
Multiword Unit Hybrid Extraction   

Gaël Dias 
Centre of Mathematics 

Beira Interior University 
Covilhã, Portugal 
ddg@di.ubi.pt 

 

 

Abstract 

This paper describes an original hybrid system 
that extracts multiword unit candidates from 
part-of-speech tagged corpora. While classical 
hybrid systems manually define local part-of-
speech patterns that lead to the identification 
of well-known multiword units (mainly com-
pound nouns), our solution automatically 
identifies relevant syntactical patterns from 
the corpus. Word statistics are then combined 
with the endogenously acquired linguistic in-
formation in order to extract the most relevant 
sequences of words. As a result, (1) human in-
tervention is avoided providing total flexibil-
ity of use of the system and (2) different 
multiword units like phrasal verbs, adverbial 
locutions and prepositional locutions may be 
identified. The system has been tested on the 
Brown Corpus leading to encouraging results.     

1 Introduction 

Multiword units (MWUs) include a large range of lin-
guistic phenomena, such as compound nouns (e.g. inte-
rior designer), phrasal verbs (e.g. run through), 
adverbial locutions (e.g. on purpose), compound deter-
minants (e.g. an amount of), prepositional locutions 
(e.g. in front of) and institutionalized phrases (e.g. con 
carne). MWUs are frequently used in everyday lan-
guage, usually to precisely express ideas and concepts 
that cannot be compressed into a single word. As a con-
sequence, their identification is a crucial issue for appli-
cations that require some degree of semantic processing 
(e.g. machine translation, summarization, information 
retrieval). 
 
In recent years, there has been a growing awareness in 
the Natural Language Processing (NLP) community of 

the problems that MWUs pose and the need for their 
robust handling. For that purpose, syntactical (Didier 
Bourigault, 1993), statistical (Frank Smadja, 1993; Ted 
Dunning, 1993; Gaël Dias, 2002) and hybrid syntaxico-
statistical methodologies (Béatrice Daille, 1996; Jean-
Philippe Goldman et al. 2001) have been proposed. 
 
In this paper, we propose an original hybrid system 
called HELAS1 that extracts MWU candidates from 
part-of-speech tagged corpora. Unlike classical hybrid 
systems that manually pre-define local part-of-speech 
patterns of interest (Béatrice Daille, 1996; Jean-Philippe 
Goldman et al. 2001), our solution automatically identi-
fies relevant syntactical patterns from the corpus. Word 
statistics are then combined with the endogenously ac-
quired linguistic information in order to extract the most 
relevant sequences of words i.e. MWU candidates. 
Technically, we conjugate the Mutual Expectation (ME) 
association measure with the acquisition process called 
GenLocalMaxs (Gaël Dias, 2002) in a five step process. 
First, the part-of-speech tagged corpus is divided into 
two sub-corpora: one containing words and one contain-
ing part-of-speech tags. Each sub-corpus is then seg-
mented into a set of positional ngrams i.e. ordered 
vectors of textual units. Third, the ME independently 
evaluates the degree of cohesiveness of each positional 
ngram i.e. any positional ngram of words and any posi-
tional ngram of part-of-speech tags. A combination of 
both MEs is then used to evaluate the global degree of 
cohesiveness of any sequence of words associated with 
its respective part-of-speech tag sequence. Finally, the 
GenLocalMaxs retrieves all the MWU candidates by 
evidencing local maxima of association measure values 
thus avoiding the definition of global thresholds. The 
overall architecture can be seen in Figure 1. 
 
Compared to existing hybrid systems, the benefits of 
HELAS are clear. By avoiding human intervention in 
the definition of syntactical patterns, it provides total 
                                                           
1 HELAS stands for Hybrid Extraction of Lexical ASsocia-
tions. 



flexibility of use. Indeed, the system can be used for any 
language without any specific tuning. HELAS also al-
lows the identification of various MWUs like phrasal 
verbs, adverbial locutions, compound determinants, 
prepositional locutions and institutionalized phrases. 
Finally, it responds to some extent to the affirmation of 
Benoît Habert and Christian Jacquemin (1993) that 
claim that “existing hybrid systems do not sufficiently 
tackle the problem of the interdependency between the 
filtering stage [the definition of syntactical patterns] 
and the acquisition process [the scoring and the election 
of relevant sequences of words] as they propose that 
these two steps should be independent”.  
 

