
Using Wizard-of-Oz simulations to bootstrap Reinforcement-Learning-
based dialog management systems

Jason D. Williams Steve Young
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom

{jdw30,sjy}@eng.cam.ac.uk

Abstract

This paper describes a method for “boot-
strapping” a Reinforcement Learning-
based dialog manager using a Wizard-of-
Oz trial. The state space and action set
are discovered through the annotation,
and an initial policy is generated using a
Supervised Learning algorithm. The
method is tested and shown to create an
initial policy which performs significantly
better and with less effort than a hand-
crafted policy, and can be generated using
a small number of dialogs.

1 Introduction and motivation

Recent work has successfully applied Rein-
forcement Learning (RL) to learning dialog strat-
egy from experience, typically formulating the
problem as a Markov Decision Process (MDP).
(Walker et al., 1998; Singh et al., 2002; Levin et
al., 2000). Despite successes, several open
questions remain, especially the issue of how to
create (or “bootstrap”) the initial system prior to
data becoming available from on-line operation.

This paper proceeds as follows. Section 2 out-
lines the core elements of an MDP and issues re-
lated to applying an MDP to dialog management.
Sections 3 and 4 detail a method for addressing
these issues, and the procedure used to test the
method, respectively. Sections 5-7 present the re-
sults, a discussion, and conclusions, respectively.

2 Background

An MDP is composed of a state space, an action
set, and a policy which maps each state to one ac-
tion. Introducing a reward function allows us to
create or refine the policy using RL. (Sutton and
Barto, 1998).

When the MDP framework is applied to dialog
management, the state space is usually constructed
from vector components including information
state, dialog history, recognition confidence, data-
base status, etc. In most of the work to date both
the state space and action set are hand selected, in
part to ensure a limited state space, and to ensure
training can proceed using a tractable number of
dialogs. However, hand selection becomes im-
practical as system size increases, and automatic
generation/selection of these elements is currently
an open problem, closely related to the problem of
exponential state space size.

3 A method for bootstrapping RL-based
systems

Here we propose a method for “bootstrapping” an
MDP-based system; specifically, we address the
choice of the state representation and action set,
and the creation of an initial policy.

3.1 Step 1: Conduct Wizard-of-Oz dialogs

The method commences with “talking wizard”
interactions in which either the wizard’s voice is
disguised, or a Text-to-speech engine is used. We
choose human/wizard rather than human/human
dialogs as people behave differently toward (what
they perceive to be) machines and other people as
discussed in Jönsson and Dahlbick, 1988 and also
validated in Moore and Browning, 1992. The dia-
log, including wizard’s interaction with back-end
data sources is recorded and transcribed.

3.2 Step 2: Exclude out-of-domain turns

The wizard will likely handle a broader set of re-
quests than the system will ultimately be able to
cover; thus some turns must be excluded. Step 2
begins by formulating a list of tasks which are to
be included in the final system’s repertoire; turns
dealing with tasks outside this repertoire are la-
beled out-of-domain (OOD) and excluded.

This step takes an approach which is analogous
to, but more simplistic than “Dialogue Distilling”
(Larsson et al., 2000) which changes, adds and re-
moves portions of turns or whole turns. Here rules
simply stipulate whether to keep a whole turn.

3.3 Step 3: Enumerate action set and state
space

Next, the in-domain turns are annotated with dia-
log acts. Based on these, an action set is enumer-
ated, and a set of state parameters and their
possible values to form a vector describing the
state space is determined, including:

• Information state (e.g., departure-city, arri-
val-city) from the user and database.

• The confidence/confirmation status of in-
formation state variables.

• Expressed user goal and/or system goal.

• Low-level turn information (e.g., yes/no re-
sponses, backchannel, “thank you”, etc.).

• Status of database interactions (e.g., when a
form can be submitted or has been returned).

A variety of dialog-act tagging taxonomies ex-
ist in the literature. Here we avoid a tagging sys-
tem that relies on a stack or other recursive
structure (for example, a goal or game stack) as it
is not immediately clear how to represent a recur-
sive structure in a state space.

In practice, many information state components
are much less important than their corresponding
confirmation status, and can be removed.

Even with this reduction, the state space will be
massive – probably too large to ever visit all states.
We propose using a parameterized value function -
- i.e., a value function that shares parameters
across states (including states previously unob-
served). One special case of this is state tying, in
which a group of states share the same value func-
tion; an alternative is to use a Supervised Learning
algorithm to estimate a value function.

3.4 Step 4: Form an initial policy

For each turn in the corpus, a vector is created rep-
resenting the current dialog state plus the subse-
quent wizard action. Taking the action as the class
variable, Supervised Learning (SL) is used to build
a classifier which functions as the initial policy.

Depending on the type of SL algorithm used, it
may be possible to produce a prioritized list of ac-
tions rather than a single classification; in this case,
this list can form an initial list of actions permitted
in a given state.

