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Abstract

We explore the use of morphological anal-
ysis as preprocessing for protein name
tagging. Our method finds protein names
by chunking based on amorpheme, the
smallest unit determined by the morpho-
logical analysis. This helps to recognize
the exact boundaries of protein names.
Moreover, our morphological analyzer
can deal with compounds. This offers
a simple way to adapt name descriptions
from biomedical resources for language
processing. Using GENIA corpus 3.01,
our method attains f-score of 70 points for
protein molecule names, and 75 points for
protein names including molecules, fami-
lies and domains.

1 Introduction

This paper describes a protein name tagging method
which is a fundamental precursor to information ex-
traction of protein-protein interactions (PPIs) from
MEDLINE abstracts. Previous work in bio-entity
(including protein) recognition can be categorized
into three approaches: (a) exact and approximate
string matching (Hanisch et al., 2003), (b) hand-
crafted rule-based approaches (Fukuda et al., 1998)
(Olsson et al., 2002), and (c) machine learning (Col-
lier et al., 2000), (Kazama et al., 2002).

Previous approaches in (b) and (c) ignore the
fact that bio-entities have boundary ambiguities.
Unlike general English, a space character is not

a sufficient token delimiter. Moreover, name de-
scriptions in biomedical resources are mostly com-
pounds. A conventional English preprocessing un-
dergoes a pipeline of simple tokenization and part-
of-speech tagging. The tokenization is based on a
graphic word1 for the subsequent part-of-speech tag-
ging to work. The conventional paradigm does not
properly handle peculiarities of biomedical English.
To remedy the problem, we propose morphological
analysis which achieves sophisticated tokenization
and adapts biomedical resources effectively.

Our method identifies protein names by chunk-
ing based onmorphemes, the smallest units deter-
mined by morphological analysis. We do not use
graphic words as a unit of chunking to avoid the
under-segmentationproblem. Suppose that a pro-
tein name appears as a substring of a graphic word.
Chunking based on graphic words fails, because
graphic words are too coarsely segmented. Instead,
chunking based on morpheme overcomes the prob-
lem, and the exact boundaries of protein names are
better recognized.

Below, we describe our method of protein name
tagging, including preprocessing, feature extraction
(Section 2), and experimental results (Section 3).
We mention related work in bio-entity recognition
(Section 4) and give concluding remarks (Section 5).

2 Protein Name Tagging

Our task is to identify non-overlapping strings that
represent protein names in text. Figure 1 gives an

1A graphic word is defined to be a string of contiguous
alphanumeric characters with spaces on either sides; may in-
clude hyphens and apostrophes, but no other punctuation marks.
Quoted from p.125 in Manning and Schütze (1999).
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Figure 1: Overview of our protein name tagging
method.
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Figure 2: Definition of terms used in this paper.↑
is a cps start and↓ a cps end. M is a mark and
D is a delimiter. The cps starts and cps ends can
be determined by marksM and delimitersD. → is
a token found in the dictionary by common prefix
search. A bold→ is the optimal path in the trellis.
w is a word.m is a morpheme.

overview. A plain sentence undergoes morphologi-
cal analysis and BaseNP recognition. The latter pre-
processing is to reflect an intuition that most protein
names are found in noun phrases. We extract fea-
tures from these preprocessing, and represent them
as feature vectors. SVM-based chunking is per-
formed using the features to yield a protein name
tagged sentence.

2.1 Morphological Analysis

Our morphological analysis gives (a) sophisticated
tokenization, (b) part-of-speech tagging and (c) an-
notation of value-added information such as the
stemmed form of a word, accession numbers to
biomedical resources. Our morphological analyzer
for biomedical English,cocab2, is inspired by the
work of Yamashita and Matsumoto (2000).

2.1.1 Preliminaries

We first define terms used in this paper with an
illustration in Figure 2.

