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Abstract 

This paper describes an implementation to 
compute positional ngram statistics (i.e. Fre-
quency and Mutual Expectation) based on 
masks, suffix array-based data structures and 
multidimensional arrays. Positional ngrams 
are ordered sequences of words that represent 
continuous or discontinuous substrings of a 
corpus. In particular, the positional ngram 
model has shown successful results for the ex-
traction of discontinuous collocations from 
large corpora. However, its computation is 
heavy. For instance, 4.299.742 positional 
ngrams (n=1..7) can be generated from a 
100.000-word size corpus in a seven-word 
size window context. In comparison, only 
700.000 ngrams would be computed for the 
classical ngram model. It is clear that huge ef-
forts need to be made to process positional 
ngram statistics in reasonable time and space. 
Our solution shows O(h(F) N log N) time 
complexity where N is the corpus size and 
h(F) a function of the window context. 

1 Introduction 

Many models have been proposed to evaluate word de-
pendencies. One of the most successful statistical mod-
els is certainly the ngram model (Jelinek, 1990). 
However, in order to overcome its conceptual rigidity, 
T. Kuhn et al. (1994) have defined the polygram model 
that estimates the probability of an ngram by interpolat-
ing the relative frequencies of all its kgrams (k ≤ n). 
Another way to account for variable length dependen-

cies is the n-multigram model designed by Deligne and 
Bimbot (1995).  
 
All these models have in common the fact that they 
need to compute continuous string frequencies. This 
task can be colossal when gigabytes of data need to be 
processed. Indeed, Yamamoto and Church (2000) show 
that there exist N(N+1)/2 substrings in a N-size corpus. 
That is the reason why low order ngrams have been 
commonly used in Natural Language Processing appli-
cations.  
 
In the specific field of multiword unit extraction, Dias 
(2002) has introduced the positional ngram model that 
has evidenced successful results for the extraction of 
discontinuous collocations from large corpora. Unlikely 
previous models, positional ngrams are ordered se-
quences of tokens that represent continuous or discon-
tinuous substrings of a corpus computed in a (2.F+1)-
word size window context (F represents the context in 
terms of words on the right and on the left of any word 
in the corpus). As a consequence, the number of gener-
ated substrings rapidly explodes and reaches astronomic 
figures. Dias (2002) shows that ∆ (Equation 1) posi-
tional ngrams can be computed for an N-size corpus in a 
(2.F+1)-size window context.  
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Equation 1: Number of positional ngrams 

 
In order to illustrate this equation, 4.299.742 positional 
ngrams (n=1..7) would be generated from a 100.000-
word size corpus in a seven-word size window context. 
In comparison, only 700.000 ngrams would be com-



puted for the classical ngram model. It is clear that huge 
efforts need to be made to process positional ngram 
statistics in reasonable time and space.  
 
In this paper, we describe an implementation that com-
putes the Frequency and the Mutual Expectation (Dias 
et al. 1999) of any positional ngram with time complex-
ity O(h(F) N log N). The global architecture is based on 
the definition of masks that allow virtually representing 
any positional ngram in the corpus. Thus, we follow the 
Virtual Corpus approach introduced by Kit and Wilks 
(1998) and apply a suffix-array-like method, coupled to 
the Multikey Quicksort algorithm (Bentley and Sedge-
wick, 1997), to compute positional ngram frequencies. 
Finally, a multidimensional array is built to easily 
process the Mutual Expectation, an association measure 
for collocation extraction.  
 
The evaluation of our C++ implementation has been 
realized over the CETEMPúblico2 corpus and shows 
satisfactory results. For example, it takes 8.59 minutes 
to compute both frequency and Mutual Expectation for 
a 1.092.7233-word corpus on an Intel Pentium III 900 
MHz Personal Computer for a seven-word size window 
context. 
 
This article is divided into four sections: (1) we explain 
the basic principles of positional ngrams and the mask 
representation to build the Virtual Corpus; (2) we pre-
sent the suffix-array-based data structure that allows 
counting occurrences of positional ngrams; (3) we show 
how a multidimensional array eases the efficient com-
putation of the Mutual Expectation; (4) we present re-
sults over different size sub-corpora of the 
CETEMPúblico corpus. 

