
Using Masks, Suffix Array-based Data Structures and Multidimensional
Arrays to Compute Positional Ngram Statistics from Corpora

Alexandre Gil*
Computer Science Department

New University of Lisbon
Caparica, Portugal

agil@pt.ibm.com

Gaël Dias
Centre of Mathematics

Beira Interior University
Covilhã, Portugal
ddg@di.ubi.pt

* The authors want to thank Professor José Gabriel Pereira Lopes from the New University of Lisbon for his advices.

Abstract

This paper describes an implementation to
compute positional ngram statistics (i.e. Fre-
quency and Mutual Expectation) based on
masks, suffix array-based data structures and
multidimensional arrays. Positional ngrams
are ordered sequences of words that represent
continuous or discontinuous substrings of a
corpus. In particular, the positional ngram
model has shown successful results for the ex-
traction of discontinuous collocations from
large corpora. However, its computation is
heavy. For instance, 4.299.742 positional
ngrams (n=1..7) can be generated from a
100.000-word size corpus in a seven-word
size window context. In comparison, only
700.000 ngrams would be computed for the
classical ngram model. It is clear that huge ef-
forts need to be made to process positional
ngram statistics in reasonable time and space.
Our solution shows O(h(F) N log N) time
complexity where N is the corpus size and
h(F) a function of the window context.

1 Introduction

Many models have been proposed to evaluate word de-
pendencies. One of the most successful statistical mod-
els is certainly the ngram model (Jelinek, 1990).
However, in order to overcome its conceptual rigidity,
T. Kuhn et al. (1994) have defined the polygram model
that estimates the probability of an ngram by interpolat-
ing the relative frequencies of all its kgrams (k ≤ n).
Another way to account for variable length dependen-

cies is the n-multigram model designed by Deligne and
Bimbot (1995).

All these models have in common the fact that they
need to compute continuous string frequencies. This
task can be colossal when gigabytes of data need to be
processed. Indeed, Yamamoto and Church (2000) show
that there exist N(N+1)/2 substrings in a N-size corpus.
That is the reason why low order ngrams have been
commonly used in Natural Language Processing appli-
cations.

In the specific field of multiword unit extraction, Dias
(2002) has introduced the positional ngram model that
has evidenced successful results for the extraction of
discontinuous collocations from large corpora. Unlikely
previous models, positional ngrams are ordered se-
quences of tokens that represent continuous or discon-
tinuous substrings of a corpus computed in a (2.F+1)-
word size window context (F represents the context in
terms of words on the right and on the left of any word
in the corpus). As a consequence, the number of gener-
ated substrings rapidly explodes and reaches astronomic
figures. Dias (2002) shows that ∆ (Equation 1) posi-
tional ngrams can be computed for an N-size corpus in a
(2.F+1)-size window context.

() 







++×−=∆ ∑ ∑∑

+

= = =

−−−
−

1.2

3 1 1

11
11.2

F

k

F

i

F

j

ik
j

i
j CCFFN

Equation 1: Number of positional ngrams

In order to illustrate this equation, 4.299.742 positional
ngrams (n=1..7) would be generated from a 100.000-
word size corpus in a seven-word size window context.
In comparison, only 700.000 ngrams would be com-

puted for the classical ngram model. It is clear that huge
efforts need to be made to process positional ngram
statistics in reasonable time and space.

In this paper, we describe an implementation that com-
putes the Frequency and the Mutual Expectation (Dias
et al. 1999) of any positional ngram with time complex-
ity O(h(F) N log N). The global architecture is based on
the definition of masks that allow virtually representing
any positional ngram in the corpus. Thus, we follow the
Virtual Corpus approach introduced by Kit and Wilks
(1998) and apply a suffix-array-like method, coupled to
the Multikey Quicksort algorithm (Bentley and Sedge-
wick, 1997), to compute positional ngram frequencies.
Finally, a multidimensional array is built to easily
process the Mutual Expectation, an association measure
for collocation extraction.

