€nt normally when the results are needed for up-

with input from other agents (normally the in-dating the information state of the DME. .
put modalities, such as speech recognition) The advantage of this architecture is the flexibil-

updating its internal state, and calling othefty imposed by it, while at the same time allow-
agents (normally the output modalities, such al!9 @synchronous interaction of the input/output and
speech synthesis). The solvables of the pDMBEUPporting agents with the dialogue move engine.

are check _conds(+Conditions) and ap-

ply _effects(+Effects) . The former is used itself ith ‘ : q
for other agents to check the current state of the dPAA itself comes with agents for parsing and gen-

alogue, the latter is used to change the state (for ifffating based on the Gemini system (Dowding et

stance by integrating results of speech recognition .I" 1993)_‘ DIPPER provides a further set_ of agents
(At this point these services might seem fairly ab© deal with natural language understanding, based

stract, but they will be made more concrete in sed@" Discourse Represe_ntation Th_eor_y (Kamp _and
tion 3.) Reyle, 1993). There is an ambiguity resolution

The DME server is an agent mediating betweefi9eNt that resolves underspecified DRSs into fully
the DME and other agents. It collects requestgesolved DRSs, and there is an inference agent that

submitted by the DME, waits for the results, anochecks consistency of DRSs, using standard first-
posts these back to the DME. The DME SerVeprdertheorem proving techniques, including the the-
enables the DME to manage information-state upqrem prO\I/er _ISPASS (Weidenbach et al., 1999) and
dates in an asynchronous way. Because the DI\/fEe model builder MACE (McCune, 1998). DIPPER

server is implemented as a multi-threaded system, 3© Includes a high-level dialogue planning compo-
is able to cope with multiple requests at the sam@ent using O-Plan (Currie and Tate, 1991) which can
ge used to build domain-specific content plans.

2.4 Supporting Agents

time. The solvable that the DME server supports i

dme(+Call,+Effects) . Onreceiving thiscall, 3 The Information-state Approach

the DME server posts the solvab@all to the fa- ' _ _ _ _

cilitator, waits for the result, and subsequently reln this section we will briefly review the

turns the results to the DME using its solveabte  information-state approach and then introduce

ply _effects(+Effects) ) a revised version of the TrindiKit's dialogue move
Let's illustrate this with an example. Supposeengine (Traum etal, _1999), including a new update

that the dialogue system just asked the user a yes-l@guage for information states.

qL_Jestlon, and is ready to accept a yes-no answer.g'tl Some History

will need to tell the speech recognition agent to loa

the grammar for yes/no-answers and return a resdifaditional approaches to dialogue modelling can
(say, within 7 seconds) at tiginput  field of the roughly be classified as dialogue state approaches

dialogue state (see Section 3 for more details). Th Plan-based approaches. In the former the dia-

is done by posting the solvable: logue dynamics are specified by a set of dialogue
states, each state representing the results of perform-
dme(recognize(’.YesNo’,7,X), ing a dialogue move in some previous state. The lat-

[set(is"input,X)]) ter are used for more complex tasks requiring flex-



ible dialogue behaviour. The information-state aprecords, stacks, and queded.he TrindiKit allows
proach (Traum et al., 1999) is intended to combindevelopers to define specific information states, tai-
the strengths of each paradigm, using aspects of diared to a particular theory or a special task. An
logue state as well as the potential to include detaildédformation state is hormally defined as a recursive
semantic representations and notions of obligatiostructure of the fornName:TypewhereNameis an
commitment, beliefs, and plans. identifier, andTypea datatype. Here is a simple ex-
The information-state approach allows a declaraample:
tive representation of dialogue modelling. It is char-

acterised by the following components: Example 1 Information State Definition
g . . is: d :atomic,
1. a specification of the contents of the informa- sirecor ([gr""m{r?;‘ljtﬁqﬁgﬂg(ammic),
tion state of the dialogue, sem:stack(record([int:atomic,

context:drs]))]).
2. the datatypes used to structure the information

state This example defines an information state as a

record nameds , consisting of the fieldgrammar ,
3. a set of update rules covering the dynamigput ,andsem. The fieldinput is itself defined
changes of the information state, and as a queue of atomic typed structures, and the field

_ _ semis defined as a stack of records containing the
4. acontrol strategy for information state updateSie|dsint andcontext