A lexemeis an entry in a dictionary. Acommon
prefix search(cps) is a standard technique for look-
ing up lexemes in morphological analysis of non-
segmented languages. A dictionary is often a trie
data structure so that all possible lexemes that match
with the prefix starting at a given position in the
sentence are retrieved efficiently. Acommon pre-
fix search start position(cps start) is a position in a
sentence at which a dictionary lookup can start. A
common prefix search end position(cps end) is a po-
sition in a sentence by which a matched lexeme must
end.

A tokenis a substring in a sentence which matches
with a lexeme in the dictionary, and is enclosed by a
cps start and a cps end. Note that the matched lex-
eme is retrieved from the dictionary by common pre-
fix search. Amark is a special symbol or substring
that by itself can form a token even when it appears
within a graphic word. Adelimiter is a special sym-
bol or code that by itself cannot form a token but
can work to delimit tokens. Note also that a delim-
iter cannot appear on the boundaries of a token, but
can appear inside a token. Examples of marks and
delimiters are shown in Table 1.

A word is a substring in a sentence of which seg-
mentation boundary is determined by the morpho-

2http://bmkd.gsc.riken.go.jp/˜kaorux/r/cocab.html.en



Table 1: Marks and delimiters used in cocab. Marks
include transcription of Greek alphabets that often
appear in MEDLINE abstracts.

Delimiter Mark
space .,:;”’%/[] {}!?%$&-()
tab 0123456789
CR/LF alpha beta gamma delta epsilon

kappa sigma zeta

logical analysis. Amorphemeis the smallest unit of
a word which is enclosed a cps start and the nearest
cps end to the cps start.

The task of morphological analysis is to find the
best pair 〈W ∗, T ∗〉 of word segmentationW ∗ =
w∗1, . . . , w∗n and its parts of speech assignmentT ∗ =
t∗1, . . . , t∗n, in the sense that the joint probability of
the word sequence and the tag sequenceP (W,T ) is
maximized whenW = W ∗ andT = T ∗. Formally,

〈W ∗, T ∗〉 = arg max
〈W,T 〉

P (W,T ). (1)

The approximate solution for this equation is given
by

W ∗ = arg max
W

max
T

P (T |W )

= arg max
W

max
T

P (W |T )P (T )
P (W )

= arg max
W

max
T

P (W |T )P (T )

' arg max
W

max
T

∏

i

p(wi|ti)p(ti|ti−2, ti−1)

and

T ∗ = arg max
T

P (T |W ∗)

' arg max
T

∏

i

p(w∗i |ti)p(ti|ti−2, ti−1).

2.1.2 Lexeme-based Tokenization

In order to avoid spurious segmentation, we de-
termine cps starts and cps ends in a sentence. Marks
and delimiters in a sentence are used to find cps
starts and cps ends in the sentence, shown as↑ and
↓ respectively in Figure 2.

Once cps starts and cps ends are determined, the
problem is to solve the equation of morphological
analysis. It consists of (a) finding a set of tokens
that match lexemes in the dictionary, (b) building a

trellis from the tokens, and (c) running a Viterbi-like
dynamic programming on the trellis to find the path
that best explains the input sentence.

In Figure 2,→ indicates tokens. Both “SLP-
76” and “SLP-76-associated•substrate” (• denotes a
space character) are tokens since they are lexemes in
the dictionary, but “SLP-76-” is not a token since it
is not a lexeme in the dictionary. It allows a lexeme-
based tokenization which can accommodate a token
that is shorter than, the same as, or longer than a
graphic word.

The optimal path in the trellis gives a sequence
of words that the input sentence is ’best’ tokenized
and part-of-speech tagged. This is the word-based
output, shown as a sequence ofw in Figure 2. In
addition, our morphological analyzer produces the
morpheme-based output, given the word-based out-
put. This is a sequence of the smallest units in
each segmented word, shown as a sequence ofm
in Figure 2. Our chunking is based on morphemes
and takes note of words as features to overcome the
under-segmentation problem.

2.1.3 Adapting Biomedical Resources

GENIA Corpus 3.0p3 is used to calculate a word
probability p(w|t), and a tag probabilityp(t|t′, t′′)
which is modeled by a simple trigram. To better
cope with biomedical English, we enhance the dic-
tionary (i.e.p(w|t)) in a number of ways.