2 Positional Ngrams 

In the specific field of multiword unit extraction, Dias 
(2002) has introduced the positional ngram model that 
has evidenced successful results for the extraction of 
discontinuous collocations from large corpora. 

2.1 Principles 
 
The original idea of the positional ngram model comes 
from the lexicographic evidence that most lexical rela-
tions associate words separated by at most five other 
words (Sinclair, 1974). As a consequence, lexical rela-
tions such as collocations can be continuous or discon-
tinuous sequences of words in a context of at most 
eleven words (i.e. 5 words to the left of a pivot word, 5 
                                                           
2 The CETEMPúblico is a 180 million-word corpus of Portuguese. It 
can be obtained at http://www.ldc.upenn.edu/. 
3 This represents 46.986.831 positional ngrams. 

words to the right of the same pivot word and the pivot 
word itself). In general terms, a collocation can be de-
fined as a specific4 continuous or discontinuous se-
quence of words in a (2.F+1)-word size window context 
(i.e. F words to the left of a pivot word, F words to the 
right of the same pivot word and the pivot word itself). 
This situation is illustrated in Figure 1 for the colloca-
tion Ngram Statistics that fits in the window context. 
 

 
Figure 1: 2.F-word size window context 

 
Thus, as computation is involved, we need to process all 
possible substrings (continuous or discontinuous) that fit 
inside the window context and contain the pivot word. 
Any of these substrings is called a positional ngram. For 
instance, [Ngram Statistics] is a positional ngram as is the 
discontinuous sequence [Ngram ___ from] where the gap 
represented by the underline stands for any word occur-
ring between Ngram and from (in this case, Statistics). 
More examples are given in Table 1. 
 

Positional 2grams Positional 3grams 
[Ngram Statistics] [Ngram Statistics from] 
[Ngram ___ from] [Ngram Statistics ___ Large] 

[Ngram ___ ___ Large] [Ngram ___ from Large] 
[to ___ Ngram] [to ___ Ngram ___ from] 

 
Table 1: Possible positional ngrams 

 
In order to compute all the positional ngrams of a cor-
pus, we need to take into account all the words as possi-
ble pivot words.  
 

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

A   B   C   D   E   F   G   H   I    J    K   L   M   N   ....  X   Y  Z ....

....

....  
Figure 2: One-window context for F=3 

 
A simple way would be to shift the two-window context 
to the right so that each word would sequentially be 
processed. However, this would inevitably lead to du-
plications of positional ngrams. Instead, we propose a 

                                                           
4 As specific, we intend a sequence that fits the definition of colloca-
tion given by Dias (2002): “A collocation is a recurrent sequence of 
words that co-occur together more than expected by chance in a given 
domain”. 

Virtual   Approach to Deriving   Ngram Statistics from Large   Scale 

pivot 

F=3 F=3



one-window context that shifts to the right along the 
corpus as illustrated in Figure 2. It is clear that the size 
of the new window should be 2.F+1. 
 
This new representation implies new restrictions. While 
all combinations of words were valid positional ngrams 
in the two-window context, this is not true for a one-
window context. Indeed, two restrictions must be ob-
served. 
 
Restriction 1: Any substring, in order to be valid, must 
contain the first word of the window context.  
 
Restriction 2: For any continuous or discontinuous sub-
string in the window context, by shifting the substring 
from left to right, excluding gaps and words on the right 
and inserting gaps on the left, so that there always exists 
a word in the central position cpos (Equation 2) of the 
window, there should be at least one shift that contains 
all the words of the substring in the context window. 
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Equation 2: Central position of the window 

 
For example, from the first case of Figure 2, the discon-
tinuous sequence [A B _ _ E _ G] is not a positional 
ngram although it is a possible substring as it does not 
follow the second restriction. Indeed, whenever we try 
to align the sequence to the central position, at least one 
word is lost as shown in Table 2: 
 

Possible 
shift 

Central 
word 

Disappearing 
words 

[_ _ A B _ _ E] B G 
[_ _ _ A B _ _] A E, G 

 
Table 2: Shifting Substrings 

 
In contrast, the sequence [A _ C _ E F _] is a positional 
ngram as the shift [_ A _ C _ E F], with C in the central 
position, includes all the words of the substring.  
 