As mentioned earlier, the first fully fledged imple-  AS in the TrindiKit, DIPPER uses a system of ref-

mentation of the information-state approach was tH&fénces to anchor conditions and actions in the infor-
TrindiKit (Larsson et al., 1999). Written in Prolog, mation_ state. Each regord consists_ of _a ;et of fields.
the TrindiKit implements dialogue systems by definfollowing the convention of the TrindiKit, we use
ing information states, update and selection rule§€ Operator , wherea’b refers to the value of field
and control algorithms governing the rules to be ag? in recorda, and call thes@aths For instance, the
plied to the information state. The DIPPER dialogud®@thisinput in the above example refers to a
move engine builds on the TrindiKit by adopting itsdueue of terms of typatomic Note that paths can
record structure and datatypes to define informatioR€ arbitrarily long and may be used in conjunction
states. However, there are some fundamental diith functions defined in the update language, which
ferences, the most important being that there are i Will introduce in the next section.

update algorithms in the DIPPER DME, there is no

separation between update and selection rules, ang The DIPPER Update Language

the update rules are abstracted away from Prologve will present the DIPPER update language here
We will consider these differences in more detail inn a rather informal way, merely by using examples.
Section 4. (The reader is referred to the appendix for a precise
definition of the update language.) The update lan-
guage defines the core of the formalism underlying
The information state of a dialogue “represents thghe information state approach: the update rules.
information necessary to distinguish it from other di- aAp ypdate rule is a tripléname conditions ef-
alogues, representing the cumulative additions froq@cts, with namea rule identifierconditionsa set of
previous actions in the dialogue, and motivating futests on the current information state, aftéctsan
ture action” (Traum et al., 1999). The teinforma-  ordered set of operations on the information state.
tion stateis very abstract, and concepts such as MeQypdate rules specify the information state change

tal model, discourse context, state of aﬁglrs, convegsotential in a declarative way: applying an update
sational score, and other variations on thisthemecan
be seen as instances of an information state. For the purpose of this paper, we restrict ourselves to a
. . e . . . small number of datatypes, although the implementation sup-
Like Tr_'nd|K|t’ _DIPPER defines mformatlor_] ports further types including sets, ordered sets, numbers, and
states using a rich set of datatypes, includingiscourse representation structures.

3.2 Specifying Information States



rule to an information state (assuming a shared v@mpty or not), in order to trigger the effects of an up-
cabulary of fields) results in a new state. date rule. Effects, on the other hand are responsible
The conditions and effects of update rules are botlor changing the information state. There are two
recursively defined ovaerms The terms allow one kinds of effects: operations (defined over terms),
to refer to a specific value within the informationand solvables. The former include assignments of
state, either for testing a condition, or for applyingvalues to information state attributes and operations
an effect. There are two kinds of termstandard on datatypes such as stacks and queues. The latter
termsandanchored terms The standard terms de- are OAA-solvables that allow us to fulfil requests
fine the data structures for the types (atomic typeby supporting agents or input/output agents of the
gueue, stack, records, and so on), whereas the afialogue system, which is a useful way of incorpo-
chored terms allow us to refer to sub-structures afating procedural attachment using the functionality
the information state (such &isst andlast to provided by OAA as described in Section 2. As are-
refer to the first respectively last item of a queue)sult, external actions are able to update the informa-
A particularly useful anchored term is of the formtion state, giving the properties of an asynchronous
T°f , referring to a field in a recordT. architecture while maintaining a central unit for data
As we saw earlier the information state itself is gprocessing.
structure of typeecord We refer to the information
state object with the unique fixed narise (which 3-4 Asimple example
belongs to the anchored terms). To illustrate referrhe following (extremely simple) example illus-
ence of terms with respect to a certain informatiofirates the DIPPER architecture and the information
state, consider the following example, using the dektate update language. The example implements a

inition as given in Example 1. “parrot”, where the system simply repeats what the
Example 2 Information State user says. Four OAA agents are involved: one agent
is: grammar: '.YesNo’ for the speech recogniser, one for the synthesiser,
input: <> and an agent each for the DME and the DME server.
sem: < Igllt’.s:mdc:’(:((a[l)((.,“Y)],[...]) > We will use the following information structure:
. . . . is:record([input:queue(basic),
As defined in the Appendix, we will use the listening:basic,
interpretation function[.]; for (standard and an- output:queue(basic)]).

