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Abstract

Translingual equivalence refers to the relationship
between expressions of the same meaning from different
languages. Identifying translingual equivalence of
named entities (NE) can significantly contribute to
multilingual natural language processing, such as
crosslingual  information  retrieval,  crosslingual
information  extraction and  statistical ~machine
translation. In this paper we present an integrated
approach to extract NE translingual equivalence from a
parallel Chinese-English corpus.

Starting from a bilingual corpus where NEs are
automatically tagged for each language, NE pairs are
aligned in order to minimize the overall multi-feature
alignment cost.  An NE transliteration model is
presented and iteratively trained using named entity
pairs extracted from a bilingual dictionary. The
transliteration cost, combined with the named entity
tagging cost and word-based translation cost, constitute
the multi-feature alignment cost. These features are
derived from several information sources using
unsupervised and partly supervised methods. A greedy
search algorithm is applied to minimize the alignment
cost. Experiments show that the proposed approach
extracts NE translingual equivalence with 81% F-score
and improves the translation score from 7.68 to 7.74.

1. Introduction

Translingual equivalence refers to the relationship
between expressions of the same meaning from different
languages. Identifying translingual equivalence of
named entities (NE), including proper names, temporal
and numerical expressions, is very important to
multilingual language processing. This is because named
entities, especially names of persons, locations and
organizations, convey essential meaning in human
languages [1][2]. Some approaches for named entity

translation, like bilingual dictionary lookup, word/sub-
word translation or transliteration, have been explored in
the past few years [3][4][5][6][7]. However, dictionary
lookup is particularly difficult for translating uncommon
NEs because of its limited coverage, and simply
applying word-based or character-based transformation
without considering their context information, in most
cases, cannot achieve satisfactory performance either.
For instance, “JX B% J¥/Fenglingdu”, a Chinese location
name, cannot be found in an LDC dictionary with 50k
entries, and it is also inappropriate to adopt the
character-by-character translation, “wind tomb cross”.
Rule-based translation is suitable for temporal and
numerical NEs, because of their limited vocabulary and
regular usage, but does not generalize well for proper
name translation, especially the translation of foreign
location or person names.

One possible solution is to automatically extract
named entity translingual equivalence from a parallel
corpus, where named entities have been manually or
automatically annotated. For example, in the following
sentence pair where NEs are automatically tagged,

PER{ /W i LOCLW B} 25X Ji7 28 AT LOC{TER).

PER{Li Peng} back in LOC{Beijing} after LOC{Attending

Asian} LOC{Europe} Meeting .
correct NE alignment requires models for both phonetic
transliteration (“ & /5 vs. “Li Peng”) and semantic
translation (“ W/ M 24X vs. "Asian Europe Meeting”).
Additionally, tagging errors should also be handled.
Therefore more sophisticated models that are able to
incorporate multiple informative features are necessary.

In this paper we propose an integrated approach to
the automatic extraction of named entity translation
equivalence from a parallel Chinese/English corpus.
Initially, named entities are automatically tagged for
each language, after that NE pairs are aligned based on a
multi-feature alignment cost minimization strategy. We
present a named entity transliteration model and
iteratively extract named entities from a bilingual
dictionary to train the model. The NE transliteration
cost, combined with the NE tagging cost and word-based



translation cost, constitute the multi-feature alignment
cost. These features are derived from several
information sources using unsupervised and partly
supervised methods. A greedy search algorithm is
applied to minimize the total alignment cost for each
sentence pair. Experiments show that the proposed
approach can extract NE translingual equivalence with
81% F-score and improved the translation score from
7.68 to 7.74, which is statistically significant.

The structure of this paper is as follows: in section 2
we introduce the NE transliteration model, in section 3
we propose the multi-feature named entity alignment
framework, which incorporates transliteration cost,
word-based translation cost and tagging cost. In section
4 we present the experiments and analysis of the results.
Conclusions will be given in the last section.