 
 

Figure 1: Global architecture of HELAS 
 

The article is divided into five main sections: (1) we 
introduce the related work; (2) we present the text cor-
pus segmentation into positional ngrams; (3) we define 
the Mutual Expectation and a new combined association 
measure; (4) we propose the GenLocalMaxs algorithm 
as the acquisition process; Finally, in (5), we present 
some results over the Brown Corpus. 

2 Related Work 

For the purpose of MWU extraction, syntactical, statis-
tical and hybrid syntaxico-statistical methodologies 
have been proposed. On one hand, purely linguistic sys-
tems (Didier Bourigault, 1993) propose to extract rele-
vant MWUs by using techniques that analyse specific 
syntactical structures in the texts. However, these meth-
odologies suffer from their monolingual basis as the 

systems require highly specialised linguistic techniques 
to identify clues that isolate possible MWU candidates. 
  
On the other hand, purely statistical systems (Frank 
Smadja, 1993; Ted Dunning, 1993; Gaël Dias, 2002) 
extract discriminating MWUs from text corpora by 
means of association measure regularities. As they use 
plain text corpora and only require the information ap-
pearing in texts, such systems are highly flexible and 
extract relevant units independently from the domain 
and the language of the input text. However, these 
methodologies can only identify textual associations in 
the context of their usage. As a consequence, many 
relevant structures can not be introduced directly into 
lexical databases as they do not guarantee adequate lin-
guistic structures for that purpose. 
 
Finally, hybrid syntactico-statistical systems (Béatrice 
Daille, 1996; Jean-Philippe Goldman et al. 2001) define 
co-occurrences of interest in terms of syntactical pat-
terns and statistical regularities. Thus, such systems 
reduce the searching space to groups of words that cor-
respond to a priori defined syntactical patterns (e.g. 
Adj+Noun, Noun+Prep+Noun) and apply statistical 
scores to identify the most relevant sequences of words. 
One major drawback of such systems is that they do not 
deal with a great proportion of interesting MWUs (e.g. 
phrasal verbs, prepositional locutions). Moreover, they 
lack flexibility as the syntactical patterns have to be 
revised whenever the targeted language changes.  
 
In order to overcome these difficulties, we propose an 
original architecture that combines word statistics with 
endogenously acquired linguistic information. We base 
our study on two assumptions. On one hand, a great deal 
of studies in lexicography and terminology assess that 
most of the MWUs evidence well-known morpho-
syntactic structures (Gaston Gross, 1996). On the other 
hand, MWUs are recurrent combinations of words. In-
deed, according to Benoît Habert and Christian Jacque-
min (1993), the MWUs may represent a fifth of the 
overall surface of a text. Consequently, it is reasonable 
to think that the syntactical patterns embodied by the 
MWUs may be endogenously identified by using statis-
tical scores over texts of part-of-speech tags exactly in 
the same manner as word dependencies are identified in 
corpora of words. So, the global degree of cohesiveness 
of any sequence of words may be evaluated by a combi-
nation of its degree of cohesiveness of words and the 
degree of cohesiveness of its associated part-of-speech 
tag sequence (See Figure 1).  
 
Compared to existing systems, the benefits of our archi-
tecture are clear. By avoiding human intervention in the 
definition of syntactical patterns, (1) HELAS provides 
total flexibility of use being independent of the targeted 
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language and (2) it allows the identification of various 
MWUs like phrasal verbs, adverbial locutions, com-
pound determinants, prepositional locutions and institu-
tionalized phrases. 

3 Text Segmentation 

Positional ngrams are nothing more than ordered vec-
tors of textual units which principles are introduced in 
the next subsection. 

3.1 Positional Ngrams 
The original idea of the positional ngram model (Gaël 
Dias, 2002) comes from the lexicographic evidence that 
most lexical relations associate words separated by at 
most five other words (John Sinclair, 1974). As a con-
sequence, lexical relations such as MWUs can be con-
tinuous or discontinuous sequences of words in a 
context of at most eleven words (i.e. 5 words to the left 
of a pivot word, 5 words to the right of the same pivot 
word and the pivot word itself). In general terms, a 
MWU can be defined as a specific continuous or dis-
continuous sequence of words in a (2.F+1)-word size 
window context (i.e. F words to the left of a pivot word, 
F words to the right of the same pivot word and the 
pivot word itself). This situation is illustrated in Figure 
2 for the multiword unit Ngram Statistics that fits in the 
window context of size 2.3+1=7. 
 

