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Abstract paired eyesight have limited access to information
graphics, thus preventing them from fully utiliz-

Keywords: graphics, understanding, dis- 2t _
ing information resources.

course, plan-based models
Information graphics that appear in newspa- . . . .

pers and magazines generally have a message thats'(.)me information graphics are only intended
. L . . to display data values; (Yu et al., 2002) devel-

the viewer is intended to recognize. This paper ar-

gues that understanding such information graphngd a pattern recognition algorithm for summa-

R . . rizing interesting features of automatically gener-
ics is a discourse-level problem. In partlcular,ated raphics of time-series data from a aas tur
it requires assimilating information from multi- grap 9

ple knowledge sources to recognize the intendegme engine. However, the overwhelming major-

message of the graphic, just as recognizing inty of the graphics that we have examined (taken

A . from newspaper, magazine, and web articles) ap-
tention in text does. Moreover, when an article pap 9 ) ap

is composed of text and graphics, the intended 2" to have some underlying goal, such as get-

message of the information graphic (its discours&%mg the V|ewer_to believe that !nterest rates have
. . . . . allen substantially and that this would therefore
intention) must be integrated into the discours

structure of the surrounding text and contributeebe a good time to refinance a mortgage. We

. . ; . Shave found that understanding information graph-
to the overall discourse intention of the artlcle.i : di rse-level problem.  In particular
This paper describes how we extend plan—base&S S a discourse-ievel probiem. particuar,

techniques that have been used for understandir{t requires assimilating mformathn from_multl-
rﬁe knowledge sources to recognize the intended

traditional discourse to the understanding of in- o o
. . . . . . message of the graphic, just as recognizing inten-
formation graphics. This work is part of a project . ™ e
tion in text does. Moreover, the communicative

to develop an interactive natural language system

that provides sight-impaired users with access tét)ntenttlog .Oft thti m;grmaﬂon grta prt].'c musftﬂtze n-
information graphics. egrated into the discourse intentions of the sur-

rounding text.

1 Introduction _ _ _
We are developing an interactive natural lan-

Information graphics (non-pictorial graphics guage system that infers the intended message
such as bar charts and line graphs) are a variant @nderlying an information graphic, augments it
language with many similarities to other forms of with related interesting features of the graphic,
communication. Information graphlcs are preva-provides an initial summary of the graphic, and
lent in information resources since they enablehen responds to followup questions from the
complex information to be assimilated perceptuuser. This paper presents the system architecture,
ally with ease. Unfortunately, knowledge sourcesshows why interpreting information graphics is
such as information graphics are not accessible tg discourse-level problem, and outlines how we
some users. For example, individuals with im-extend techniques that have been used for under-

OThe work of the third author was supported by the Na__standl_ng tradlt_lonal dlsc_ourse to the understand-
tional Science Foundation under Grant No. 0132821. ing of information graphics.



2 A Natural Language Modality to the content planning component (CPC), which
o will augment the intended message of the graphic
Information is the key to knowledge and ef- i, related interesting features. The message or-
fective decision-making. But information is USe- yanization component (MOC) then organizes the
ful only if it is accessible in a form that can be 1,45t salient propositions into a coherent sum-
easily assimilated. For sighted users, informatior;nary, which will be rendered in natural language
graphics capture complex information and enable,, conveyed to the user via speech synthesis.
it to be assimilated perceptually with ease. Fofrpe followup question component (FQC) will al-

individuals who have serious sight-impairments, oy the user to interactively seek additional infor-
documents that contain information graphics pose,ation about the graphic.