2. Named Entity Transliteration Model

Transliteration is the process of translating certain
words (e.g., person’s name, location’s name) from the
source language into their phonetic approximations in
the target language. It is an essential component for NE
translation. NEs are usually translated by combining the
phonetic transliteration of some units and semantic
translations of other units, where units can be characters,
sub-words or words. Previous work on transliteration
([3],[6]) explicitly resorts to phoneme similarities, where
a pronunciation lexicon is often needed. Here we try to
take the transliteration on the surface level using DP-
based string matching.

Directly transliterating Chinese characters into
English letters needs a large amount of bilingual NE
pairs for training, considering the parameter estimation
for over 6,000 frequent Chinese characters. However,
intermediate transliteration through pinyin syllables
(pinyin is the romanized representation of Chinese
characters) is more accurate and easier, because the
much smaller alphabet size of pinyin alleviates the data
sparseness. Furthermore, pinyin and English letters share
a quite similar alphabet that enables the Dynamic
Programming (DP)-based string matching.

Mapping Chinese characters to their pinyin syllables
(e.g., “BEH#ET” to “sa la re wo”) can be greatly
facilitated by a character-pinyin mapping table, which is
easy to obtain. However, mapping pinyin syllables to
English string (e.g., “sa la re wo” to “Sarajevo”) needs
more sophisticated models, which usually require a
bilingual NE list for training. To acquire an NE list, we
propose an unsupervised learning approach in which NE
pairs are automatically extracted from a large bilingual
dictionary. DP-based string matching is iteratively
applied in order to estimate the transliteration
probability from pinyin to English letter sequences.

2.1 Transliteration Model Definition

To extract NE pairs from a given bilingual
dictionary D, we want to find Chinese-English NE pair
(f,.*.e,*) with highest joint probability,

ne >

(-f;ic *’ enc *) = arg max (f.e)cD Pne (f’ e)
= arg max(f,e)CD Pne (f)Pne (e | f)’

where fis the Chinese character sequence and e is the
English word string, P _(f) is the probability of
generating the character sequence of the Chinese NE,
and P (e| f)is the probability of transliterating the

Chinese NE into an English NE.
Suppose f has m characters. For i=12,.m ,

(M

character f, is transliterated into an English letter string
e, through the pinyin syllable y, . These strings are non-

overlapping. The generation process can be depicted as
f,€f—y, —>e €e. Here the subscript i indicates

that the sub-string is transliterated from f,, and it is not

necessarily the i th word/letter in e .

Let’s assume each Chinese character is
independently transliterated into an English letter string
through its pinyin syllable. Considering that mappings
from Chinese characters to their pinyin syllables are
mostly deterministic, i.e., p(y, | f,) =1, then

Pl N=T]r ! H=]]rt 1y @
i=1 i=1

Suppose y, is composed of m, letters, for

Jj=12,..m,, letter Y, is aligned to letter €ixs where

the alignment is represented as k = a, . With the
independence assumption,
plely)=]Trlesly,) (3)
Jj=1
Thus P, (e| f) can be computed as

Pl N=TTpw I DL T pes Iy @

This formula represents two levels of transliteration,
Chinese character to pinyin syllable and pinyin syllable
to English letter string.

P (f) can be computed directly from character

language model for Chinese NEs,

P = PN Lol FOL L P 1 i f) )



2.2 DP-based Alignment and Iterative Training

Following the derivation of the transliteration model,
the next steps are how to identify letter-to-letter
alignment and how to train the transliteration model and
language model.

Dynamic programming (DP) has been successfully
applied in searching for the “optimal” alignment path
between two strings, where “optimal” means the
minimum accumulated editing cost between aligned
word/letter pairs (the cost is usually defined as 0 if they
are the same or 1 if there exists insertion, deletion or
substitution errors).

Since pinyin and English share a similar alphabet, the
DP-based string alignment is also applicable. However,
the original binary cost function is not appropriate for
pronunciation-based transliteration. Now the phonetic
similarity is more important than the orthographic
similarity [3], therefore alignment cost between letters
with similar pronunciations (e.g., “c” and “k” or “p” and
“b”") should be smaller.