 
 

Figure 2: 7-word size window context 
 
Thus, any substring (continuous or discontinuous) that 
fits inside the window context and contains the pivot 
word is called a positional word ngram. For instance, 
[Ngram Statistics] is a positional word ngram as is the 
discontinuous sequence [Ngram ___ from] where the gap 
represented by the underline stands for any word occur-
ring between Ngram and from (in this case, Statistics). 
More examples are given in Table 1. 
 

Positional word 2grams Positional word 3grams 

[Ngram Statistics] [Ngram Statistics from] 
[Ngram ___ from] [Ngram Statistics ___ Large] 

[Ngram ___ ___ Large] [Ngram ___ from Large] 
[to ___ Ngram] [to ___ Ngram ___ from] 

 

Table 1: Possible positional ngrams 
 
Generically, any positional word ngram may be defined 
as a vector of words [p11 u1 p12 u2 … p1n un] where ui 

stands for any word in the positional ngram and p1i 
represents the distance that separates words u1 and ui

2. 
Thus, the positional word ngram [Ngram Statisitcs] would 
be rewritten as [0 Ngram +1 Statistics]. More examples are 
given in Table 2. 
 

Positional word ngrams Algebraic notation 

[Ngram ___ from] [0 Ngram +2 from] 
[Ngram ___ ___ Large] [0 Ngram +3 Large] 

[to ___ Ngram] [0 to +2 Ngram] 
[Ngram Statistics ___ Large] [0 Ngram +1 Statisitcs +3 Large] 

 

Table 2: Algebraic Notation 
 
However, in a part-of-speech tagged corpus, each word 
is associated to a unique part-of-speech tag. As a conse-
quence, each positional word ngram is linked to a corre-
sponding positional tag ngram. A positional tag ngram 
is nothing more than an ordered vector of part-of-speech 
tags exactly in the same way a positional word ngram is 
an ordered vector of words. Let’s exemplify this situa-
tion. Let’s consider the following portion of a part-of-
speech tagged sentence following the Brown tag set:  
 
Virtual /JJ Approach /NN to /IN Deriving /VBG Ngram /NN Statistics /NN 

from /IN Large /JJ Scale /NN Corpus /NN 
 
It is clear that the corresponding positional tag ngram of 
the positional word ngram [0 Ngram +1 Statisitcs] is the 
vector [0 /NN +1 /NN]. More examples are in Table 3. 
Generically, any positional tag ngram may be defined as 
a vector of part-of-speech tags [p11 t1 p12 t2 … p1n tn] 
where ti stands for any part-of-speech tag in the posi-
tional tag ngram and p1i represents the distance that 
separates the part-of-speech tags t1 and ti. 
 

Positional word ngrams Positional tag ngrams 

[0 Ngram +2 from] [0 /NN +2 /IN] 
[0 Ngram +3 Large] [0 /NN +3 /JJ] 

[0 to +2 Ngram] [0 /IN +2 /NN] 
[0 Ngram +1 Statisitcs +3 Large] [0 /NN +1 /NN +3 /JJ] 

 

Table 3: Positional tag ngrams 
 
So, any sequence of words, in a part-of-speech tagged 
corpus, is associated to a positional word ngram and a 
corresponding positional tag ngram. In order to intro-
duce the part-of-speech tag factor in any sequence of 
words of part-of-speech tagged corpus, we present an 
alternative notation of positional ngrams called posi-
tional word-tag ngrams.  
 
In order to represent a sequence of words with its asso-
ciated part-of-speech tags, a positional ngram may be 
represented by the following vector of words and part-

                                                           
2 By statement, any pii is equal to zero.   

Virtual   Approach to Deriving   Ngram  Statistics from Large   Scale 
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F=3 F=3 



of-speech tags [p11 u1 t1 p12 u2 t2… p1n un tn] where ui 
stands for any word in the positional ngram, ti stands for 
the part-of-speech tag of the word ui and p1i represents 
the distance that separates words u1 and ui. Thus, the 
positional ngram [Ngram Statistics] can be represented by 
the vector [0 Ngram /NN +1 Statistics /NN] given the text 
corpus in section (3.1). More examples are given in Ta-
ble 4. 
 