The evaluation of our C++ implementation has been
realized over the CETEMPúblico2 corpus and shows
satisfactory results. For example, it takes 8.59 minutes
to compute both frequency and Mutual Expectation for
a 1.092.7233-word corpus on an Intel Pentium III 900
MHz Personal Computer for a seven-word size window
context.

This article is divided into four sections: (1) we explain
the basic principles of positional ngrams and the mask
representation to build the Virtual Corpus; (2) we pre-
sent the suffix-array-based data structure that allows
counting occurrences of positional ngrams; (3) we show
how a multidimensional array eases the efficient com-
putation of the Mutual Expectation; (4) we present re-
sults over different size sub-corpora of the
CETEMPúblico corpus.

2 Positional Ngrams

In the specific field of multiword unit extraction, Dias
(2002) has introduced the positional ngram model that
has evidenced successful results for the extraction of
discontinuous collocations from large corpora.

2.1 Principles

The original idea of the positional ngram model comes
from the lexicographic evidence that most lexical rela-
tions associate words separated by at most five other
words (Sinclair, 1974). As a consequence, lexical rela-
tions such as collocations can be continuous or discon-
tinuous sequences of words in a context of at most
eleven words (i.e. 5 words to the left of a pivot word, 5

2 The CETEMPúblico is a 180 million-word corpus of Portuguese. It
can be obtained at http://www.ldc.upenn.edu/.
3 This represents 46.986.831 positional ngrams.

words to the right of the same pivot word and the pivot
word itself). In general terms, a collocation can be de-
fined as a specific4 continuous or discontinuous se-
quence of words in a (2.F+1)-word size window context
(i.e. F words to the left of a pivot word, F words to the
right of the same pivot word and the pivot word itself).
This situation is illustrated in Figure 1 for the colloca-
tion Ngram Statistics that fits in the window context.

Figure 1: 2.F-word size window context

Thus, as computation is involved, we need to process all
possible substrings (continuous or discontinuous) that fit
inside the window context and contain the pivot word.
Any of these substrings is called a positional ngram. For
instance, [Ngram Statistics] is a positional ngram as is the
discontinuous sequence [Ngram ___ from] where the gap
represented by the underline stands for any word occur-
ring between Ngram and from (in this case, Statistics).
More examples are given in Table 1.

Positional 2grams Positional 3grams
[Ngram Statistics] [Ngram Statistics from]
[Ngram ___ from] [Ngram Statistics ___ Large]

[Ngram ___ ___ Large] [Ngram ___ from Large]
[to ___ Ngram] [to ___ Ngram ___ from]

Table 1: Possible positional ngrams

In order to compute all the positional ngrams of a cor-
pus, we need to take into account all the words as possi-
ble pivot words.

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

A B C D E F G H I J K L M N X Y Z

....

....
Figure 2: One-window context for F=3

A simple way would be to shift the two-window context
to the right so that each word would sequentially be
processed. However, this would inevitably lead to du-
plications of positional ngrams. Instead, we propose a

4 As specific, we intend a sequence that fits the definition of colloca-
tion given by Dias (2002): “A collocation is a recurrent sequence of
words that co-occur together more than expected by chance in a given
domain”.

Virtual Approach to Deriving Ngram Statistics from Large Scale

pivot

F=3 F=3

one-window context that shifts to the right along the
corpus as illustrated in Figure 2. It is clear that the size
of the new window should be 2.F+1.

This new representation implies new restrictions. While
all combinations of words were valid positional ngrams
in the two-window context, this is not true for a one-
window context. Indeed, two restrictions must be ob-
served.

Restriction 1: Any substring, in order to be valid, must
contain the first word of the window context.

Restriction 2: For any continuous or discontinuous sub-
string in the window context, by shifting the substring
from left to right, excluding gaps and words on the right
and inserting gaps on the left, so that there always exists
a word in the central position cpos (Equation 2) of the
window, there should be at least one shift that contains
all the words of the substring in the context window.