One alternative is to take the minus logarithm of the
letter transliteration probability as the matching cost,
i.e., the cost of aligning letter ¢, , from English and letter

Vi, from pinyin is defined as,

C(ei,kayi,j):_logp(ei,k |yi,j)' (6)

This cost function is defined directly from
transliteration probabilities. It allows both self-
transliteration and the transliteration from letters with
similar pronunciations. Thus it is more general and
accurate. Further more, the final accumulative alignment
cost between pinyin syllables and English words also
corresponds to the word/character-level transliteration
cost.

To calculate the alignment the transliteration model
parameters have to be known, which in turn are
computed based on the relevant alignment frequency,
ie.,

C(e,,kay,,j)

ple, |y, )= ek, @)
TN Ce )

where C(e, .y, ) is the frequency that e, and y, ;is

aligned. To resolve this inter-dependence between
models, the original binary cost function is first applied
to the DP-based string alignment. A list of bilingual NE
pairs is extracted from the dictionary according to their
alignment cost. Based on this initial imperfect name list,
the letter transliteration model and character language
model are trained, and employed for the NE joint
probability estimation (see formula (1), (4) and (5)). In
the following iterations, the alignment cost function as
well as the transliteration probability is updated, NE

pairs are selected according to their joint probabilities,
and translation and language models are re-trained using
the cleaner NE list. Experiment results in section 4 show
that an unsupervised learning approach improves the
accuracy of extracted NE list by refining both translation
and language models iteratively.

3. Multi-Feature Named Entity Alignment
Model

To align the NE translingual equivalence within a
sentence pair, we adopt the NE alignment model which
incorporates several features for cost estimation and
minimizes the total cost for the given pair. These
features include NE transliteration cost, word-based NE
translation cost and NE tagging cost, and will be
discussed in more details in the following sections.

3.1. Named Entity Transliteration Cost

The translation of different NE equivalences is highly
type-dependent. While most PERSON and LOCATION
NE equivalences can be transformed primarily through
transliteration, some  LOCATION and  most
ORGANIZATION NE equivalences are transformed by
combining both semantic translation and phonetic
transliteration. For example, translating a location name
“pEHrHET H13%” needs both phonetic transliteration of
the specific city name (“B“$H7# 55 to “Sarajevo”) and
semantic translation of the general facility (“#l3%” to
“airport”).

To deal with this problem, we adopted a translation-
based transliteration approach, similar to the candidate
generation approach proposed by [4],. For each word in
the Chinese NE candidate, its transliteration could be
either pinyin or its semantic translation(s) from the
bilingual dictionary, and can be aligned to any word in
the English NE candidate. By way of a greedy search
algorithm (detailed discussion in section 3.4), each
English word is aligned to a unique Chinese word such
that their transliteration cost is the minimum among the
unaligned word pairs. The total NE transliteration cost is
the sum of the word-to-word transliteration costs along
the alignment path.

Let A*denotes the “optimal” alignment path, and let

Jf;-¢,be the ith word in Chinese NE f,.and the j th

word in English NE ¢, , , respectively. Then

Ctranslit (fne > ene) = Ctranslit ( ne >€ne | A*)

= Z Ctranslit (fz b ej) (8)
(1.))ed*

= Zlargmin, ¢; ,~log Ple; |y}
i,j)eA*



where ), is one element in f,’s transliteration candidate
setE .

This approach allows the alignment between any
word pairs, so it is not sensitive to the word orders in NE
pairs, and therefore can handle flexible combination of
translation and transliteration. It is also robust to
inflectional forms (e.g., the plural form of nouns) in
English NEs.

3.2. Named Entity Translation Cost

Word translation probabilities can be estimated from
a parallel corpus using various well-known alignment

models, such as the IBM-model and HMM-model [8][9].

They can be further used to calculate the probability that
a Chinese NE is the translation of an English NE on the
word level.