Positional ngrams Alternative notation 

[Ngram ___ from] [0 Ngram /NN +2 from /IN] 
[Ngram ___ ___ Large] [0 Ngram /NN +3 Large /JJ] 

[to ___ Ngram] [0 to /IN +2 Ngram /NN] 
 

Table 4: Alternative Notation 
 

This alternative notation will allow us to defining, with 
elegance, our combined association measure, introduced 
in the next section. 

3.2 Data Preparation 
So, the first step of our architecture deals with segment-
ing the input text corpus into positional ngrams. First, 
the part-of-speech tagged corpus is divided into two 
sub-corpora: one sub-corpus of words and one sub-
corpus of part-of-speech tags. The word sub-corpus is 
then segmented into its set of positional word ngrams 
exactly in the same way the tagged sub-corpus is seg-
mented into its set of positional tag ngrams.  
 
In parallel, each positional word ngram is associated to 
its corresponding positional tag ngram in order to fur-
ther evaluate the global degree of cohesiveness of any 
sequence of words in a part-of-speech tagged corpus. 
Our basic idea is to evaluate the degree of cohesiveness 
of each positional ngram independently (i.e. the posi-
tional word ngrams on one side and the positional tag 
ngrams on the other side) in order to calculate the global 
degree of cohesiveness of any sequence in the part-of-
speech tagged corpus by combining its respective de-
grees of cohesiveness i.e. the degree of cohesiveness of 
its sequence of words and the degree of cohesiveness of 
its sequence of part-of-speech tags.  
 
In order to evaluate the degree of cohesiveness of any 
sequence of textual units, we use the association meas-
ure called Mutual Expectation. 

4 Cohesiveness Evaluation 

The Mutual Expectation (ME) has been introduced by 
Gaël Dias (2002) and evaluates the degree of cohesive-
ness that links together all the textual units contained in 
a positional ngram (∀n, n ≥ 2) based on the concept of 
Normalized Expectation and relative frequency.  

4.1 Normalized Expectation 
The basic idea of the Normalized Expectation (NE) is to 
evaluate the cost, in terms of cohesiveness, of the loss of 
one element in a positional ngram. Thus, the NE is de-
fined in Equation 1 where the function k(.) returns the 
frequency of any positional ngram3.  
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Equation 1: Normalized Expectation 
 
In order to exemplify the NE formula, we present in 
Equation 2 its development for the given positional 
ngram [0 A +2 C +3 D +4 E] where each letter may repre-
sent a word or a part-of-speech tag.  
 

[ ]( ) [ ]( )
[ ]( )
[ ]( )
[ ]( )
[ ]( ) 


















 
+ 
+ 
+ 

 
= 

E 2 ,D 1 ,C0
E 4 ,D 3 ,A0
E 4 ,C 2 ,A0
D 3 ,C 2 ,A0

4
1

E 4 ,D 3 ,C 2 ,A0E 4 D, 3 ,C 2 ,A0

k
k
k
k

kNE

 

 

Equation 2: Normalized Expectation example 
 

However, evaluating the average cost of the loss of an 
element is not enough to characterize the degree of co-
hesiveness of a sequence of textual units. The Mutual 
Expectation is introduced to solve this insufficiency. 

4.2 Mutual Expectation 
Many applied works in Natural Language Processing 
have shown that frequency is one of the most relevant 
statistics to identify relevant textual associations. For 
instance, in the context of multiword unit extraction, 
(John Justeson and Slava Katz, 1995; Béatrice Daille, 
1996) assess that the comprehension of a multiword unit 
is an iterative process being necessary that a unit should 
be pronounced more than one time to make its compre-
hension possible. Gäel Dias (2002) believes that this 
phenomenon can be enlarged to part-of-speech tags. 
From this assumption, they pose that between two posi-
tional ngrams with the same NE, the most frequent posi-
tional ngram is more likely to be a relevant sequence.  
 
So, the Mutual Expectation of any positional ngram is 
defined in Equation 3 based on its NE and its relative 
frequency embodied by the function p(.). 
 
                                                           
3 The "^" corresponds to a convention used in Algebra that 
consists in writing a "^" on the top of the omitted term of a 
given succession indexed from 1 to n. 
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Equation 3: Mutual Expectation 
 
We will note that the ME shows interesting properties. 
One of them is the fact that it does not sub-evaluate in-
terdependencies when frequent individual textual units 
are present. In particular, this allows us to avoid the use 
of lists of stop words. Thus, when calculating all the 
positional ngrams, all the words and part-of-speech tags 
are used. This fundamentally participates to the flexibil-
ity of use of our system. 
 