chored) terms with respect to an information state T4t is, there are three fields: a queue containing
s. Now, with respect to the information state iny,e input of the speech recogniser (we're assuming
Example 2, the value ofis"grammar |, denotes ha¢ the objects returned by the speech recogniser are
YesNo' , whereas the value ofgrammar[s gtings), an auxiliary field keeping track of whether
denotesgrammar, because the term is not an-gpeech recognition is active or not, and an output
chored. Similarly,[top(is"sem)"drs ], yields fig|d for the text-to-speech synthesiser.
drs([X,YL[...]) . However, note that There are four update rules. The first rule,
[top(sem)"drs ] is undefined. This term is not tjmeout , deals with the situation where the
well-formed sincesem s of typeatomicand not of speech recognition returned ‘timeout’ (no speech

typerecord _ was recognised in the given time). In that case we
This example (and the ones that follow) |IIustrate%imp|y remove it from the queue.

the power and ease with which we can refer to P&, e(imeot,
cific attributes of the information state, and thereby [first(is input)=timeout],

specify the conditions and effects of update rules. [dequeue(isinpud):

The crucial property of conditions is that they must By virtue of the second rulgrocess , we sim-
not change the content of the information state, argly move the string from the input queue to the out-
are only used to inspect values denoted by paths put queue. (This is just done for the sake of the ex-
the record defining the information state (such aample, we could have directly sent it to the synthe-

checking identity of terms or whether a queue isiser).



urule(process, N and effects of the update rule. The system of refer-
o s input), ence in DIPPER is functional rather than relational,

dequeue(isTinput))). which we will illustrate with two examples.

The third rule,synthesise , gives the string to | hi h |
the synthesiser, by posting an OAA solvable. We arléxampe 3 In DIPPER, pushing the top el-

not interested in any result that could be yielded b§mdent of StaCk'IS a onh arf1_other stscks b ﬁ
the solvable, so the set of effects is empty here. and consequently pop the first stack, the effects

urule(eynthesise, [push(is"b,top(is"a)), pop(is a)]

[non-empty(is"outpu], will be the way to achieve this. In the TrindiKit,
i one would need the effectfis::fst(a,X),
is::pop(a) , is::push(b,X)] to get the

A slightly more complicated rule isecog-
nise . It activates the speech recognition agen?

(with the grammar.Simple’ ) when the system gxample 4 Given the information state struc-
is currently not listening, then sets the listening flagy e presented at the beginning of this section,
to yes (to prevent application of the update ruleghe  term assign(top(is“sem)’int,m)

again). The results of speech recognition will be inpicks the first record out of a stack, and refers
tegrated by the effects stated as the third argumeff one of its fields (here, the fieldnt ).

of solve : the results will be placed in theput In the TrindiKit, this needs to be coded as
field, and the fladistening s settono again.  [is::fst(sem,X),X::set(int,m)]

ame result, wher¥ denotes a Prolog variable.

urule(recognise, where agairX denotes a Prolog variable.
[is"listening=no],
[solve(X,recognise(’.Simple’,10), . o .
[enqueu(e_z([?“i?put,xm D In both examples the TrindiKit relies on Prolog
assign(is listening,no)j), . . .
assign(is”listening,yes)]). unification to obtain the correct results. As a con-

. . sequence, the order of conditions in the TrindiKit
Finally, we would like to make a remarks about , . e

. . is crucial. Furthermore, in the TrindiKit it is com-
the dynamics of effects in update rules. The effectrsn " oractice t variables in th nditions to r
are ordered, because the information state is updatFo? praclice 1o use variables €co onstore

. . idg" to values in the effects of update rules. Unifica-
after each single effect, and hence the order in whic ) . , .
ion combined with Prolog’s backtracking can some-

the effects are applied to the information state maﬂ . .
times lead to unexpected behaviour, causing errors

:)err('jse.reccijondltlons In update rules, however, are nc% at are difficult to debug (Burke et al., 2002). The
' DIPPER update language does not rely on Prolog,
4 Comparison with TrindiKit and therefore poses no such problems for dialogue

system developers unfamiliar with Prolog.
Now that we have introduced the DIPPER informa-

tion state update language, we are in a good positien2 Control in DIPPER

to compare DIPPERS. approach to_ dlalog_ue MaN, contrast to the TrindiKit, which comes with a spe-
agement that of the TrindiKit. We will consider the . . :
. . . cial language to define the update control algorithm,
use of variables, controlling update rules, and dlst- .
. . he control strategy used in DIPPER to select up-
tributed processing. . .
date rules is simple and completely determined by
4.1 Use of Variables the update rules. Furthermore, there is no distinc-
The DIPPER update language is essentially %on bfetween upd_ate and selection rules (used for
variable-free language (apart from the variables thest‘f3 lecting a new dialogue move to be made by the
: guage {ap . system) which the TrindiKit makes. The DIPPER
are used irsolve/3  to return answers which are

then substituted for the variable’s occurrences in thltja'pdate algorithm is characterised by the following