1
2

1.2
+



 +

=
Fcpos

Equation 2: Central position of the window

For example, from the first case of Figure 2, the discon-
tinuous sequence [A B _ _ E _ G] is not a positional
ngram although it is a possible substring as it does not
follow the second restriction. Indeed, whenever we try
to align the sequence to the central position, at least one
word is lost as shown in Table 2:

Possible
shift

Central
word

Disappearing
words

[_ _ A B _ _ E] B G
[_ _ _ A B _ _] A E, G

Table 2: Shifting Substrings

In contrast, the sequence [A _ C _ E F _] is a positional
ngram as the shift [_ A _ C _ E F], with C in the central
position, includes all the words of the substring.

Basically, the first restriction aims at avoiding duplica-
tions and the second restriction simply guarantees that
no substring that would not be computed in a two-
window context is processed.

2.2 Virtual Representation

The representation of positional ngrams is an essential
step towards efficient computation. For that, purpose,
we propose a reference representation rather than an
explicit structure of each positional ngram. The idea is

to adapt the suffix representation (Manber and Myers,
1990) to the positional ngram case.

Following the suffix representation, any continuous
corpus substring is virtually represented by a single po-
sition of the corpus as illustrated in Figure 3. In fact, the
substring is the sequence of words that goes from the
word referred by the position till the end of the corpus.

Figure 3: Suffix Representation5

Unfortunately, the suffix representation can not directly
be extended to the specific case of positional ngrams.
One main reason aims at this situation: a positional
ngram may represent a discontinuous sequence of
words. In order to overcome this situation, we propose a
representation of positional ngrams based on masks.

As we saw in the previous section, the computation of
all the positional ngrams is a repetitive process. For
each word in the corpus, there exists an algorithmic
pattern that identifies all the possible positional ngrams
in a 2.F+1-word size window context. So, what we need
is a way to represent this pattern in an elegant and effi-
cient way.

One way is to use a set of masks that identify all the
valid sequences of words in a given window context.
Thus, each mask is nothing more than a sequence of 1
and 0 (where 1 stands for a word and 0 for a gap) that
represents a specific positional ngram in the window
context. An example is illustrated in Figure 4.

Figure 4: Masks

5 The $ symbol stands for the end of the corpus.

1
A

2
B

3
C

4
A

5
B

6
B

7
C

8
A

9
$

corpus

A B B C A $ $

A B C A B B C A $$

A $ $

B B C A $ $

B C A B B C A $$

B C A $ $

C A B B C A $$

C A $ $
$ 9

8
7
6
5
4
3
2
1

substrings

F = 3
1 2 3 4 5 6 7 8 9 10

corpus A B C D E F G H I J
mask 1 0 0 1 1 1 0

ngram A _ _ D E F _
X X X

…

Computing all the masks is an easy and quick process.
In our implementation, the generation of masks is done
recursively and is negligible in terms of space and time.
In table 3, we give the number of masks h(F) for differ-
ent values of F.

F h(F)
1 4
2 11
3 43
4 171
5 683

Table 3: Number of masks

In order to identify each mask and to prepare the refer-
ence representation of positional ngrams, an array of
masks is finally built as in Figure 5.

Figure 5: Masks Array

From these structures, the virtual representation of any
positional ngram is straightforward. Indeed, any posi-
tional ngram can be identified by a position in the cor-
pus and a given mask. Taking into account that a corpus
is a set of documents, any positional ngram can be rep-
resented by the tuple {{iddoc, posdoc}, idmask} where iddoc
stands for the document id of the corpus, posdoc for a
given position in the document and idmask for a specific
mask. An example is illustrated in Figure 6.

Figure 6: Virtual Representation

As we will see in the following section, this reference
representation will allow us to follow the Virtual Cor-
pus approach introduced by Kit and Wilks (1998) to
compute ngram frequencies.