Basically, the first restriction aims at avoiding duplica-
tions and the second restriction simply guarantees that 
no substring that would not be computed in a two-
window context is processed. 

2.2 Virtual Representation 
 
The representation of positional ngrams is an essential 
step towards efficient computation. For that, purpose, 
we propose a reference representation rather than an 
explicit structure of each positional ngram. The idea is 

to adapt the suffix representation (Manber and Myers, 
1990) to the positional ngram case. 
 
Following the suffix representation, any continuous 
corpus substring is virtually represented by a single po-
sition of the corpus as illustrated in Figure 3. In fact, the 
substring is the sequence of words that goes from the 
word referred by the position till the end of the corpus. 
 

 
 

Figure 3: Suffix Representation5 
 
Unfortunately, the suffix representation can not directly 
be extended to the specific case of positional ngrams. 
One main reason aims at this situation: a positional 
ngram may represent a discontinuous sequence of 
words. In order to overcome this situation, we propose a 
representation of positional ngrams based on masks. 
 
As we saw in the previous section, the computation of 
all the positional ngrams is a repetitive process. For 
each word in the corpus, there exists an algorithmic 
pattern that identifies all the possible positional ngrams 
in a 2.F+1-word size window context. So, what we need 
is a way to represent this pattern in an elegant and effi-
cient way.  
 
One way is to use a set of masks that identify all the 
valid sequences of words in a given window context. 
Thus, each mask is nothing more than a sequence of 1 
and 0 (where 1 stands for a word and 0 for a gap) that 
represents a specific positional ngram in the window 
context. An example is illustrated in Figure 4. 
 
 

 
 

Figure 4: Masks 
 
                                                           
5 The $ symbol stands for the end of the corpus.  
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Computing all the masks is an easy and quick process. 
In our implementation, the generation of masks is done 
recursively and is negligible in terms of space and time. 
In table 3, we give the number of masks h(F) for differ-
ent values of F. 
 

F h(F) 
1 4 
2 11 
3 43 
4 171 
5 683 

 
Table 3: Number of masks 

 
In order to identify each mask and to prepare the refer-
ence representation of positional ngrams, an array of 
masks is finally built as in Figure 5. 
 

 
Figure 5: Masks Array 

 
From these structures, the virtual representation of any 
positional ngram is straightforward. Indeed, any posi-
tional ngram can be identified by a position in the cor-
pus and a given mask. Taking into account that a corpus 
is a set of documents, any positional ngram can be rep-
resented by the tuple {{iddoc, posdoc}, idmask} where iddoc 
stands for the document id of the corpus, posdoc for a 
given position in the document and idmask for a specific 
mask. An example is illustrated in Figure 6. 
 

 
 

Figure 6: Virtual Representation 
 

As we will see in the following section, this reference 
representation will allow us to follow the Virtual Cor-
pus approach introduced by Kit and Wilks (1998) to 
compute ngram frequencies. 

3 Computing Frequency 

With the Virtual Corpus approach, counting continuous 
substrings can easily and efficiently be achieved. After 
sorting the suffix-array data structure presented in Fig-
ure 3, the count of an ngram consisting of any n words 
in the corpus is simply the count of the number of adja-
cent indices that take the n words as prefix. We illus-
trate the Virtual Corpus approach in Figure 6. 
 

 
 

2gram Freq 3gram Freq 
[A B] 2 [A B B] 1 
[B B] 1 [B C A] 2 

 
Figure 6: Virtual Corpus Approach 

 
Counting positional ngrams can be computed exactly in 
the same way. The suffix-array structure is sorted using 
lexicographic ordering for each mask in the array of 
masks. After sorting, the count of a positional ngram in 
the corpus is simply the count of adjacent indices that 
stand for the same sequence. We illustrate the Virtual 
Corpus approach for positional ngrams in Figure 7. 
 