As we said earlier, the ME is going to be used to calcu-
late the degree cohesiveness of any positional word 
ngram and any positional tag ngram. The way we calcu-
late the global degree of cohesiveness of any sequence 
of words associated to its part-of-speech tag sequence, 
based on its two MEs, is discussed in the next subsec-
tion.  

4.3 Combined Association Measure 
The drawbacks shown by the statistical methodologies 
evidence the lack of linguistic information. Indeed, 
these methodologies can only identify textual associa-
tions in the context of their usage. As a consequence, 
many relevant structures can not be introduced directly 
into lexical databases as they do not guarantee adequate 
linguistic structures for that purpose. 
 
In this paper, we propose a first attempt to solve this 
problem without pre-defining syntactical patterns of 
interest that bias the extraction process. Our idea is sim-
ply to combine the strength existing between words in a 
sequence and the evidenced interdependencies between 
its part-of-speech tags. We could summarize this idea as 
follows: the more cohesive the words of a sequence and 
the more cohesive its part-of-speech tags, the more 
likely the sequence may embody a multiword unit. 
 
This idea can only be supported due to two assumptions. 
On one hand, a great deal of studies in lexicography and 
terminology assess that most of the MWUs evidence 
well-known morpho-syntactic structures (Gaston Gross, 
1996). On the other hand, MWUs are recurrent combi-
nations of words capable of representing a fifth of the 
overall surface of a text (Benoît Habert and Christian 
Jacquemin, 1993). Consequently, it is reasonable to 
think that the syntactical patterns embodied by the 
MWUs may endogenously be identified by using statis-
tical scores over texts of part-of-speech tags exactly in 
the same manner as word dependencies are identified in 
corpora of words. So, the global degree of cohesiveness 
of any sequence of words may be evaluated by a combi-
nation of its own ME and the ME of its associated part-

of-speech tag sequence. The degree of cohesiveness of 
any positional ngram based on a part-of-speech tagged 
corpus can then be evaluated by the combined associa-
tion measure (CAM) defined in Equation 4 where α 
stands as a parameter that tunes the focus whether on 
words or on part-of-speech tags. 
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Equation 4: Combined Association Measure 
 
We will see in the final section of this paper that differ-
ent values of α lead to fundamentally different sets of 
multiword unit candidates. Indeed, α can go from a total 
focus on part-of-speech tags (i.e. the relevance of a 
word sequence is based only on the relevance of its part-
of-speech sequence) to a total focus on words (i.e. the 
relevance of a word sequence is defined only by its 
word dependencies). Before going to experimentation, 
we need to introduce the used acquisition process which 
objective is to extract the MWUs candidates. 

5 The Acquisition Process 

The GenLocalMaxs (Gaël Dias, 2002) proposes a flexi-
ble and fine-tuned approach for the selection process as 
it concentrates on the identification of local maxima of 
association measure values. Specifically, the GenLo-
calMaxs elects MWUs from the set of all the valued 
positional ngrams based on two assumptions. First, the 
association measures show that the more cohesive a 
group of words is, the higher its score will be. Second, 
MWUs are localized associated groups of words. So, we 
may deduce that a positional word-tag ngram is a MWU 
if its combined association measure value is higher or 
equal than the combined association measure values of 
all its sub-groups of (n-1) words and if it is strictly 
higher than the combined association measure values of 
all its super-groups of (n+1) words. Let cam be the 
combined association measure, W a positional word-tag 
ngram, Ωn-1 the set of all the positional word-tag (n-1)-
grams contained in W, Ωn+1 the set of all the positional 
word-tag (n+1)-grams containing W and sizeof(.) a func-
tion that returns the number of words of a positional 
word-tag ngram. The GenLocalMaxs is defined as: 
 

∀x ∈Ωn-1 , ∀y ∈Ωn+1 ,   W  is a MWU if 

(sizeof(W)=2  ∧  cam(W) > cam(y) ) 
∨ 

(sizeof(W)≠2  ∧  cam(W) ≥ cam(x)  ∧  cam(W) > cam(y)) 
 

Definition 1: GenLocalMaxs Algorithm 
 
Among others, the GenLocalMaxs shows one important 
property: it does not depend on global thresholds. A 



direct implication of this characteristic is the fact that, as 
no tuning needs to be made in order to acquire the set of 
all the MWU candidates, the use of the system remains 
as flexible as possible. Finally, we show the results ob-
tained by applying HELAS over the Brown Corpus. 