challenging problems. Although devices have Our work thus far (Section 4) has focused on

been developed for conveying information gralOh'understanding an information graphic so that its

ics in alternative mediums such as musical toneg o nded message can be conveyed to the user
Ic_>r Facple |m§ges, thesle approache; have SerO& tion 4.1 discusses the extension of speech act
Imitations. or exampie, systems that gttempt tQheory to the generation and understanding of in-
convey graphics via a soundscape(Meijer, 19924, o0 graphics. Section 4.2 argues that un-
do not facilitate easy comparison of two line 4o a0 ing information graphics is a discourse-
graphs linked in a single graphical display. More-o o rohlem in which the system must recog-
over, the“se applroach”esfrer?uwe thﬁ_ useL_tc;] COize the intended message of the graphic and in-
ZJF#_JCtIaf menta m_ap” Obl'tée grap 'Ch Wd'c IS tegrate it into the intentions of any surrounding
hl |curt] or congeInLta yI ('jn Users w % 0 n°thtext; it further argues that understanding informa-
ave the personal knowledge to assist them in thg, graphics requires similar kinds of knowledge

mterpre_tatlon of the_lmage(Kenne_I, 1996). Theand processing as does the understanding of tra-
underlying hypothesis of our work is that alterna- y; ) textual discourse. Section 4.3 provides

tive access to what the graphic looks like is NOL, brief overview of the visual extraction compo-

enough — tZekuseT SdhOUIg be prowd(Ia: W'_thfthenent that analyzes the graphical image and con-
message and knowle ge that one would gain "OMN4ructs an XML representation of the graphic for

viewing the graphic in order to enable eﬂ‘ectlveuse by the graphic understanding system. Sec-
and efficient use of this information resource. Totion 4.4 then describes how we have extended

gccompllsh this objective, we are developing a,rlechniques used for understanding traditional dis-
interactive natural language system for communi-

a th £ an inf , hic. O course and dialogue to the understanding of infor-
cating the content of an n ormation graphic. Ymation graphics. Section 5 gives a brief overview
methodology offers promise as a means of provid

. i ) hi ith of future work on the rest of the system. The Ap-
NG access toin ormatlon grapnics without exlDen'pendix contains information graphics that are part
sive equipment, with few limitations on the com-

) ) of the corpus on which our work is based.
plexity of the graphic that can be handled, and

with relatively little cognitive load on the user. 4 Understanding Information Graphics

3 Architecture and Overview 4.1 Intention in Information Graphics

Our current work is concerned with bar charts, Information graphics are a variant of language.
line graphs, and pie charts, although eventuallyAs noted by Clark(Clark, 1996), language is more
we will handle other kinds of graphics. Figure 1than just words. It is any “signal” (or lack of sig-
shows the architecture of our system for conveynal when one is expected), where a signal is a de-
ing information graphics. The visual extraction liberate action that is intended to convey a mes-
component (VEC) analyzes the graphic and prosage. According to speech act theory, a speaker
vides an XML representation of the graphic toor writer executes a speech act whose intended
the intention recognition component (IRC). Themeaning he expects the listener or reader to be
IRC is responsible for recognizing the intendedable to deduce(Searle, 1970; Grice, 1969; Clark,
message of the information graphic and sending i1996). In their work on multimedia generation,
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Figure 1: System Architecture

the AutoBrief group proposed that speech act thesignificantly differently from the other bars in the
ory could be extended to cover the generatiorgraphic, the graphic would have invoked a com-
of graphical representations(Kerpedjiev and Rothparison of the discrepancies between male and
2000). They developed a multimedia presentafemale salaries in Computer/Mathematical Sci-
tion system that generated text and informatiorences and the salary discrepancies between men
graphics. It included 1) an algorithm that couldand women in other fields. Although a graphic’s
map communicative goals to a set of perceptuataption can be helpful in identifying its intended
and cognitive tasks that must be enabled for anessage (as in Figure 8), Corio performed a large
viewer to recognize the goals and 2) an automaticorpus study(Corio and Lapalme, 1999) in which
graph designer that used constraint satisfaction tbe found that captions are often missing or fail
construct an information graphic that best facili-to provide any indication of what the information
tated those tasks, subject to competing constrainggraphic conveys (as in Figures 6 and 10). Thus
among the tasks. we cannot rely entirely on the presence of useful
captions to identify the intended message of an
The overwhelming majority of information information graphic.
graphics accompanying newspaper and magazine Language research has posited that the listener
articles appear to carry a message that the der reader who is interpreting a speech act identi-
signer intends to convey to the viewer by virtuefies its intended meaning by reasoning about the
of the graphic’s design and the data presented inbserved signals and the mutual beliefs of author
the graphic. Consider the graphic in Figure 9. Itand interpreter(Grice, 1969; Clark, 1996). Ap-
conveys the message that the salary of womeplying this to graphical displays, it is reasonable
in science, mathematics, and engineering fieldso presume that the author of a graphic similarly
is consistently less than that of men in the samexpects the viewer to use perceptual skills along
fields. Other messages could have been corwith other knowledge sources to deduce from the
veyed by a different graphic design. For ex-graphic the message that he intended to convey.
ample, by grouping the bars for men togetherThus we are applying speech act theory in the re-
grouping the bars for women together, and orverse direction of the AutoBrief project, namely
dering the bars for each group by height, theto the recognition of the intended message under-
graphic would have conveyed the message thdying an information graphic.
both men and women earn the least in the so- _
cial sciences and the most in engineering. Of-2 A Discourse Level Problem
if the bars for Computer/Mathematical Sciences This section argues that interpreting informa-
were highlighted in Figure 9 by coloring them tion graphics is a discourse-level problem — not