3 Computing Frequency

With the Virtual Corpus approach, counting continuous
substrings can easily and efficiently be achieved. After
sorting the suffix-array data structure presented in Fig-
ure 3, the count of an ngram consisting of any n words
in the corpus is simply the count of the number of adja-
cent indices that take the n words as prefix. We illus-
trate the Virtual Corpus approach in Figure 6.

2gram Freq 3gram Freq
[A B] 2 [A B B] 1
[B B] 1 [B C A] 2

Figure 6: Virtual Corpus Approach

Counting positional ngrams can be computed exactly in
the same way. The suffix-array structure is sorted using
lexicographic ordering for each mask in the array of
masks. After sorting, the count of a positional ngram in
the corpus is simply the count of adjacent indices that
stand for the same sequence. We illustrate the Virtual
Corpus approach for positional ngrams in Figure 7.

Figure 7: Virtual Corpus for positional ngrams

mask

..
4 1 0 0 1 0 1 1
5 1 0 0 1 1 0 0
6 1 0 0 1 1 0 1
7 1 0 0 1 1 1 0
8 1 0 0 1 1 1 1
9 1 0 1 0 0 0 0

10 1 0 1 0 0 1 0
..

F=3

pos
doc 0 1 2 3 4 5 6 7 8 9 10 11 12

corpus 0 A B C D E F G H I J K L M
...

masks
..

4 1 0 0 1 0 1 1
5 1 0 0 1 1 0 0
6 1 0 0 1 1 0 1
7 1 0 0 1 1 1 0
8 1 0 0 1 1 1 1
9 1 0 1 0 0 0 0

10 1 0 1 0 0 1 0
..

{ {0,2} , 7 } = [C _ _ F G H _]

9
7
3
6
2
5
8
1
4

1 2
B

3
C

4
A

5
B

6
B

7
C

8
A

9
$

corpus

B B C A $ $
A B C A B B C A $$
A $ $
B B C A $ $
B C A B B C A $$
B C A $ $
C A B B C A $$
C A $ $
$

A

A

3
7
5

6
2

1
9
4

8

corpus

1 2

B

3

C

4

A

5

B

6

B

7

C

8

A

9
A A

masks

...
4 1 0 0 1 0 1 1
5 1 0 0 1 1 0 0
6 1 0 0 1 1 0 1
7 1 0 1 1 1 0
8 1 0 0 1 1 1 1
9 1 0 1 0 0 0 0

10 1 0 1 0 0 1 0
...

0

10 11
B 12

C 13
A 14

B 15
B 16

C 17

A

18

$A
A _ A _ _ _ _

A _ B _ _ _ _

A _ B _ _ _ _

A _ C _ _ _ _

B _ A _ _ _ _

B _ A _ _ _ _

B _ C _ _ _ _

C _ A _ _ _ _

…
C _ B _ _ _ _

… _ … _ _ _ _

The efficiency of the counting mainly resides in the use
of an adapted sort algorithm. Kit and Wilks (1998) pro-
pose to use a bucket-radixsort although they acknowl-
edge that the classical quicksort performs faster for
large-vocabulary corpora. Around the same perspective,
Yamamoto and Church (2000) use the Manber and
Myers’s algorithm (1990), an elegant radixsort-based
algorithm that takes at most O(N log N) time and shows
improved results when long repeated substrings are
common in the corpus.

For the specific case of positional ngrams, we have cho-
sen to implement the Multikey Quicksort algorithm
(Bentley and Sedgewick, 1997) that can be seen as a
mixture of the Ternary-Split Quicksort (Bentley and
McIlroy, 1993) and the MSD6 radixsort (Anderson and
Nilsson, 1998).