As noted by Levin et al. (2000), supervised
learning is not appropriate for optimizing dialog
strategy because of the temporal/environmental
nature of dialog. Here we do not assert that the
SL-learned policy will be optimal – simply that it
can be easily created, that it will be significantly
better than random guessing, and better and
cheaper to produce than creating a cursory hand-
crafted strategy.

3.5 Limitations of the method

This method has several obvious limitations:

• Because a talking, perfect-hearing wizard is
used, no/little account is taken of the recog-
nition errors to be expected with automated
speech recognition (ASR).

• Excluding too much in Step 2 may exclude
actions or state components which would
have ultimately produced a superior system.

4 Experimental design

The proposed approach has been tested using the
Autoroute corpus of 166 dialogs, in which a talk-
ing wizard answered questions about driving direc-
tions in the UK (Moore and Browning, 1992).

A small set of in-domain tasks was enumerated
(e.g., gathering route details, outputting summary
information about a route, disambiguation of place
names, etc.), and turns which did not deal with
these tasks were labeled OOD and excluded. The
latter included gathering the caller’s name and lo-
cation (“UserID”), the most common OOD type.

The corpus was annotated using an XML
schema to provide the following:

• 15 information components were created
(e.g., from, to, time, car-type).

• Each information component was given a
status: C (Confirmed), U (Unconfirmed),
and NULL (Not known).

• Up to 5 routes may be under discussion at
once – the state tracked the route under dis-

cussion (RUD), total number of routes (TR),
and all information and status components
for each route.

• A component called flow tracked single-
turn dialog flow information from the caller
(e.g., yes, no, thank-you, silence).

• A component called goal tracked the (most
recent) goal expressed by the user (e.g.,
plan-route, how-far). Goal is empty
unless explicitly set by the caller, and only
one goal is tracked at a time. No attempt is
made to indicate if/when a goal has been
satisfied.

33 action types were identified, some of which
take information slots as parameters (e.g., wh-
question, implicit-confirmation) .

The corpus gave no indication of database in-
teractions other than what can be inferred from the
dialog transcripts. One common wizard action
asked the caller to “please wait” when the wizard
was waiting for a database response. To account
for this, we provided an additional state component
which indicated whether the database was working
called db-request, which was set to true
whenever the action taken was please-wait
and false otherwise. Other less common database
interactions occurred when town names were am-
biguous or not found, and no attempt was made to
incorporate this information into the state represen-
tation.

The state space was constructed using only the
status of the information slots (not the values); of
the 15, 4 were occasionally expressed (e.g., day of
the week) but not used to complete the transaction
and were therefore excluded from the state space.
Two turns of wizard action history were also in-
corporated. This formulation of the state space
leads to approximately 1033 distinct states.

For evaluation of the method, a hand-crafted
policy of 30 rules mapping states to actions was
created by inspecting the dialogs.1

5 Results

Table 1 shows in-domain vs. out-of-domain wizard
and caller turns. Figures 1 through 4 show counts
of flow values, goal values, action values, and state

1 It was not clear in what situations some of the actions should
be used, so some (rare) actions were not covered by the rules.

components, respectively. The most common ac-
tion type was “please-wait” (14.6% of actions).

Turn
type

Total In
domain

OOD:
User ID

OOD:
Other

Wiz-
ard

3155
(100%)

2410
(76.4%)

594
(18.8%)

151
(4.8%)

Caller 2466
(100%)

1713
(69.5%)

561
(22.7%)

192
(7.8%)

Table 1: In-domain and Out-of-domain (OOD) turns

Criteria States Visits
Visited only
once

1182
(85.7%)

1182
(45.9%)

Visited more
than once
without a con-
flict

96
(7.0%)

353
(13.7%)

Visited more
than once with
conflict

101
(7.3%)

1041
(40.3%)

TOTAL 1379
(100%)

2576
(100%)

Table 2: “Conflicts” by state and visits

Estimated action probabilities Visits
p(action taken | state) > p(any
other action | state)

774 (74.3%)

p(action taken | state) = p(one
or more other actions | state) >
p(all remaining actions | state)

119 (11.4%)

p(action taken | state) <
p(another action | state)

148 (14.2%)

TOTAL 1041 (100%)
Table 3: Estimated probabilities in “conflict” states

Engine Class Precision
Action-type only 72.7% jBNC
Action-type & parameters 66.7%
Action-type only 79.1% C4.5
Action-type & parameters 72.9%
Action-type only 58.4% Hand-

craft Action-type & parameters 53.9%
Table 4: Results from SL training and evaluation

In some cases, the wizard took different actions
in the same state; we labeled this situation a “con-
flict.” Table 2 shows the number of distinct states
that were encountered and, for states visited more
than once, whether conflicting actions were se-
lected. Of states with conflicts, Table 3 shows
probabilities estimated from the corpus.

The interaction data was then submitted to 2 SL
pattern classifiers – c4.5 using decision-trees
(Quinlan, 1992) and jBNC using Naïve Bayesians
(Sacha, 2003). Table 4 shows both algorithms’ 10-
fold cross validation classification error rates
classifying (1) the action type, and (2) the action
type with parameters, as well as the results for the
hand-crafted policy.