only is it necessary to recognize the intention ofof a composite graphic (one comprised of multi-
the graphic as noted in Section 4.1, but underple individual graphics) requires relating the in-
standing an information graphic requires similardividual graphics to one another to identify the
kinds of knowledge and processing as does unintended message of the composite. Figure 11 il-
derstanding traditional discourse. lustrates a composite information graphic. The

Grosz and Sidner contended that discourséliscourse purpose of the composite graphic is that
has a structure comprised of discourse segmentgudits of affluent taxpayers are declining with re-
Each discourse segment has a discourse segpect to audits of all taxpayers. This message can
ment purpose that contributes to the discours@nly be deduced by relating the two individual
purpose or intention underlying the overall dis-graphics and their underlying messages.
course(Grosz and Sidner, 1986). When an arti- Moreover, understanding information graphics
cle is comprised of text and graphics, the graphicequires the use of multiple knowledge sources.
generally expands on the text and contributes tén earlier work on recognizing expressions of
the discourse purpose of the article. Consider theloubt, we developed an algorithm that combined
graphic and partial surrounding text reproducedinguistic, contextual, and world knowledge and
in Figure 6. Nowhere in the text is it stated thatapplied it to the recognition of complex discourse
the income of black women has risen dramati-acts(Carberry and Lambert, 1999). In the case
cally over the last decade and has reached thef information graphics, the corollary to linguis-
level of white women. Yet this message is clearlytic knowledge is perceptual knowledge, by which
conveyed by the graphic and contributes to thene recognizes the individual elements of the
overall communicative intention of this portion graphic (for example, the bars in a bar chart), the
of the article — namely, that there has been aelation of the individual elements in the graphic
“monumental shifting of the sands” with regard to one another, the type of graphic (line graph,
to the achievements of black women. Not onlybar chart, pie chart, etc.), and what the different
does the intended message of the graphic (its diggraphic types can be used to convey. For exam-
course segment purpose) contribute to this overaflle, both a scatter plot and a pie chart can be
intention, but in fact the discourse intention of theused to portray how an entity (such as govern-
graphic helps to recognize the overall intention. ment income) is divided up among several cate-

Even when the graphic stands in isolation aggories (such as social welfare, military spending,
in Figures 7 and 8, understanding the graphietc.); however, a graphic designer will choose a
is a discourse-level problem. Grosz and Sidpie chartif the intent is to convey the relative dis-
ner(Grosz and Sidner, 1986) claim that a robustributions as opposed to their absolute amounts.
model of discourse understanding must use mulFurthermore, a particular type of graphic (such as
tiple knowledge sources in order to recognize thex line graph) might be appropriate for conveying
complex relationships that utterances have to ongeveral different intentions (maximum data point,
another. Information graphics have similar com-data trend, data variation, etc.).