The algorithm processes as follows: (1) the array of
string is partitioned into three parts based on the first
symbol of each string. In order to process the split a
pivot element is chosen just as in the classical quicksort
giving rise to: one part with elements smaller than the
pivot, one part with elements equal to the pivot and one
part with elements larger than the pivot; (2) the smaller
and the larger parts are recursively processed in exactly
the same manner as the whole array; (3) the equal part is
also sorted recursively but with partitioning starting
from the second symbol of each string; (4) the process
goes on recursively: each time an equal part is being
processed, the considered position in each string is
moved forward by one symbol.

In Figure 8, we propose an illustration of the Multikey
Quicksort taken from the paper (Bentley and Sedge-
wick, 1997). The pivot is chosen using the median
method.

Figure 8: Sorting 12 two-letter words.

6 MSD stands for Most Significant Digit.

Different reasons have lead to use the Multikey Quick-
sort algorithm. First, it performs independently from the
vocabulary size. Second, it shows O(N log N) time
complexity in our specific case. Third, Anderson and
Nilsson (1998) show that it performs better than the
MSD radixsort and proves comparable results to the
newly introduced Forward radixsort.

Counting frequencies is just a preliminary step towards
collocation extraction. The following step attaches an
association measure to each positional ngram that
evaluates the interdependency between words inside a
given sequence. In the positional ngram model, Dias et
al. (1999) propose the Mutual Expectation measure.

4 Computing Mutual Expectation

4.1 Principles

The Mutual Expectation evaluates the degree of rigidity
that links together all the words contained in a posi-
tional ngram (∀n, n ≥ 2) based on the concept of Nor-
malized Expectation and relative frequency.

Normalized Expectation
The basic idea of the Normalized Expectation is to
evaluate the cost, in terms of cohesiveness, of the loss of
one word in a positional ngram. Thus, the Normalized
Expectation measure is defined in Equation 3 where the
function k(.) returns the frequency of any positional
ngram7.

[]()
[]()

[]() 



















+

=

∑
=

n

i

kk
n

k
NE

2

n1n
^
i

^
1i1 11n2n i 2i2 22

n1ni1i1 11

n1ni1i1 11

u p ... u p ... wpup ... up ... up1
u p ... u ...p up

u p ... u ...p up

Equation 3: Normalized Expectation

For that purpose, any positional ngram is defined alge-
braically as a vector of words [p11 u1 p12 u2 … p1n un]
where ui stands for any word in the positional ngram
and p1i represents the distance that separates words u1
and ui

8. Thus, the positional ngram [A _ C D E _ _] would
be rewritten as [0 A +2 C +3 D +4 E] and its Normalized
Expectation would be given by Equation 4.

7 The "^" corresponds to a convention used in Algebra that consists in
writing a "^" on the top of the omitted term of a given succession
indexed from 1 to n.
8 By statement, any pii is equal to zero.

i

b o
s

n t
e

y

a h

e s

t

t

o

n

f r

Unsorted array

Sorted array as at be by he in is it of on or to

as is be by on in at it of he or to

[]() []()
[]()
[]()
[]()
[]() 


















++
+++
+++
+++

+++
=+++

E 2 D 1 C0
E 4 D 3A 0
E 4 C 2A 0
D 3 C 2A 0

4
1

E 4 D 3 C 2A 0E 4 D 3 C 2A 0

k
k
k
k

kNE

which is equivalent to

[]() []()
[]()
[]()
[]()
[]() 


















+
+
+

=

_ _ _ _ E D C
_ _ E D _ _A
_ _ E _ C _A
_ _ _ D C _A

4
1

_ _ E D C _A _ _ E D C _A

k
k
k
k
kNE

Equation 4: Normalized Expectation example

Mutual Expectation
One effective criterion for multiword lexical unit identi-
fication is frequency. From this assumption, Dias et al.
(1999) pose that between two positional ngrams with
the same Normalized Expectation, the most frequent
positional ngram is more likely to be a collocation. So,
the Mutual Expectation of any positional ngram is de-
fined in Equation 5 based on its Normalized Expectation
and its relative frequency.