 
 

Figure 7: Virtual Corpus for positional ngrams 
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The efficiency of the counting mainly resides in the use 
of an adapted sort algorithm. Kit and Wilks (1998) pro-
pose to use a bucket-radixsort although they acknowl-
edge that the classical quicksort performs faster for 
large-vocabulary corpora. Around the same perspective, 
Yamamoto and Church (2000) use the Manber and 
Myers’s algorithm (1990), an elegant radixsort-based 
algorithm that takes at most O(N log N) time and shows 
improved results when long repeated substrings are 
common in the corpus. 
 
For the specific case of positional ngrams, we have cho-
sen to implement the Multikey Quicksort algorithm 
(Bentley and Sedgewick, 1997) that can be seen as a 
mixture of the Ternary-Split Quicksort (Bentley and 
McIlroy, 1993) and the MSD6 radixsort (Anderson and 
Nilsson, 1998).  
 
The algorithm processes as follows: (1) the array of 
string is partitioned into three parts based on the first 
symbol of each string. In order to process the split a 
pivot element is chosen just as in the classical quicksort 
giving rise to: one part with elements smaller than the 
pivot, one part with elements equal to the pivot and one 
part with elements larger than the pivot; (2) the smaller 
and the larger parts are recursively processed in exactly 
the same manner as the whole array; (3) the equal part is 
also sorted recursively but with partitioning starting 
from the second symbol of each string; (4) the process 
goes on recursively: each time an equal part is being 
processed, the considered position in each string is 
moved forward by one symbol.  
 
In Figure 8, we propose an illustration of the Multikey 
Quicksort taken from the paper (Bentley and Sedge-
wick, 1997). The pivot is chosen using the median 
method. 
 

 
 

Figure 8: Sorting 12 two-letter words. 
 

                                                           
6 MSD stands for Most Significant Digit. 

Different reasons have lead to use the Multikey Quick-
sort algorithm. First, it performs independently from the 
vocabulary size. Second, it shows O(N log N) time 
complexity in our specific case. Third, Anderson and 
Nilsson (1998) show that it performs better than the 
MSD radixsort and proves comparable results to the 
newly introduced Forward radixsort. 
 
Counting frequencies is just a preliminary step towards 
collocation extraction. The following step attaches an 
association measure to each positional ngram that 
evaluates the interdependency between words inside a 
given sequence. In the positional ngram model, Dias et 
al. (1999) propose the Mutual Expectation measure.   

4 Computing Mutual Expectation 

4.1 Principles 

 
The Mutual Expectation evaluates the degree of rigidity 
that links together all the words contained in a posi-
tional ngram (∀n, n ≥ 2) based on the concept of Nor-
malized Expectation and relative frequency.  

Normalized Expectation 
The basic idea of the Normalized Expectation is to 
evaluate the cost, in terms of cohesiveness, of the loss of 
one word in a positional ngram. Thus, the Normalized 
Expectation measure is defined in Equation 3 where the 
function k(.) returns the frequency of any positional 
ngram7.  
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Equation 3: Normalized Expectation 

 
For that purpose, any positional ngram is defined alge-
braically as a vector of words [p11 u1 p12 u2 … p1n un] 
where ui stands for any word in the positional ngram 
and p1i represents the distance that separates words u1 
and ui

8. Thus, the positional ngram [A _ C D E _ _] would 
be rewritten as [0 A +2 C +3 D +4 E] and its Normalized 
Expectation would be given by Equation 4. 
 

                                                           
7 The "^" corresponds to a convention used in Algebra that consists in 
writing a "^" on the top of the omitted term of a given succession 
indexed from 1 to n. 
8 By statement, any pii is equal to zero.   
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which is equivalent to 
 

[ ]( ) [ ]( )
[ ]( )
[ ]( )
[ ]( )
[ ]( ) 


















+
+
+

=

_ _ _ _ E D C
_ _ E D _ _A 
_ _ E _ C _A 
_ _ _ D C _A 

4
1

_ _ E D C _A _ _ E D C _A 

k
k
k
k
kNE

 

 
Equation 4: Normalized Expectation example 

 