6 The Experiments 

In order to test our architecture, we have conducted a 
number of experiments with 11 different values of α for 
a portion of the Brown Corpus containing 249 578 
words i.e. 249 578 words plus its 249 578 part-of-
speech tags. The limited size of our corpus is mainly 
due to the space complexity of our system. Indeed, the 
number of computed positional ngrams is huge even for 
a small corpus. For instance, 21 463 192 positional 
ngrams are computed for this particular corpus for a 7-
word size window context. As a consequence, computa-
tion is hard. For this experiment, HELAS has been 
tested on a personal computer with 128 Mb of RAM, 20 
Gb of Hard Disk and an AMD 1.4 Ghz processor under 
Linux Mandrake 7.2. On average, each experiment (i.e. 
for a given α) took 4 hours and 20 minutes. Knowing 
that our system increases proportionally with the size of 
the corpus, it was unmanageable, for this particular ex-
periment, to test our architecture over a bigger corpus. 
Even though, the whole processing stage lasted almost 
48 hours4. 
 
We will divide our experiment into two main parts. 
First, we will do a quantitative analysis and then we will 
lead a qualitative analysis. All results will only tackle 
contiguous multiword units although non-contiguous 
sequences may be extracted. This decision is due to the 
lack of space. 

6.1 Quantitative Analysis 
In order to understand, as deeply as possible, the inter-
action between word cohesiveness and part-of-speech 
tag cohesiveness, we chose eleven different values for 
α, i.e. α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, going 
from total focus on words (α = 1) to total focus on part-
of-speech tags (α = 0). 
 
First, we show the number of extracted contiguous 
MWU candidates by α in table 5. The total results are 
not surprising. Indeed, with α = 0, the focus is exclu-
sively on part-of-speech tags. It means that any word 
sequence, with an identified relevant part-of-speech 
sequence, is extracted independently of the words it 
contains. For instance, all the word sequences with the 
pattern [/JJ /NN] (i.e. Adjective + Noun) may be ex-

                                                           
4 We are already working on an efficient implementation of 
HELAS using suffix-arrays and the concept of masks.   

tracted independently of their word dependencies! This 
obviously leads to an important number of extracted 
sequences. The inclusion of the word factor, by increas-
ing the value of α, progressively leads to a decreasing 
number of extracted positional ngrams. In fact, the word 
sequences with relevant syntactical structures are being 
filtered out depending on their word statistics. Finally, 
with α = 1, the focus is exclusively on words. The im-
pact of the syntactical structure is null and the positional 
ngrams are extracted based on their word associations. 
In this case, the word sequences do not form classes of 
morpho-syntactic structures being the reason why less 
positional ngrams are extracted. 
 

alpha 0 0.1 0.2 0.3 0.4 0.5 
2gram 23146 21890 20074 17689 15450 13461 

3gram 297 467 567 351 1188 1693 

4gram 86 108 127 163 225 326 

5gram 79 81 81 82 77 82 

6gram 62 57 56 57 56 58 

TOTAL 23670 22603 20905 18342 16996 15620 

alpha 0.6 0.7 0.8 0.9 1.0  
2gram 11531 9950 9114 8650 8465  

3gram 2147 2501 2728 2828 2651  

4gram 428 557 679 740 484  

5gram 93 112 128 161 145  

6gram 58 58 60 64 60  

TOTAL 14257 13178 12709 12443 11805  
 

Table 5: Number of extracted MWU candidates 
 
A deeper analysis of table 5 reveals interesting results. 
The smaller the values of α, the more positional 2grams 
are extracted. This situation is illustrated in Figure 3.  
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Figure 3: Number of extracted MWU candidates 

 
Once again these results are not surprising. The Mutual 
Expectation tends to give more importance to frequent 
sequences of textual units. While it performs reasonably 
well on word sequences, it tends to over-evaluate the 
part-of-speech tag sequences. Indeed, sequences of two 
part-of-speech tags are much more frequent than other 
types of sequences and, as a consequence, tend to be 
over-evaluated in terms of cohesiveness. As small val-
ues of α focus on syntactical structures, it is clear that in 
this case, small sequences of words are preferred over 
longer sequences.  
 