plex relationships among their component ele- Contextual and world knowledge are also es-
ments. Not only might the graphic include mul- sential for understanding information graphics.
tiple elements that must be related to one anoth&rontextual knowledge includes the caption as-
(such as multiple lines in a line graph, or individ- sociated with the graphic, any highlighting of
ual bars in a bar chart), but information graphicsgraphic elements that affects the focus of atten-
often include highlighting of certain elements totjon in the graphic, and the discourse structure and
make them particularly salient (as in Figure 10)focus of attention in any surrounding text. World
or include captions that might contribute to rec-knowledge consists of mutual beliefs between de-
ognizing the graphic’s intention. The graphic in signer and viewer about entities of interest to the
Figure 8 includes such a helpful caption, althoughntended viewing audience. For example, if an in-
many graphics, such as the ones in Figures formation graphic appears in a document targeted
and 9, do not. at residents of New York City, then both the de-
Furthermore, identifying the intended messagssigner and the viewer will mutually believe that



entities such as New York City, its football and quire knowledge about goals and how they can
baseball teams, etc. will be particularly salientbe achieved. Typically, this is provided by a li-

to the viewer. Our methodology for understand-brary of operators. Each operator encodes a goal
ing information graphics takes these knowledgen its header; the body of the operator encodes

sources into account. the subgoals that must be accomplished in order
_ _ to achieve the operator's goal. A planning sys-
4.3 The Visual Extraction Component tem starts with a high-level goal, and uses oper-

The visual extraction component (VEC) cap-ators to decompose the goal into a set of simpler
tures much of the perceptual knowledge discussedubgoals, which eventually decompose into prim-
in Section 4.2. It is responsible for recogniz-itive subgoals that can be accomplished by prim-
ing the individual components comprising theitive actions in the domain. On the other hand,
graphic, identifying the relationship of the differ- & plan inference system starts with the primitive
ent components to one another and to the graphmoals associated with observed actions, and uses
as a whole, and classifying the graphic as to typethe operators to chain backwards to higher-level
Extracted components include not only the barsgoals which the lower-level subgoals contribute to
lines, or Wedges of a graphic but also the titles oﬁchieving. In the case of traditional discourse and
the axes, the legend, and the graphic's title or capdialogue, the subgoals in the plan operators are ei-
tion. The present implementation deals only withther communicative or domain goals, and the ob-
gray scale images (in pgm format) of bar chartsserved actions that start the plan inference process
pie charts, and line graphs, though eventually ifré the speech acts represented by the utterances
will be extended to handle color and other kindsin & story or a dialogue.

of information graphiCS. Words and numbers that To extend p|an inference to information graph_
appear in the chart are associated with particulgics, the plan operators must include goals that
bars, wedges and lines by their proximity to thecan be accomplished by viewing an information
chart component in question. The output of thegraphic, as opposed to being the recipient of an
visual extraction component is an XML file that ytterance. As discussed in Section 4.1, the Auto-
describes the chart and all of its components.  Brief project(Kerpedjiev and Roth, 2000) devel-
oped an algorithm to map communicative goals to
a sequence of perceptual and cognitive tasks that
the graphic should supporBerceptual taskare
Many researchers have cast the understandin@sks that can be performed by simply viewing the
of discourse and dialogue as a plan recognitiomraphic, such as finding the top of a bar in a bar
problem — that is, the writer or speaker (or char-chart;cognitive tasksre tasks that are performed
acters in the case of a story) has an underlyingia mental computations, such as computing the
goal and a plan for accomplishing that goal, andlifference between two numbers. We draw on
understanding requires that the reader or listenethe AutoBrief notion of perceptual and cognitive
infer the plan and in turn the goal that the plan istasks enabled by an information graphic. Our plan
intended to achieve. (Perrault and Allen, 1980joperators not only encode knowledge about how
Wilensky, 1983; Litman and Allen, 1987; Car- to achieve domain and communicative goals (the
berry, 1990; Charniak and Goldman, 1993; Ardis-latter of which may require that the viewer per-
onno and Sestero, 1996) are just a few example®rm perceptual and cognitive tasks) but they also
of such systems. encode knowledge about how information-access
Since understanding information graphics is aasks, such as finding the value of an entity in
discourse-level problem, we are extending plara graphic, can be decomposed into simpler sub-
inference techniques to recognizing the intendedyoals. Figures 2 and 3 present two plan operators
message of an information graphic(Elzer et al.for achieving the goal of finding the valuev> of
2003) and to identifying its contribution to an an attribute<att> for a graphical elemente>
extended discourse that includes both text an¢for example, the value associated with the top of
graphics. Planning and plan inference systems rea bar in a bar chart). The body of the operator in