Mutual Expectation 
One effective criterion for multiword lexical unit identi-
fication is frequency. From this assumption, Dias et al. 
(1999) pose that between two positional ngrams with 
the same Normalized Expectation, the most frequent 
positional ngram is more likely to be a collocation. So, 
the Mutual Expectation of any positional ngram is de-
fined in Equation 5 based on its Normalized Expectation 
and its relative frequency. 
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Equation 5: Mutual Expectation 

 
In order to compute the Mutual Expectation of any posi-
tional ngram, it is necessary to build a data structure that 
allows rapid and efficient search over the space of all 
positional ngrams. For that purpose, we propose a mul-
tidimensional array structure called Matrix9. 

4.2 Matrix 
The attentive reader will have noticed that the denomi-
nator of the Normalized Expectation formula is the av-
erage frequency of all the positional (n-1)grams 
included in a given positional ngram. These specific 
positional ngrams are called positional sub-ngrams of 
order n-110. So, in order to compute the Normalized 
Expectation and a fortiori the Mutual Expectation, it is 
necessary to access efficiently to the sub-ngrams fre-
quencies. This operation is done through the Matrix. 

                                                           
9 The Matrix also speeds up the extraction process that applies the 
GenLocalMaxs algorithm (Gaël Dias, 2002). We do not present this 
algorithm due to lack of space. 
10 In order to ease the reading, we will use the term sub-ngrams to 
denote positional sub-ngrams of order n-1. 

However, to understand the Matrix itself, we first need 
to show how the sub-ngrams of any positional ngram 
can be represented.  

Representing sub-ngrams 
A sub-ngram is obtained by extracting one word at a 
time from its related positional ngram as shown in Fig-
ure 9. 
 

 
 

Figure 9: Sub-ngrams 
 
By representing a sub-ngram, we mean calculating its 
virtual representation that identifies its related substring. 
The previous figure shows that representing the first 
three sub-ngrams of the positional ngram {{0,0},14} is 
straightforward as they all contain the first word of the 
window context. The only difficulty is to know the 
mask they are associated to. Knowing this, the first three 
sub-ngrams would respectively be represented as: 
{{0,0},15}, {{0,0},16}, {{0,0},13}. 
 
For the last sub-ngram, the situation is different. The 
first word of the window context is omitted. As a con-
sequence, in order to calculate its virtual representation, 
we need to know the position of the first word of the 
substring as well as its corresponding mask. In this case, 
the position in the document of the positional sub-ngram 
is simply the position of its related positional ngram 
plus the distance that separates the first word of the 
window context from the first word of the substring. We 
call delta this distance. The obvious representation of 
the fourth sub-ngram is then {{0,2},18} where the position 
is calculated as 0+(delta=2)=2. 
 
In order to represent the sub-ngrams of any positional 
ngram, all we need is to keep track of the masks related 
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to the mask of the positional ngram and the respective 
deltas. Thus, it is clear that for each mask, there exists a 
set of pairs {idmask, delta} that allows identifying all the 
sub-ngrams of any given positional ngram. Each pair is 
called a submask and is associated to its upper mask11 as 
illustrated in Figure 10. 
  
 

 
 

Figure 10: Submasks 
 
Now that all necessary virtual representations are well-
established, in order to calculate the Mutual Expecta-
tion, we need to build a structure that allows efficiently 
accessing any positional ngram frequency. This is the 
objective of the Matrix, a 2-dimension array structure. 

2-dimension Array Structure 
Searching for specific positional ngrams in a huge sam-
ple space can be overwhelming. To overcome this com-
putation problem, two solutions are possible: (1) keep 
the suffix array-based data structure and design opti-
mized search algorithms or (2) design a new data struc-
ture to ease the searching process. We chose the second 
solution as our complete system heavily depends on 
searching through the entire space of positional 
ngrams12 and, as a consequence, we hardly believe that 
improved results may be reached following the second 
solution.  
 
This new structure is a 2-dimension array where lines 
stand for the masks ids and the columns for the posi-
tions in the corpus. Thus, each cell of the 2-dimension 
array represents a given positional ngram as shown in 
Figure 11. This structure is called the Matrix. 
 