L . seudo-code:
effects). In the TrindiKit, Prolog variables are used’
for references to objects in the information state. 1 \wniLE running
The scope of such variables includes the conditions 2  deal with OAA-events;



3 IF there is a rule whose condi- for a spoken dialogue system could consists of the

::gﬂssgtee satisfied by the informa- Nuance speech recognition agent, the DME, and a
4  THEN apply its effects: synthe_siser. Further work involves defining the in-
5 ENDWHILE formation state, and the update rules. Once a core

system has been built, it is often easy to switch to

Line 2 deals with external OAA agents requestinq1 . . - . . .
: . ew domains, using a similar configuration as in pre-
a service from the DME, in this case the solvable

apply _effects(+Effects) . If there are any Viously implemented systems.
such requests, the information state gets updategl2 Debugging

and the algorithm proceeds with line 3. Here w
simply choose the first rule in the database who
conditions are satisfied by the information state an%
apply its effects to the information state (line 4).

If there is no such rule, no updates take place ar{J
only an external event can change the informatioy)
state. Note that the effect_s of at most one rule W'Ilehaviour of their system.
be applied before proceeding to the end of the while-

| nsuring that incoming OAA-events are r Formal testing is one possibility, where intended
00p, ensuring that incoming EVENIS are redlafrects of update rules could be verified by future in-
larly checked.

formation states, or testing whether the conditions

4.3 OAA Integration of an update rule guarantee that its effects can be ap-

Allowing OAA-solvables in the effects of update plied to any mfprmaﬂon state deflngql over the same
vocabulary. Given the formal specification of con-

rules, a facility that the TrindiKit lacks, is an intu- . . . )
. . . ._ditions and effects, an interesting topic for future
itive way of interfacing other components of a dia- .
. research would be to apply model checking tech-
logue system (see the example update rules in Sec- .
nigues to dialogue system development. Most of

tion 3.4). This feature allows components to be ea%ﬁe model checking tools do not work on the more
ily replaced by others with the same functionality, ) . :
complex datatypes required by the information-state

which is defined purely in terms of the OAA solv-
. . . approach, although these probably can be translated
ables. For instance, changing the synthesiser dog€ . o .

0 some kind of propositional representation.

) In
ffect th I . . .
nota ec_tt € dialogue management component Practically, the DIPPER environment offers a
The direct handle on OAA technology further al- . . . .
raphical user interface that assists during develop-

I impl f ionality f : .
ows one 10 implement advanged qnctlona |ty 0 ent (Figure 1). This GUI starts and stops the DME
dialogue systems such as dealing with barge-in an

: . . and keeps a history of updates. In addition, the de-
multi-modal input. Most spoken dialogue systems ) o -
veloper is able to engage in “time-travelling”, by

exhibit a pipelined architecture with the following L ] i .
. : " backtracking in the dialogue and restarting the di-
components: automatic speech recognitiennat- o
alogue from any point in the past.

[ derstanding dial - : . .
ura’ fahguage understanding dialogue manage Further functionality of the GUI includes the

ment— natural language generatien speech syn- ‘Step’ functi hich lies iust date rul
thesis. Because DIPPER builds on the OAA frame=>'cP_unction, Which appiies Just one update ruie
efore returning control to the GUI. This function

work, it allows developers to design asynchronou . . o .
. . . . Is particularly helpful in verifying the intended ef-
dialogue systems in a relatively straightforward way, ) - .
fect of an update rule. Finally, the ‘Spy’ function

5 Practical Results displays all rules that are satisfied by the current in-
formation state.

A disadvantage of the information-state approach is
at it makes testing and debugging of dialogue sys-
ms notoriously difficult. The more advanced ap-
ications require at least a couple of dozen update
les, and even for a relatively small set of rules de-
elopers tend to lose the overview of the intended

5.1 Prototyping

As the example in the previous section demom?-3 DIPPER Prototypes

strated, relatively little effort is required to build the The number of successful spoken dialogue proto-
core of a new dialogue system. First of all, the detypes implemented using DIPPER is a convincing
veloper needs to select the OAA agents. A skeletgoroof-of-concept. Applications include conversa-



— wkbweesmsemeE | port agents. The DIPPER resources are available at
iformarion e RS RET T e TS hitp://www.Itg.ed.ac.uk/dipper .