4.4  Applying Discourse Understanding
Strategies



Goal: Find-valuegviewer>, <g>, <e>, <ds>, <att>, <v>)

Gloss: Given graphical elemente> in graphic<g>, <viewer> can find the valuecv>
in datasekds> of attribute<att> for <e>

Data-req: Dependent-variable{att>, <ds>)
Body: 1. Perceive-dependent-valyafiewer>, <g>, <att>, <e>, <v>)

Figure 2: Operator for achieving a goal perceptually
Goal: Find-valuekviewer>, <g>, <e>, <ds>, <att>, <v>)
Gloss: Given graphical elemente> in graphic<g>, <viewer> can find the valuecv>

in datasekds> of attribute<att> for <e>

Data-req: Natural-quantitative-ordering(att>)
Display-const: Ordered-values-on-axisg>, <axis>, <att>)
Body: 1. Perceive-info-to-interpolatef/iewer>,<g>,<axis>,<e>,<l; >,<ly>,<f>)

2. Interpolategviewer>, <l;>, <ls>, <f>, <v>)

Figure 3: Operator that employs both perceptual and cognitive subgoals

Figure 2 specifies that the goal can be achieved.4.1 Beginning the Plan Inference Process

by a primitive perceptual task in which the viewer Traditional plan inference systems used for
just perceives the value; this could be done, folanguage understanding start with the primitive
example, if the elementin the graphic is annotategoal achieved by the speech act in the dialogue
with its value, as are the bars in the bar chart irpr discourse. In the case of information graphics,
Figure 8 of the Appendix. On the other hand, thethe role of the speech act is played by the primi-
body of the operator in Figure 3 captures a differjye perceptual tasks that the viewer performs on
ent way of finding the value, one that presumablythe graphic. To limit the set of perceptual tasks

requires more effort. It specifies the perceptuathat are considered, we make two observations:

task of finding the values:l;> and <ls> sur-

rounding the desired value on the axis along with e The graphic designer has many alternative

the fraction<f> of the distance that the desired
value lies betweer:l;> and<ly>, followed by
the cognitive task of interpolating between the re-
trieved values<i; > and<iy>.

Our operators contaidata requirementgla-
belled Data-req) which the data must satisfy in
order for the operator to be applicable in a graphic
planning paradigm; they may also contdiaplay
constraints(labelled Display-const) which con-
strain how the information graphic is constructed
if this operator is part of a final plan. In the case
of plan recognition, these constraints are used
in reverse. The display constraints are used to
eliminate operators from consideration, since if
a graphic does not satisfy the operator’s display
constraints, then the operator could not be part of
a plan that led to the graphic. If a graphic meets
the display constraints of an operator, then th

data requirements are used to limit how the opy,,

erator’s parameters might be instantiated.

ways of designing a graphic, and the de-
sign choices facilitate some perceptual tasks
more than others. Following the Auto-
Brief work(Kerpedjiev and Roth, 2000) on
generating graphics that fulfill communica-
tive goals, we hypothesize that the designer
chooses a design that best facilitates the
tasks that are most important to conveying
his intended message, subject to the con-
straints imposed by competing tasks.