Figure 5 show the 10-fold cross validation clas-
sification error rates for varying amounts of train-
ing data for the two SL algorithms classifying
action-type and parameters.

6 Discussion

The majority of the data collected was “usable”:
although 26.7% of turns were excluded, 20.5% of
these were due to a well-defined task not under
study here (user identification), and only 6.1% fell
outside of designated tasks. That said, it may be
desirable to impose a minimum threshold on how
many times a flow, goal, or action must be ob-
served before adding it to the state space or action
set given the “long tails” of these elements.

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12

Flow component ID

D
ia

lo
gs

 c
on

ta
in

in
g

Fl
ow

 ID

Figure 1: Dialogs containing flow components

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13

Goal component ID

D
ia

lo
gs

 c
on

ta
in

in
g

G
oa

l

Figure 2: Dialogs containing goal components

About half of the turns took place in states
which were visited only once. This confirms that
massive amounts of data would be needed to ob-
serve all valid dialog states, and suggests dialogs
do not confine themselves to familiar states.

Within a given state, the wizard’s behavior is
stochastic, occasionally deviating from an other-
wise static policy. Some of this behavior results
from database information not included in the cor-
pus and state space; in other cases, the wizard is
making apparently random choices.

0

50

100

150

200

1 5 9 13 17 21 25 29 33

Action ID
D

ia
lo

gs
 c

on
ta

in
in

g
A

ct
io

n

Figure 3: Dialogs containing action types

0

50

100

150

200

1 3 5 7 9 11 13
Component ID

D
ia

lo
gs

 c
on

ta
in

in
g

co
m

po
ne

nt

Figure 4: Dialogs containing information components

Figure 5 implies that a relatively small number

of dialogs (several hundred turns, or about 30-40
dialogs) contain the vast majority of information
relevant to SL algorithms – less than expected.
Correctly predicting the wizard’s action in 72.9%
of turns is significantly better than the 58.4% cor-
rect prediction rate from the handcrafted policy.

When a caller allows the system to retain initia-
tive, the policy learned by the c4.5 algorithm han-
dled enquiries about single trips perfectly. Policy

errors start to occur as the user takes more initia-
tive, entering less well observed states.

Hand examination of a small number of mis-
classified actions indicate that about half of the
actions were “reasonable” – e.g., including an extra
item in a confirmation. Hand examination also
confirmed that the wizard’s non-deterministic be-
havior and lack of database information resulted in
misclassifications.

Other sources of mis-classifications derived
primarily from under-account of the user’s goal
and other deficiencies in the expressiveness of the
state space.

7 Conclusion & future work

This work has proposed a method for determining
many of the basic elements of a RL-based spoken
dialog system with minimal input from dialog de-
signers using a “talking wizard.” The viability of
the model has been tested with an existing corpus
and shown to perform significantly better than a
hand-crafted policy and with less effort to create.

Future research will explore refining this ap-
proach vis-à-vis user goal, applying this method to
actual RL-based systems and finding suitable
methods for parameterized value functions

References
A. Jönsson and N. Dahlbick. 1988. Talking to A Com-

puter is Not Like Talking To Your Best Friend.
Proceedings of the Scandinavian Conference on

ceedings of the Scandinavian Conference on
Artificial Intelligence '88, pp. 53-68.

Staffan Larsson, Arne Jönsson and Lena Santamarta.
2000. Using the process of distilling dialogues to
understand dialogue systems. ICSLP 2000, Beijing.

Ester Levin, Roberto Pieraccini and Wieland Eckert.
2000. A Stochastic Model of Human-Machine Inter-
action for Learning Dialogue Structures. IEEE
Trans on Speech and Audio Processing 8(1):11-23.

R. K. Moore and S. R. Browning. 1992. Results of an
exercise to collect ‘genuine’ spoken enquiries using
Wizard of Oz techniques. Proc. of the Inst. of Acous-
tics.

Ross Quinlan. 1992. C4.5 Release 8. (Software pack-
age). http://www.cse.unsw.edu.au/~quinlan/

Jarek P. Sacha. 2003. jBNC version 1.0. (Software
package). http://sourceforge.net/projects/jbnc/.

Satinder Singh, Diane Litman, Michael Kearns, Marilyn
Walker. 2002. Optimizing Dialogue Management
with Reinforcement Learning: Experiments with the
NJFun System. Journal of Artificial Intelligence Re-
search, vol 16, 105-133.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement Learning: an Introduction. The MIT
Press, Cambridge, Massachusetts, USA.

Marilyn A. Walker, Jeanne C. Fromer, Shrikanth Nara-
yanan. 1998. Learning Optimal Dialogue Strate-
gies: A Case Study of a Spoken Dialogue Agent for
Email. Proc. 36th Annual Meeting of the ACM and
17th Int’l Conf. on Comp. Linguistics, 1345--1352.

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

0 500 1000 1500 2000 2500
Training examples (dialog turns)

Cl
as

sif
ic

at
io

n
er

ro
rs

 (%
)

c4.5
Naive Bayes

Figure 5: Classification errors vs. training samples for action-type & parameters