The frequency of each positional ngram can easily be 
represented by all its positions in the corpus. Indeed, a 
given positional ngram is a substring that can appear in 
different positions of the corpus being the count of these 
positions its frequency. From the previous suffix array-

                                                           
11 The upper mask is the mask from which the submasks are calcu-
lated. While upper masks represent positional ngrams, submasks 
represent sub-ngrams. 
12 In fact, this choice mainly has to do with the extraction process and 
the application of the GenLocalMaxs algorithm.  

based data structure, calculating all these positions is 
straightforward.  
 
Calculating the Mutual Expectation is also straightfor-
ward and fast as accessing to any positional ngram can 
be done in O(1) time complexity. We will illustrate this 
reality in the next section. 
 

 
 

Figure 11: The Matrix 
 
The illustration of our architecture is now complete. We 
now need to test our assumptions. For that purpose, we 
present results of our implementation over the 
CETEMPúblico corpus. 

5 Experiments 

We have conducted a number of experiments of our 
C++ implementation on the CETEMPúblico Portuguese 
corpus to derive positional ngram statistics (Frequency 
and Mutual Expectation). The experiments have been 
realized on an Intel Pentium 900 MHz PC with 390MB 
of RAM. From the original corpus, we have randomly 
defined 5 different size sub-corpora that we present in 
Table 4. 
 

corpus 01 02 03 04 05 
Size in 

Mb 0.7 3.1 5.3 6.7 8.8 

# of 
words 114.373 506.259 864.790 1.092.723 1.435.930 

# of 
ngrams13 4.917.781 21.768.879 37.185.712 46.986.831 61.744.732 

 
Table 4: Sub-corpora 

 
For each sub-corpus we have calculated the execution 
time of different stages of the process: (1) the tokeniza-
tion that transforms the corpus into a set of integers; (2) 
the preparation of the mask structure and the construc-
tion of the suffix-array data structure; (3) the sorting of 
the suffix-array data structure and the creation of the 
Matrix; (4) the calculation of the ME. The results are 
given in Table 5. 
 
 

                                                           
13 The window context of the experiment is F=3. 
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corpus 01 02 03 04 05 
Tokeniz. 0:00:01 0:00:04 0:00:08 0:00:09 0:00:17 

Masks/Suffix 0:00:04 0:00:14 0:00:25 0:00:31 0:00:40 
Matrix 0:00:35 0:03:23 0:06:16 0:08:11 0:11:12 

ME 0:00:00 0:00:03 0:00:06 0:00:08 0:00:10 
total 0:00:40 0:03:44 0:06:55 0:08:59 0:12:19 

 
Table 5: Execution Time in (hh:mm:ss) 

 
The results clearly show that the construction of the 
Matrix and the sort operation over the suffix-array data 
structure are the most time consuming procedures. On 
the contrary, the computation of the Mutual Expectation 
is quick due to the direct access to sub-ngrams frequen-
cies enabled by the Matrix. In order to understand the 
evolution of the results, we present, in Figure 12, a 
graphical representation of the results. 
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Figure 12: Evolution of execution time 
 
The graphical representation illustrates a linear time 
complexity. In fact, Alexandre Gil (2002) has proved 
that, mainly due to the implementation of the Multikey 
Quicksort algorithm, our implementation evidences a 
time complexity of O(h(F) N log N) where N is the size 
of the corpus and h(F) a function of the window con-
text. 

6 Conclusion 

In this paper, we have described an implementation to 
compute positional ngram statistics based on masks, 
suffix array-based data structure and multidimensional 
arrays. Our C++ solution shows that it takes 8.59 min-
utes to compute both frequency and Mutual Expectation 
for a 1.092.723-word corpus on an Intel Pentium III 900 
MHz for a seven-word size window context. In fact, our 
architecture evidences O(h(F) N log N) time complex-
ity. To some extent, this work proposes a response to 
the conclusion of (Kit and Wilks, 1998) that claims that 
“[…] a utility for extracting discontinuous co-
occurrences of corpus tokens, of any distance from each 
other, can be implemented based on this program [The 
Virtual Corpus Approach]”. 
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