[]()
[]() []()n1ni1i1 11n1ni1i1 11

n1ni1i1 11

u p ... u ...p upu p ... u ...p up
u p ... u ...p up

NEp
ME

×
=

Equation 5: Mutual Expectation

In order to compute the Mutual Expectation of any posi-
tional ngram, it is necessary to build a data structure that
allows rapid and efficient search over the space of all
positional ngrams. For that purpose, we propose a mul-
tidimensional array structure called Matrix9.

4.2 Matrix
The attentive reader will have noticed that the denomi-
nator of the Normalized Expectation formula is the av-
erage frequency of all the positional (n-1)grams
included in a given positional ngram. These specific
positional ngrams are called positional sub-ngrams of
order n-110. So, in order to compute the Normalized
Expectation and a fortiori the Mutual Expectation, it is
necessary to access efficiently to the sub-ngrams fre-
quencies. This operation is done through the Matrix.

9 The Matrix also speeds up the extraction process that applies the
GenLocalMaxs algorithm (Gaël Dias, 2002). We do not present this
algorithm due to lack of space.
10 In order to ease the reading, we will use the term sub-ngrams to
denote positional sub-ngrams of order n-1.

However, to understand the Matrix itself, we first need
to show how the sub-ngrams of any positional ngram
can be represented.

Representing sub-ngrams
A sub-ngram is obtained by extracting one word at a
time from its related positional ngram as shown in Fig-
ure 9.

Figure 9: Sub-ngrams

By representing a sub-ngram, we mean calculating its
virtual representation that identifies its related substring.
The previous figure shows that representing the first
three sub-ngrams of the positional ngram {{0,0},14} is
straightforward as they all contain the first word of the
window context. The only difficulty is to know the
mask they are associated to. Knowing this, the first three
sub-ngrams would respectively be represented as:
{{0,0},15}, {{0,0},16}, {{0,0},13}.

For the last sub-ngram, the situation is different. The
first word of the window context is omitted. As a con-
sequence, in order to calculate its virtual representation,
we need to know the position of the first word of the
substring as well as its corresponding mask. In this case,
the position in the document of the positional sub-ngram
is simply the position of its related positional ngram
plus the distance that separates the first word of the
window context from the first word of the substring. We
call delta this distance. The obvious representation of
the fourth sub-ngram is then {{0,2},18} where the position
is calculated as 0+(delta=2)=2.

In order to represent the sub-ngrams of any positional
ngram, all we need is to keep track of the masks related

0 1 2 3 4 5 6 7 8 9 corpus

A B C D E F G H I J ...

 ngram {{0,0},14} A _ C D E _
 sub-ngram 1 A _ C D _ _ _
sub-ngram 2 A _ C _ E _ _
sub-ngram 3 A _ _ D E _ _

delta=2

_

13 1 0 0 1 1 0 0
14 1 0 1 1 1 0 0

sub-ngram 4 _ _ C D E _ _

masks

doc
pos ...

...
0

1 0 1 1 0 0 0
1 0 1 0 1 0 0
1 0 1 0 0 0 0
1 1 1 0 0 0 0

15

16

17

18

to the mask of the positional ngram and the respective
deltas. Thus, it is clear that for each mask, there exists a
set of pairs {idmask, delta} that allows identifying all the
sub-ngrams of any given positional ngram. Each pair is
called a submask and is associated to its upper mask11 as
illustrated in Figure 10.

Figure 10: Submasks

Now that all necessary virtual representations are well-
established, in order to calculate the Mutual Expecta-
tion, we need to build a structure that allows efficiently
accessing any positional ngram frequency. This is the
objective of the Matrix, a 2-dimension array structure.