Assume the English NE e, has L English words,

ee,,.e, , and the Chinese NE f, ~has J Chinese

words, f f,,...f, . The translation probability of the

named entities pair is computed using the IBM model-1,
as:

J L

P le) = [ I 00, e) ©)
L J=1 I=1

This alignment model is asymmetric, as one source

word can only be aligned to one target word, while one

target word can be aligned to multiple source words. To

make it symmetric, we estimate both P(f,|e,,)and

P(e,, | f,.) and define the NE translation cost as:

Ctrans (ene > f;w )

= Corans@ne | fre) + Crrane (e | €4e) (10)
=-A,[l0g P, (e, | fre) 108 i (fre [ €40)];

That is, the translation cost of a given NE pair (e, , f,.)
is composed of the sum of the bi-direction translation
cost, and weighted by position match weight A b

ﬂ,p models the “distance” between the relative
positions of aligned NEs in each sentence. It is
characterized by a normal distribution,

_ 2
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where p, . the relative position of a Chinese NE

A4,=

covering words from w,to W I is defined as
py=(i+))/2J. (12)
The relative position of an English NE, p, , is

defined similarly. The variance O is empirically chosen

according to the homogeneity of word orders between
two languages.

3.3. Named Entity Tagging Cost

An NE tagging software, IdentiFinder™,
automatically tags NEs for both English and Chinese.
When evaluated on the bilingual corpus, the tagging
accuracy for ENAMEX type (including PERSON,
LOCATION and ORGANIZATION) NEs is about 80%.
Those tagging errors, including missing, spurious (false
positive) and partial tagging, inevitably introduce errors
into NE alignment. It would be helpful to know the
confidence or the probability that a tagged word
sequence is a real NE. Unfortunately, the outsourced
tagger doesn’t output such information. To get this
information, an HMM-based NE tagger is trained from
the imperfect training corpus, i.e., the automatically
tagged bilingual corpus containing incorrect NEs.

Automatic named entity tagging based on HMM has
achieved satisfactory performance [2]. In this
framework, each type of NEs as well as the remaining
type, NOT A NAME, is represented by a unique
internal state in the HMM. An NE-tagged sentence is
generated according to the following assumption:

1. The current NE type is selected according to the
previous word and its NE type, with type
transitional probability P. (N |w ,N |);

2. The first word in a NE is generated according to
the current and previous NE types, with first word
generation probability P, (w, [ N,N_);

3. Each subsequent word in this NE is generated from
a type-dependent bigram model, with probability

Pb (W | w—l B N) .
In the above notation, N and N_, represent the

current and previous NE type respectively, w,
represents the first word in the current NE type, w
represents the current word, and w_, represents the
previous word.

Given a sequence of words W' = (w,,w,.,...,w,) and

its corresponding NE type sequence

N = (N,,N,,...,N,), the probability of generating the

words from the NE type sequence is defined as
P(W|N):HP(WI’N/|W/—1’N/—l) (13)
i-1

where  p(w,,N, |w, ,N, ) denotes the transitional

-1

probability from 1w, to w, , given that the

1
corresponding NE types are N,and N, . When the
transition is within the same NE, i.e., N, = N, this is



just the type-dependent bigram model P, (w; | w,;, N,).
When the transition is between different NEs, this
becomes the product of type transition probability
P.(N,|w,,,N, )and first word generation probability

Pf(wi | NiﬂNi—l)'
For an aligned NE pair (e, f, ). their NE types

should be the same. So the NE tagging cost is defined as
Ciug(€yes f1)=miny[—log P(e,, | N)

—log P(f,. [N)]

This criteria chooses the best NE type N from
PERSON, LOCATION and ORGANIZATION that
generates the Chinese and English NE word sequences
with the highest probabilities. During parameter
estimation, to reduce negative effect from erroneous
initial tagging, the corpus is split into 2 parts, and the
model is trained from one half when applied on the other
half.

(14)

3.4 Multi-Feature Cost Minimization

Provided with different alignment features, including
the transliteration cost C the translation cost

C, s and the tagging costC,,

translit >

the overall alignment

trans tag >
cost for the NE pair (e,,f,) is their linear

combination:

C(ene ° fne) = /11 Ctranslit(ene b fne ) + /12 Ctrans (ene ° fne )
+A’3Ctag(ene’fne) (15)

where the three A ’s are either empirically chosen to
discriminate correct and incorrect NE alignments with
best accuracy, or selected according to the
quality/confidence of each feature model. In the current
implementation, these parameters are selected to map
the three weighted costs into the same numerical range

while putting a little less confidence on C g (since it is

trained from imperfect training data).