We also presented the formal syntax and seman-
tics of our information-state update language. Al-
though it is up to the developer to ensure the va-
lidity of update rules, this formalisation could form
the basis of implementing an interpreter that proves
validity of update rules. This is an attractive task
for future work, and similar directions have been
suggested by (Ljungf, 2000; Ferahdez, 2003) for
proving generic properties of dialogue systems.
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) _ Definition: Reference of Terms.
Appendix: Syntax and Semantics of the

DIPPER Update Language 1. [T]s = Tiff T is a standard term.

The terms of the update language refer to a specific2, fis Js =s.
value within the information state, either for testing
a condition, or for applying an effect. There are two 3. [T" f]s = the value of field fin[T].

kinds of terms: standard terms and anchored terms. ) )
4. [top (T)]s = the top member ofT]; iff T is of

Definition: Standard Terms. type stack).



5. [first  (T)]s = the first member of T]s iff T 2. If Ty is an anchored term of typstackr) and

is of typequeu€). Ty a (standard or anchored) term of type
6. [last (T)], = the last member ofT], i Tis  aro ooy (1) POP(T). andpush (To.T2)
of type queug).
3. If Ty is an anchored term of typgueuér)
7. [member(T)]; = a member of T[, iff T is of and T, a (standard or anchored) term of type
typestack) or of typequeu). r, thenclear (T;), dequeue (T,), anden-

Now we define the syntax and semantics of update 94€U€ (T1.T>) are effects.

rule conditions in DIPPER. For the interpretation 4. If the term S is ann-place OAA-solvable,
of conditions we use a truth-conditional semantics  T,,...,T,, are (standard or anchored) terms,
mapping conditions to one of the values 1 (‘true’)or  E(x) an ordered (possibly empty) set of
0 (‘false”), defined with the help of an interpretation effects with free occurrences of x, then
function | with respect to an information state solve (x,S(Ty,...,T,.),E) is an effect.

Definition: Syntax of Conditions. 5. Effects are only defined on the basis of (1)—(4).

1. If Ty and T, are (standard or anchored) termsThe semantics of the effects are defined with the
of the same type, then;¥T, and T;#T are help of the function U: sx E—s from an informa-
conditions. tion state and an effect to a new information state.

(Some notational conventions: We will use the nota-

Sion s[T] s’ to mean that the information statesand

s’ are the same except for the value[®f,. We will

use E[t/u] to mean substituting t for u in E).

3. Conditions are only defined on the basis of (1Pefinition: Semantics of Effects.
and (2). 1. U(sassign (T,T)) = ¢ if s[T]s’ and [T],
[T]s.
2. U(sclear (T)) =g ifs[T]s’ and[T]s = ().
3. U(spop(T)) = s if s[Tls’ and [T]s

2. If T is a (standard or anchored) term of typ
stacKr), or queuér), then empty (T) and
non _empty (T) are conditions.

Definition: Semantics of Conditions.

1. 1,(T=To) = 1iff [Ty]s = [To]s

2. 1(T1#T2) = 1iff [Ty]s # [T2]s (t1,ta, ..., tn) and[T]y = (ta, ..., tn).
3. I;(empty (T)) = 1 iff [T], denotes a stack or 4, U(spush (T,T)) = ¢ if s[T]s’ and [Tls =
gueue containing no elements. (t1,...,tn)y and[T]s = ([T]s, t1, .-, tn)-
4. Is(non_empty (T)) = 1iff [T]s denotes astack 5. U(sdequeue (T)) = s if s[T]s’ and [T]s =
or queue containing at least one element. (t1,ta, ..., tp) and[T]s = (ta, ..., tn).
Definition: Information State Satisfaction. 6. U(senqueue (T,T) = s if S[T]s’ and [T], =
An information states satisfies a set of conditiorn (ti,....tn) and[T]y = (t1,. .., tn, [T']s).
iff Ve:ce C — [c]s = 1. 7. U(ssolve (x,S(Ti,...,T,).E)) = s f for all an-

The effects in an update rule are responsible for  swers a returned by solve(S(]s.. - -.[Tx]s))
changing the information state. There are two kinds  there is ans’ such that the effects E[a/X] are ap-
of effects: operations defined over terms, and solv-  plied tos'.

ables.

Definition: Update.
Definition: Syntax of Effects. P

An ordered set of effect§e, ..., e, } are success-
1. If T, is an anchored term of type and T,  fully applied to an information state, resulting an
a (standard or anchored) term of typethen information states’ if U(e1,s)=si ..., U(ei,si-1)=Ss;

assign (T,T,) is an effect. oo Ulen,sn—1)=s".