By looking at Figure 3 and Table 5, we may think that a 
great number of extracted sequences are common to 
each experiment. However, this is not true. In order to 
assess this affirmation, we propose, in Table 6, the 
summary of the identical ratio. 
  

alphas 0 0.1 0.2 0.3 0.4 0.5 
0  14.64 5.74 2.99 1.73 1.17 

0.1   9.99 3.77 2.08 1.35 

0.2    6.2 2.83 1.69 

0.3     4.89 2.36 

0.4      5.31 

0.5       

alphas 0.6 0.7 0.8 0.9 1.0  
0 0.83 0.63 0.54 0.49 0.47  

0.1 0.93 0.70 0.59 0.54 0.52  

0.2 1.11 0.81 0.68 0.61 0.59  

0.3 1.42 0.98 0.81 0.72 0.69  

0.4 2.34 1.44 1.13 0.97 0.90  

0.5 4.77 2.26 1.62 1.33 1.17  

0.6  5.06 2.82 2.10 1.73  
0.7   7.21 3.99 2.81  
0.8    9.45 4.50  
0.9     7.71  
1.0       

 

Table 6: Identical Ratio 
 
The identical ratio calculates, for two values of α, the 
quotient between the number of identical extracted se-
quences and the number of different extracted se-
quences. Thus, the first value of the first row of table 6, 
represents the identical ratio for α=0 and α=0.1, and 
means that there are 14.64 times more identical ex-
tracted sequences than different sequences between both 
experiments.  
 
Taking α=0 and α=1, it is interesting to see that there are 
much more different sequences than identical sequences 
between both experiments (identical ratio = 0.47). In 
fact, this phenomenon progressively increases as the 
word factor is being introduced in the combined asso-
ciation measure to reach α=1. This was somewhat unex-
pected. Nevertheless, this situation can be partly 
decrypted from Figure 3.  Indeed, figure 3 shows that 
longer sequences are being preferred as α increases. In 
fact, what happens is that short syntactically well-
founded sequences are being replaced by longer word 
sequences that may lack linguistic information. For in-
stance, the sequence [Blue Mosque] was extracted with 
α=0, although the longer sequence [the Blue Mosque] was 
preferred with α=1 as whenever [Blue Mosque] appears in 
the text, the determinant [the] precedes it. 
 
Finally, a last important result concerns the frequency of 
the extracted sequences. Table 7 gives an overview of 
the situation. The figures are clear. Most of the ex-
tracted sequences occur only twice in the input text cor-
pus. This result is rather encouraging as most known 
extractors need high frequencies in order to decide 

whether a sequence is a MWU or not. This situation is 
mainly due to the GenLocalMaxs algorithm. 
 

alpha 0 0.1 0.2 0.3 0.4 0.5 
Freq=2 13555 13093 12235 11061 10803 10458 

Freq=3 4203 3953 3616 3118 2753 2384 

Freq=4 1952 1839 1649 1350 1166 960 

Freq=5 1091 1019 917 743 608 511 

Freq>2 2869 2699 2488 2070 1666 1307 

TOTAL 23670 22603 20905 18342 16996 15620 

alpha 0.6 0.7 0.8 0.9 1.0  
Freq=2 10011 9631 9596 9554 9031  

Freq=3 2088 1858 1730 1685 1678  

Freq=4 766 617 524 485 468  

Freq=5 392 276 232 202 189  

Freq>2 1000 796 627 517 439  

TOTAL 14257 13178 12709 12443 11805  
 

Table 7: Number of extracted MWUs by frequency 

6.2 Qualitative Analysis 
As many authors assess (Frank Smadja, 1993; John 
Justeson and Slava Katz, 1995), deciding whether a se-
quence of words is a multiword unit or not is a tricky 
problem. For that purpose, different definitions of mul-
tiword unit have been proposed. One of the most suc-
cessful attempts can be attributed to Gaston Gross 
(1996) that classifies multiword units into six groups 
and provides techniques to determine their belonging. 
As a consequence, we intend as multiword unit any 
compound noun (e.g. interior designer), compound deter-
minant (e.g. an amount of), verbal locution (e.g. run 
through), adverbial locution (e.g. on purpose), adjectival 
locution (e.g. dark blue) or prepositional locution (e.g. in 
front of).  
 