For any bilingual sentence pair containing multiple
NEs, the desirable alignment scheme should minimize
the sum of the overall alignment cost. To find this
optimal alignment, an algorithm similar to the
competitive linking algorithm [10] is adopted:

1. Initialize NE-Aligned to be an empty set and NE-
Pairs as the list of all possible combinations of a
source language NE and a target language NE in the
given sentence pair;

2. Sort NE-Pairs in ascending order according to their
overall alignment cost defined in Formula (15);

3. Move the topmost pair (e, , f,, ), i.e. the pair with

the smallest alignment cost from NE-Pairs to NE-
Aligned,

4. Remove all entries containing either e or f from
ne he

NE-Pairs, with the assumption that once a Chinese

NE is aligned with an English NE, it can’t be aligned

with any other English NE. The same is true for

English NEs;

5. Repeat from Step 3 until NE-Pairs is empty or the
top alignment cost is above a certain threshold. The
resultant NE-Aligned leads to the “optimal”
alignment.

Note that this algorithm is based on a greedy search
approximation, i.e., it only chooses the local optimal
alignment—the currently minimum cost alignment pair
among unaligned pairs—at each step, it cannot
guarantee the global optimality. But empirically it often
finds the alignment with minimum or close to minimum
sentence alignment cost.

3.5 Open-End NE Alignment

When applying extracted NE equivalences to the
statistical machine translation task (see section 4.3), the
translation score is improved. Detailed analysis shows
that initial tagging errors still cause many problems for
NE translation. Some NEs in the test data are not
translated correctly because they are untagged, partially
tagged or tagged with other words as one NE in the
training corpus. For example,

04 PERSON{ T-} fit b ORGANIZATION{ #E L W 7%
23 K PERSON; 7525 19 12 H4E Bl 2 W, LocaTioNy
11/ 5 AR
should be tagged as

L PERSON{ T [j§ #5}) LOCATION{#E[L V) =555
K peRsONy 75 2% ) 12 H A M & W
ORGANIZATION{ 17 [%] [l§ % (7 4}

To recover from those partial tagging errors, an open-
end NE alignment window is utilized. The window is
initially set to fit the originally tagged NEs, afterwards
both ends of the window are allowed to expand and
shrink within a given range. As a result, optimal aligned
NEs are searched from all word sequences within the
resultant variable-length sliding window.

4. Experiment Result and Discussion

4.1 Named Entity Transliteration

Three sets of experiments are conducted. The first
one is to evaluate the proposed iterative training for the
NE transliteration model by examining the accuracy of
the extracted NE lists. The second is to measure the
precision/recall of NE pair extracted from a small data
set, and the third is to assess the increased translation
quality by adding the NE bilingual dictionary. The



bilingual dictionary used to train the transliteration
model is the Chinese-English dictionary version 3.1
released by the Linguistic Data Consortium (LDC). This
dictionary contains 81,945 entries for 54,131 unique
Chinese words.

Initially we extracted 3,000 NE pairs with minimum
string matching cost under a 0/1 cost function. From this
small name list, the letter transliteration model and
Chinese character language model are trained and
integrated into the statistical transliteration framework.
In the following extraction iteration, additional 500
named entity pairs with higher NE joint probabilities are
added and used to update the transliteration model and
the language model. This process continues until adding
more NE pairs doesn’t improve the extraction accuracy
any more, which usually happens at the 6™ iteration
where a total of 5,500~6,000 NE entries are included.

Because NE pairs are sorted descendingly according to
their joint probabilities, entries at the top of the sorted
list are more likely to be NE pairs than those at the
bottom. To estimate the overall accuracy for all
extracted NEs, we evaluate the “local” accuracy of
evenly distributed segments in the sorted NE pair list. In
other word we count the number of correct NE pairs for
each segment located at the 0-100", 900™-1000™
1900™-2000™ NE pair, etc.. The precision evaluated on
these sub-samples is used to estimate the overall

accuracy.
Figure 1 shows the precision curve after selected
iterations at different evaluation segments.  “0/1

baseline” represents the result when using only DP string
matching with the 0/1 cost function. “Itex” means the
result after the xth iteration. One can see that for well-
trained models (after the 4™ iteration) the accuracy of the
evaluation segment at 5000™ just slightly degrades
compared with those top segments. The precisions of all
the segments are consistently increased after each
iteration. One can see that the most significant accuracy
degradation happens at the 6000™ segment. This
indicates that most NE pairs in the dictionary have
already been included, and adding more non-NE entries
will “pollute” the transliteration model, thus the
performance can become even worse.