Entities may become particularly salient by
virtue of highlighting in the graphic (for ex-
ample, coloring certain elements different
from the others, annotating an element with
an asterisk, or exploding one piece of a pie
chart), by their mention in the caption or
surrounding text, or via world knowledge

Y(Mmittal, 1997) discusses a variety of such design tech-
ues in the context of distorting the message inferred from
a graphic.



capturing mutual beliefs about entities of in- plays the APTE rule for the task of finding the
terest to the intended audience. We hypothvalue associated with the top of a bar in a bar
esize that the designer relies on the viewechart. If the bar is annotated with its value,
recognizing particularly salient entities, in then condition-computation pair B1-1 estimates
order to make certain perceptual tasks moréts effort as 150 units for discriminating the label
salient to the viewer. (based on work by Lohse(Lohse, 1993)) and 300
units for recognizing a 6-letter word (John and
As noted in Section 4.1, one cannot rely on ayewell, 1990). If the bar is not annotated with its
graphic’s caption to provide the intended mes-5ye but is aligned with a tick mark on the axis,
sage of the graphic. Consequently, the plan inhen condition-computation pair B1-2 estimates
ference process starts with both the set of taskgye perceptual effort in terms of the distance to the
that are best enabled by the information graphi(dependent axis (in order to capture the degrees of
and the set of tasks (if any) that are particularly,isyal arc scanned(Kosslyn, 1989)) plus the effort
salient. These will be referred to @sndidate o giscriminating and recognizing the label. Fig-
tasks The next two subsections describe howyre 5 displays the APTE rule associated with the
candidate tasks are identified. first subgoal in Figure 3. It estimates the effort for

Identifying the Best Enabled Tasks The the primitive taskPerceive-info-to-interpolatas
APTE (Analysis of Perceptual Task Effort) sub- the effort of the scan to the dependt_ant gxi_s (b_ased
module, shown in Figure 1 as part of the Inten-ON (Kosslyn, 1989)), the effort of discriminating

tion Recognition Component, captures perceptuatlhe intersection location on the axis (150 units
knowledge about performing primitive perceptual?@Sed on (Lohse, 1993)), plus the effort of the sac-

taskg, and it encapsulates the results of cognitive®@de t0 €ach label (230 units each (Russo, 1978))
psychology research to estimate the relative efforflond with the effort involved in discriminating
required for different tasks. The output of APTE @nd recognizing the labels. Similarly, there is a
is the set of perceptual tasks that are best enabl&dNitive rule (not discussed here) for estimating

by the graphic. These become candidate tasks. the effort associated with th_e cognitive taetpr— i
Each APTE rule captures a primitive percep-pOIate(the second subgoal in the operator in Fig-

tual task that can be performed on a particu—ure 3). (Elzer et al., 2003a) presents a more ex-

lar type of information graphic, the conditions tensiye discussion of the cognitive principles un-
(graphic design choices) that affect the difficultyde"1ing the APTE rules.
of performing that task, and the estimated effort Given the XML representation of an informa-
expended by a viewer if those conditions are sattion graphic, each APTE rule that is applicable
isfied in the graphic. The condition-computationto the graphic produces an effort estimate for the
pairs are ordered so that the ones producing thi&sk captured by the rule. When a task might be
lowest effort estimates appear firstin a rule. instantiated in multiple ways and still satisfy the
To derive the effort estimates in the rules, weconditions of a condition-computation pair (for
have followed the GOMS approach(Card et al.example, the task of finding the value of the top
1983) by breaking down the tasks that are reof a bar could be instantiated for each bar in a
garded as primitive in our plan operators intobar chart), only the instantiation that produces the
even more basic component tasks, and then sunewest effort estimate becomes a candidate task.
ming the effort estimates for these very basi(If the bars are not annotated with values, then the
tasks. Lohse’s work(Lohse, 1993) is an examdinstantiation that will produce the lowest effort es-
ple of the GOMS architecture applied to predict-timate for the task of finding the value of the top
ing performance on graph comprehension taskg)f a bar in a bar chart would be the bar with the
and many of our effort estimates are based omshortest scan to the dependent axis.) This is con-
Lohse’s research. For example, Figure 4 dissistent with the idea that the graphic designer will
make the important tasks easy to perform. The

2Primitive perceptual tasks are those that we do not de-

compose into a set of simpler subtasks; this is not to be conSet of perceptual tasks that require the least effort

fused with the notion of a psychological primitive. become candidate tasks.