The analysis of the results has been done intramuros 
although we are aware that an external independent 
cross validation would have been more suited. How-
ever, it was not logistically possible to do so and by 
using Gaston Gross’s classification and methodology, 
we narrow the human error evaluation as much as pos-
sible. Technically, we have randomly extracted and ana-
lysed 200 positional 2grams, 200 positional 3grams and 
100 positional 4grams for each value of α. For the spe-
cific case of positional 5grams and 6grams, all the se-
quences have been analysed.  
 
Precision results of this analysis are given in table 8 and 
show that word dependencies and part-of-speech tag 
dependencies may both play an important role in the 
identification of relevant sequences. Indeed, values of α 
between 0.4 and 0.5 seem to lead to optimum results. 
Knowing that most extracted sequences are positional 
2grams or positional 3grams, the global precision results 
approximate the results given by 2grams and 3grams. In 
these conditions, the best results are for α=0.5 reaching 
an average precision of 62 %. This would mean that 



word dependencies and part-of-speech tags contribute 
equally to multiword unit identification.  
 

alpha 0 0.1 0.2 0.3 0.4 0.5 
2gram 29 % 22 % 30 % 44 % 53 % 60 % 

3gram 52 % 77 % 74 % 73 % 80 % 85 % 

4gram 38 % 32 % 32 % 46 % 47 % 41 % 

5gram 34 % 28 % 29 % 31 % 33 % 34 % 

6gram 29 % 22 % 18 % 24 % 31 % 38 % 

alpha 0.6 0.7 0.8 0.9 1.0  
2gram 45 % 23 % 25 % 18 % 30 %  

3gram 43 % 35 % 46 % 51 % 36 %  

4gram 41 % 45 % 39 % 44 % 37 %  

5gram 27 % 27 % 29 % 38 % 38 %  

6gram 32 % 37 % 26 % 29 % 29 %  
 

Table 8: Precision in % by alpha 
 
A deeper look at the results evidences interesting regu-
larities as shown in figure 4. Indeed, the curves for 
4grams, 5grams and 6grams are reasonably steady along 
the X axis evidencing low results. This means, to some 
extent, that that our system does not seem to be able to 
tackle successfully multiword units with more than 
three words. In fact, neither a total focus on words or on 
part-of-speech tags seems to change the extraction re-
sults. However, the importance of these results must be 
weakened as they represent a small proportion of the 
extracted structures.   
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Figure 4: Precision by alpha and ngram 

 
On the other hand, the curves for 2grams and 3grams 
show different behaviours.  For the 3gram case, it seems 
that the syntactical structure plays an important role in 
the identification process. Indeed, precision falls down 
drastically when the focus passes to word dependencies. 
This is mainly due to the extraction of recurrent se-
quences of words that do not embody multiword unit 
syntactical structures like [been able to] or [can still be]. 
As 2grams are concerned, the situation is different. In 
fact, it seems that too much focus on either words or 
part-of-speech tags leads to unsatisfactory results. In-
deed, optimum results are obtained for a balance be-
tween both criteria. This result can be explained by the 
fact that there exist many recurrent sequences of two 
words in a corpus. However, most of them are not mul-
tiword units like [of the] or [can be]. For that reason, only 
a balanced weight on part-of-speech tag and word de-

pendencies may identify relevant two word sequences. 
However, not-so-high precision results show that two-
word sequences still remain a tricky problem for our 
extractor as it is difficult to filter out very frequent pat-
terns that embody meaningless syntactical structures. 

7 Conclusion 

This paper describes an original hybrid system that ex-
tracts multiword unit candidates by endogenously iden-
tifying relevant syntactical patterns from the corpus and 
by combining word statistics with the acquired linguis-
tic information. As a result, by avoiding human inter-
vention in the definition of syntactical patterns, (1) 
HELAS provides total flexibility of use being independ-
ent of the targeted language and (2) it allows the identi-
fication of various MWUs like compound nouns, 
compound determinants, verbal locutions, adverbial 
locutions, prepositional locutions and adjectival locu-
tions without defining any threshold or using lists of 
stop words. The system has been tested on the Brown 
Corpus leading to encouraging results evidenced by a 
precision score of 62 % for the best configuration. The 
system will soon be available on http://helas.di.ubi.pt. 
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