4.2 Extracting Named Entity Translingual
Equivalence

The bilingual corpus contains sentence-aligned
newswire data from the Xinhua News Agency and the
Foreign Broadcast Information Service (FBIS). Some
bilingual sentence pairs are automatically extracted and
aligned, therefore there exist errors in both alignment
and translation. The Chinese sentences are pre-
segmented using a maximum-matching segmenter with a

44K wordlist. Totally there are 152,391 sentence pairs,
about 6 million English words and 5.5 million Chinese
words. Named entities in the bilingual corpus are first
annotated using BBN’s IdentiFinder™, then aligned
according to the multi-feature cost minimization
framework.

For the purpose of evaluation, a small set of test data
is randomly selected, which contains 100 sentence pairs,
4950 Chinese words and 5646 English words. The
number of named entity pairs which can be aligned is
357. These named entities are manually annotated and
aligned, and used as the gold standard to evaluate the
automatically extracted and aligned NE pairs.

Table 1 shows the precision/recall/F-score using
different feature sets for cost minimization. “ C, 7~

trans
means using word-level translation cost only, “+C,”

2

means adding NE tagging cost, “+ C,_ .~ means

adding NE transliteration cost into the previous feature
set. It can be seen that by adding more information, both
precision and recall are improved. Tagging cost and
transliteration cost individually lead to about 3%
increase in F-score and the overall improvement is about
6.8%. The last row shows the NE alignment accuracy on
manually annotated test data, where all tagging errors
have been corrected. The significant improvement in F-
score (81.3% to 93.7%) indicates that initial tagging
errors remain the major cause of alignment errors.

Figure 2 demonstrates some examples of extracted
NE translation equivalences from the given sentence
pairs, when applying various models. In each example
NE pairs with the same number label (e.g., C1 and E1)
are considered correct alignment. One can see from
example 1 that the proposed alignment strategy can
correctly align most NE pairs, even with NE translation
cost only. Those incorrect alignments, marked by (*),
are caused either by missed NE tagging or non-exact
translations. When adding tagging cost, some missed
NEs could be recovered and correctly aligned (See
example 2). Example 3 shows that the transliteration
model works best for NEs containing people’s name.

4.3 Improving Translation Quality with Named
Entity Dictionary

A NE translation dictionary can be constructed from
extracted NE equivalences. In the dictionary one
Chinese NE may have multiple English translations with
different probabilities. ~These probabilities are
proportional to the frequencies of the NE alignments.
This dictionary is integrated into a statistical machine
translation (SMT) engine and evaluated on Chinese-
English newswire translation.



The SMT system is based on weighted finite state
transducers [11], where each transducer is a collection of
bilingual equivalence for words, phrases or NEs. In our
experiment, three transducers are integrated into the
translation engine,

e A word level transducer, which is essentially from
the LDC Chinese-English dictionaries (see Section
4.1). Since many entries in this dictionary are
manually compiled, this dictionary has very high
accuracy. It is called “LDC” in table 2.

e A phrase-to-phrase transducers where the phrase
pairs are extracted from the HMM Viterbi
alignment [9] for each sentence pair in the bilingual
corpus. It is called “HMM?” in table 2.

e A NE transducer from the NE translation dictionary,
the “NE” in table 2.

The evaluation data is the same newswire data used in
TIDES 2001 dry-run evaluation. It contains 993
sentences, 24,821 words. From this data set the
IdentiFinder™ extracted 2,379 NEs with totally 3,597
words. Evaluation metrics are fully automatic, including
Bleu and NISTS scores. Table 2 shows the improvement
on translation score after adding the NE transducer to
various transducer settings. From the table we can see
that the NE transducer gives statistically significant
improvement in all the settings, although the amount of
improvement varies from 0.06 to 0.45. This is because
there are some overlaps between the NE transducer and
the HMM phrase transducer.