Rule-1:Estimate effort for task Perceive-dependent-valuigfver-, <g>, <att>, <e>, <v>)
Graphic-type: bar-chart
Gloss: Compute effort for finding the exact valag> for attribute<att> represented by toge>
of a bar<b> in graph<g>
B1-1: IF the top of bakb> is annotated with a value,
THEN effort=150 + 300
B1-2: IF the top<e> of bar<b> aligns with a labelled tick mark on the dependent axis,
THEN effort=scan + 150 + 300

Figure 4: A rule for estimating effort for the primitive perceptual t&skceive-value

Rule-2:Estimate effort for task
Perceive-info-to-interpolatefviewer>,<g>,<axis>,<e>,<l; >,<ls>,<f>)
Graphic-type: bar-chart
Gloss: Compute effort for finding the information needed for interpolation, including the labels
<l;> and<ly> on either side of entityze> on axis<axis> in graph<g>,
and the fractioncf> that is the distance betweeri; > and entity<e> on <axis>
relative to the distance betweeti; > and</s>
B2-1: IF <axis> is labelled with values THEN effort=scan + 150 + ((230 + 150 + 300) x 2)

Figure 5: A rule for estimating effort for the primitive perceptual t®ekceive-info-to-interpolate

Identifying Particularly Salient Tasks tation of the graphic, are also regarded as salient
Salient tasksare those that the viewer might entities. Salient entities also include those that
perform because they relate to entities that aravorld knowledge suggests are mutually believed
in the viewer's current focus of attention, asto be of interest to the viewing audience. We en-
determined by contextual knowledge providedvision in the future using the notion of lexical
by the caption, highlighting, and the surroundingchains(Silber and McCoy, 2000) to identify enti-
text and by world knowledge in the form of ties thatthe accompanying text makes particularly
mutual beliefs about items of particular interestsalient. Perceptual tasks that are instantiated with
to the viewing audience. a salient entity and that can be performed on the
Ideally, a caption will provide clues about the graphic are designatesdlient tasks
message that an information graphic is mtendegm.2 The Search Process

to convey, and thus noun phrases in captions rep-

resent salient entities The graphic designer can Candidate tasks consist of the set of percep-
also call into focus certain aspects of the graphiéual tasks that require the least effort and the set of
by using attention-getting devices such as CO|_salient tasks. Once the set of candidate tasks has
oring it differently from the rest of the graphic, been identified, plan inference begins. Initial can-
annotating it with an arrow, etc. Our working didate plans are constructed from each operator

hypothesis is that if the graphic designer goedn Which a candidate task appears as a subgoal;
to the effort of employing such attention-getting the root of the candidate plan is the goal of the
devices, then the highlighted items almost cerOPerator, and its children are the subgoals in the

tainly contribute to the intended message. Thu&0dY of the operator. Chaining from the root goal
the attributes of these highlighted items (for ex-{C Other operators whose body contains the root

ample, the attributes of a highlighted bar in a ba/90@l @s a subgoal produces larger candidate plans

chart), which are captured in the XML represen-With higher-level goals as the new root goal.
Plan inference systems have used a variety of

3Verb phrz_ases in captions als_o provide evidence, put the)heuristics to evaluate candidate plans and to se-
suggest particular operators of interest rather than instanti- t th didate plan t d furth Th
ated perceptual tasks, and thus we associate verbs with opéﬁc e candidale plan 1o expand lurther. £S€

ators in the plan library. heuristics help to guide the search through the



space of candidate plans in order to hypotheeeding or surrounding the graphic, then candidate
size the plan that best represents the user’s irplans whose root goal contributes to the exist-
tentions. These heuristics have included increasng discourse context should be preferred. If the
ing the rating of partial plans as their argumentssurrounding text has a reference to the graphic,
become instantiated(Perrault and Allen, 1980)then focusing heuristics(Carberry, 1990) will pre-
preferring coherent discourse moves(Litman ander candidate plans that relate most closely to the
Allen, 1987; Carberry, 1990), and biasing thecurrent focus of attention at that point in the sur-
plan inference process based on knowledge abowbunding text. However, the surrounding text of-
the user group(Gertner and Webber, 1996). Ween does not refer to accompanying graphics, as is
have identified several kinds of evidence for guid-the case in the Newsweek article whose excerpt is
ing plan inference from information graphics, in- shown in Figure 6. Future work will investigate
cluding the estimated effort required by a candi-how we should handle instances such as this.
date plan, the basis for instantiating parameters in )