2-dimension Array Structure
Searching for specific positional ngrams in a huge sam-
ple space can be overwhelming. To overcome this com-
putation problem, two solutions are possible: (1) keep
the suffix array-based data structure and design opti-
mized search algorithms or (2) design a new data struc-
ture to ease the searching process. We chose the second
solution as our complete system heavily depends on
searching through the entire space of positional
ngrams12 and, as a consequence, we hardly believe that
improved results may be reached following the second
solution.

This new structure is a 2-dimension array where lines
stand for the masks ids and the columns for the posi-
tions in the corpus. Thus, each cell of the 2-dimension
array represents a given positional ngram as shown in
Figure 11. This structure is called the Matrix.

The frequency of each positional ngram can easily be
represented by all its positions in the corpus. Indeed, a
given positional ngram is a substring that can appear in
different positions of the corpus being the count of these
positions its frequency. From the previous suffix array-

11 The upper mask is the mask from which the submasks are calcu-
lated. While upper masks represent positional ngrams, submasks
represent sub-ngrams.
12 In fact, this choice mainly has to do with the extraction process and
the application of the GenLocalMaxs algorithm.

based data structure, calculating all these positions is
straightforward.

Calculating the Mutual Expectation is also straightfor-
ward and fast as accessing to any positional ngram can
be done in O(1) time complexity. We will illustrate this
reality in the next section.

Figure 11: The Matrix

The illustration of our architecture is now complete. We
now need to test our assumptions. For that purpose, we
present results of our implementation over the
CETEMPúblico corpus.

5 Experiments

We have conducted a number of experiments of our
C++ implementation on the CETEMPúblico Portuguese
corpus to derive positional ngram statistics (Frequency
and Mutual Expectation). The experiments have been
realized on an Intel Pentium 900 MHz PC with 390MB
of RAM. From the original corpus, we have randomly
defined 5 different size sub-corpora that we present in
Table 4.

corpus 01 02 03 04 05
Size in

Mb 0.7 3.1 5.3 6.7 8.8

of
words 114.373 506.259 864.790 1.092.723 1.435.930

of
ngrams13 4.917.781 21.768.879 37.185.712 46.986.831 61.744.732

Table 4: Sub-corpora

For each sub-corpus we have calculated the execution
time of different stages of the process: (1) the tokeniza-
tion that transforms the corpus into a set of integers; (2)
the preparation of the mask structure and the construc-
tion of the suffix-array data structure; (3) the sorting of
the suffix-array data structure and the creation of the
Matrix; (4) the calculation of the ME. The results are
given in Table 5.

13 The window context of the experiment is F=3.

2.F+1
mask
mask

mask

submasks

idmask delta

ME

mask

Pos

N

...

...

...

...

...
...

pos

M’

corpus 01 02 03 04 05
Tokeniz. 0:00:01 0:00:04 0:00:08 0:00:09 0:00:17

Masks/Suffix 0:00:04 0:00:14 0:00:25 0:00:31 0:00:40
Matrix 0:00:35 0:03:23 0:06:16 0:08:11 0:11:12

ME 0:00:00 0:00:03 0:00:06 0:00:08 0:00:10
total 0:00:40 0:03:44 0:06:55 0:08:59 0:12:19

Table 5: Execution Time in (hh:mm:ss)

The results clearly show that the construction of the
Matrix and the sort operation over the suffix-array data
structure are the most time consuming procedures. On
the contrary, the computation of the Mutual Expectation
is quick due to the direct access to sub-ngrams frequen-
cies enabled by the Matrix. In order to understand the
evolution of the results, we present, in Figure 12, a
graphical representation of the results.

Pentium III, 900 MHz, 390 MB

0:00:00

0:01:26

0:02:53

0:04:19

0:05:46

0:07:12

0:08:38

0:10:05

0:11:31

0:12:58

114373 506259 864790 1092723 1435930

of words in the corpus

Ex
ec

ut
io

n
Ti

m
e

(h
h:

m
m

:s
s)

Figure 12: Evolution of execution time

The graphical representation illustrates a linear time
complexity. In fact, Alexandre Gil (2002) has proved
that, mainly due to the implementation of the Multikey
Quicksort algorithm, our implementation evidences a
time complexity of O(h(F) N log N) where N is the size
of the corpus and h(F) a function of the window con-
text.