5. Conclusion

We proposed an approach to the automatic extraction
of named entity translation equivalence from a parallel
Chinese/English corpus based on multi-feature cost
minimization. We presented a named entity
transliteration model and iteratively extracted named
entities from a bilingual dictionary to train the model.
The NE transliteration cost, the NE tagging cost and
word-based translation cost constitute the multi-feature
alignment cost. These features are derived from several
information sources using unsupervised and partly
supervised methods.  Experiments showed that the
proposed approach can extract NE translingual
equivalence with 81% in terms of F-score and
significantly improved the translation score from 7.68 to
7.74.
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Table 1. Precision/Recall of Extracted NE
Translingual Equivalence

Precision Recall F-score
C,mm_ 66.1% 85.5% 74.5%
+C,ag 69.7% 87.7% 77.7%
+C,mm,,,, 73.8% 90.5% 81.3%
Manual 91.3% 96.1% 93.7%
Annotation
Table 2. Translation Quality Improvement by
Adding NE Dictionaries

Bleu NISTS t-test

Score Score statistics
LDC 0.131 6.193 t=8.516
LDC+NE 0.151 6.644  p=0.000
LDC+HMM 0.210 7.677 t=1.963
LDC+HMM+NE 0.213 7.744  p=0.026
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Figure 1. Precision Curve of Evaluation Segments
Examplel: X} LOC_CL{## [} ok i3, B2 LOC_C2{ W} Ti$H & LOC_C3{H A}, LOC_C4{*"[[} ,LOC_C5{W [}, LOC_C6{
). LOC_C7T{ris} LM LOC C8{A M) 45 M FiX | Frp JU L ) LOC_CO{ARMY MK [ 1 1 B 5 R
It noted that LOC E3{Japan} , LOC E4{China} , LOC E5{South Korea} , LOC E6a{China}'s LOC E6b{Taiwan} ,
LOC_E7{Hong Kong} and member states of the ORG_E8a{Association of Southeast Asian Nations} ( ORG_E8b{ASEAN} ) are
all major markets for German products , adding that German exports to ORG E9{ASEAN} countries increased faster than in
other markets . In 1994 . for example , German exports to LOC_El10{Malaysia} increased by 41 percent and to
LOC _El1{Thailand} by 33.5 percent.
Crome LOC C7{FHH#} - LOC _E7{Hong Kong} LOC C5{i#EYy - LOC_E5{South Korea}
LOC_Co6{&¥E} - LOC_E6b{Taiwan} LOC C3{HA} e LOC_E3{Japan}
LOC_C4{PH} - LOC_E4{China} LOC_C9{HRM} - ORG_E9{ASEAN}
LOC_C8{#ZM} - ORG_E8a{Association of Southeast Asian Nations}
(*)LOC_C2{ W} - LOC_E6a{China} (*)LOC_CI{f&[H} - LOC_E11{Thailand}
Example2: ORG_CI{"]" 4 G s /NALY 3BT Kk BT 445 11 A 10 H 4 13 H 78 LOC_C2{dbat} 24T «
the 15th plenary session of the sino-portuguese joint liaison group is scheduled to be held between november 10 and 13 this year
in LOC_E2{beijing}.
Corome LOC C2{dbxty - LOC_E2{beijing}
vans + Crag LOC C2¢dbsty  ---- LOC_E2{beijing}
ORG_CL{"" 4] Wit e /N Y ——--- ORG_{sino-portuguese joint liaison group}
Example3: ORG CI{MZis} &5 N PER C2{%} /5 A Ak £ Ml wiAi
ORG_El{foreign ministry} spokeswoman PER_E2{zhang qiyue} announced here today
Coums + Crag ORG_CL{4MAg#y - ORG_El {foreign ministry} PER C2{#} - PER_E2{zhang qiyue}
Clrans + Clag ORG_CL{4ME s} -=mv ORG _El{foreign ministry} ~ PER_C2{Z /5§ H} - PER_E2{zhang qiyuc}
+C
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Figure 2. Selected Parallel Sentences and extracted NE equivalences from Different Feature Combination