the plan, adherence to the proximity compatibil-> Response Generation and Followup

ity principle from cognitive science research, and The intended message of the graphic must be
the relation between a candidate plan and the egyygmented with additional propositions that con-
tablished discourse context. vey interesting features that a viewer would glean
Since our working hypothesis is that thefrom the graphic. For example, the intended mes-
graphic designer tried to enable those tasks necesage of the graphic in Figure 6 appears to be that
sary to recognize his intended message, candidatRe income of black women has risen dramati-
plans that require substantially more effort thancally over the last decade and reached the level
other candidate plans are less likely to represendf white women. But other interesting features of
the intentions of the designer. The effort associthe graphic might include the trends over the past
ated with a candidate plan is measured as the sugeveral decades, periods where they were closest,
of the effort of the tasks comprising it. etc. In future work, we anticipate developing a
There are many ways that a parameter in a taskethodology for identifying propositions that ex-
or subgoal might become instantiated, and the bgand on the message of the graphic designer and
sis for the instantiation provides evidence aboufor including the most salient of these in the sum-
the likelihood that a hypothesized candidate planmarization of the graphic. We also envision re-
represents the graphic designer’s intentions. Isponding to followup requests for further infor-
an instantiation is suggested by highlighting ormation about the graphic by selecting the highest
a caption or entities that are particularly salientranking propositions that were not included in the
to the targeted audience, that partial plan shouléhitial message, organizing them into a coherent
be evaluated more favorably since the designer afesponse, and conveying it to the user.
the graphic has provided reasons for the viewer tg
use these instantiations in recognizing his inten-=

tions. Similarly, if the instantiation is one of sev- This paper has argued that understanding
eral possible alternatives with no reason for preinformation graphics is a discourse-level prob-
ferring one over the other, then the partial planem. Not only must the system recognize the in-
should be evaluated less favorably since the deended message of the information graphic, but
signer did not give the viewer any reason to prefethe recognition process requires similar kinds of
one over the other. This relates to Allen’s forking know|edge sources and similar kinds of process-
heuristic(Perrault and Allen, 1980). The proxim-ing as does the understanding of traditional dis-
ity compatibility principle(Wickens and Carswell, course and dialogue. Moreover, when an article
1995) also suggests that candidate plans whicly composed of text and graphics, the intended
use Similarly encoded elements (for example, alh']essage of the information graphic must be in-
red bars) in an integrated fashion should be evalegrated into the discourse structure of the sur-
uated more favorably than those that do not.  rounding text, and it contributes to the overall dis-
If there is a context established by the text pre-course intention of the article.

Summary
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Appendix of Graphics from our Corpus

Graphic from Newsweek Article
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Figure 7: Standalone Graphic from USA Today

Relevant Text from Newsweek Article

This is not to say that black women have
climbed the storied crystal stair. They remain
“in the proving stage”, observes Alabama ex-
ecutive Alice Gordon. Nearly 14 percent of
working black women remain below the poverty
level. And women don’t yet out-earn black men.
But the growing educational-achievement gap
portends a monumental shifting of the sands.
College-educated black women already earn
more than the median for all black working men
— or, for that matter, for all women. And as
women in general move up the corporate pyra-
mid, black women, increasingly, are part of the
parade. In 1995 women held less than 9 per-

cent of corporate-officer positions in Fortune @
500 companies, according to Catalyst, a New°
York-based organization that promotes the inter-2
ests of women in business. Last year they held®

close to 16 percent, a significant step up. Of
those 2,140 women, 163 were black — a minus-
cule proportion, but one that is certain to grow.

Figure 6: Excerpt from Newsweek Magazine
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Figure 8: Standalone Graphic from USA Today




Median Salaries (in dollars), Full-Time Employed SMET Doctorates, by Field and Gender, 1997
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Figure 9: Graphic from Report of the NSF Committee on Equal Opportunities in Science & Engineering
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Figure 11: Graphic from USA Today