6 Conclusion

In this paper, we have described an implementation to
compute positional ngram statistics based on masks,
suffix array-based data structure and multidimensional
arrays. Our C++ solution shows that it takes 8.59 min-
utes to compute both frequency and Mutual Expectation
for a 1.092.723-word corpus on an Intel Pentium III 900
MHz for a seven-word size window context. In fact, our
architecture evidences O(h(F) N log N) time complex-
ity. To some extent, this work proposes a response to
the conclusion of (Kit and Wilks, 1998) that claims that
“[…] a utility for extracting discontinuous co-
occurrences of corpus tokens, of any distance from each
other, can be implemented based on this program [The
Virtual Corpus Approach]”.

References
Alexandre Gil. 2002. Extracção eficiente de padrões textuais

utilizando algoritmos e estruturas de dados avançadas.
Master Thesis, New University of Lisbon, Portugal.

Arne Anderson and Stefan Nilsson. 1998. Implementing
Radixsort. ACM Journal of Experimental Algorithmics,
Vol. 3. citeseer.nj.nec.com/79696.html

Chunyu Kit and Yorick Wilks. 1998. The Virtual Approach to
Deriving Ngram Statistics from Large Scale Corpora. In-
ternational Conference on Chinese Information Processing
Conference, Beijing, China, 223-229. cite-
seer.nj.nec.com/kit98virtual.html.

Gaël Dias, Sylvie Guilloré, and José Lopes. 1999. Language
Independent Automatic Acquisition of Rigid Multiword
Units from Unrestricted Text corpora. Traitement Automa-
tique des Langues Naturelles, Institut d’Etudes Scientifi-
ques, Cargèse, France, 333-339.
www.di.ubi.pt/~ddg/publications/taln1999.ps.gz

Gaël Dias 2002. Extraction Automatique d’Associations Lexi-
cales à partir de Corpora. PhD Thesis. New University of
Lisbon (Portugal) and University of Orléans (France).
www.di.ubi.pt/~ddg/publications/thesis.pdf.gz

John Sinclair. 1974. English Lexical Collocations: A study in
computational linguistics. Singapore, reprinted as chapter 2
of Foley, J. A. (ed). 1996, John Sinclair on Lexis and Lexi-
cography, Uni Press.

Jon Bentley and Robert Sedgewick. 1997. Fast Algorithms for
Sorting and Searching Strings. 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orléans. cite-
seer.nj.nec.com/bentley97fast.html.

Jon Bentley and Douglas McIlroy. 1993. Engineering a sort
function. Software - Practice and Experience, 23(11):1249-
1265.

Mikio Yamamoto and Kenneth Church. 2000. Using Suffix
Arrays to Compute Term Frequency and Document Fre-
quency for All Substrings in a corpus. Association for
Computational Linguistics, 27(1):1-30.
www.research.att.com/~kwc/CL_suffix_array.pdf

Sabine Deligne and Frédéric Bimbot. 1995. Language Model-
ling by Variable Length Sequences: Theoretical Formula-
tion and Evaluation of Multigrams. ICASSP-95. Detroit,
Michigan, 1:169-172. cite-
seer.nj.nec.com/deligne95language.html

T. Kuhn, H. Nieman, E.G. Schukat-Talamazzini. 1994. Er-
godic Hidden Markov Models and Polygrams for Language
Modelling. ICASSP-94, 1:357-360. cite-
seer.nj.nec.com/kuhn94ergodic.html

Udi Manber and Gene Myers. 1990. Suffix-arrays: A new
method for on-line string searches. First Annual ACM-
SIAM Symposium on Discrete Algorithms. 319-327.
www.cs.arizona.edu/people/udi/suffix.ps