First, we collect human protein names (including
synonyms) and their accession numbers from pro-
tein sequence repositories, SwissProt (SP) (Boeck-
mann et al., 2003) and Protein Information Re-
source (PIR) (Wu et al., 2002). We convert each
entry description to a lexeme. A part-of-speech of
the lexeme is set to a common noun (NN ) where
the minimum word probability ofNN is assigned
for p(w|t). An accession number of the entry is
also recorded in the miscellaneous information field
of the lexeme. Similarly, Gene Ontology (GO)
(Consortium., 2000) terms are converted to lexemes
where accession number as well as the root cate-
gory are kept in the miscellaneous information field.
Third, we use UMLS Specialist Lexicon (NLM,
2002) to obtain the stemmed form of a lexeme. A
final twist is to associate constituent information for
each compound lexeme. A lexeme is compound if

3http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/



Table 2: A compound lexeme example. “cost” is
log of an inverse ofp(w|t). “constituents” are ob-
tained from searching single lexemes in the dictio-
nary. “sp” and “pir” are associated with accession
numbers. “go” is associated with an accession num-
ber and a root category from molecularfunction, bi-
ological process, and cellularcomponent.

key value
surface string ERK activator kinase 1
cost 10583
part-of-speech NN
reference sp:Q02750
stemmed form –
constituents ERK pir:JQ1400,sp:P29323

activator
kinase go:016301:molecularfunction
1

it consists of multiple morphemes, and single other-
wise. An example of a compound lexeme is shown
in Table 2.

In the conventional paradigm, a token cannot have
a white space character. However, 71.6 % of name
description in SP are entries of multiple graphic
words. This has been a bottleneck in adapting
biomedical resources into language processing. In
contrast, our morphological analysis can deal with a
lexeme with a white space character, and thus offers
a simple way to incorporate biomedical resources in
language processing. When a sentence is morpho-
logically analyzed, miscellaneous information field
is attached, which can be used for the feature extrac-
tion component.

2.2 BaseNP Recognition

BaseNP recognition is applied to obtain approxi-
mate boundaries of BaseNPs in a sentence. The
CoNLL-1999 shared task dataset is used for train-
ing with YamCha, the general purpose SVM-based
chunker4. There are four kinds of chunk tags in the
CoNLL-1999 dataset, namely IOB1, IOB2, IOE1,
and IOE2 (Tjong Kim Sang and Veenstra, 1999).
We follow Kudo and Matsumoto (2001) to train four
BaseNP recognizers, one for each chunk tag. The
word-based output from the morphological analy-
sis is cascaded to each BaseNP recognizer to mark
BaseNP boundaries. We collect outputs from the

4http://cl.aist-nara.ac.jp/˜taku−ku/software/yamcha/).

four recognizers, and interpret the tag as outside of
a BaseNP if all recognizers estimate the “O(utside)”
tag, otherwise inside of a BaseNP. The intention is
to distinguish words that are definitely not a con-
stituent of a BaseNP (outside) from words that may
be a constituent of a BaseNP (inside). In this way,
we obtain approximate boundaries of BaseNPs in a
sentence.

Introducing BaseNP recognition as a part of pre-
processing is motivated by an intuition that most
protein names reside in a noun phrase. Our chunking
is based on morphemes. An indication of whether a
morpheme lies within or outside a BaseNP bound-
ary seems informative. In addition, the morpheme-
based chunking would have narrower local context
than the word-based chunking for the same window
size. Our intention of approximate BaseNP bound-
aries is to provide the feature extraction compo-
nent with the top-down information of morpheme’s
global scope.

2.3 Feature Extraction

We extract four kinds of features from preprocess-
ing. Morphological analysis gives information for
boundary features, lexical features and biomedical
features. BaseNP recognition gives information for
syntactic features.

2.3.1 Boundary Feature

Our chunking is based on morphemes of which
boundaries may or may not coincide with graphic
words. The boundary feature is to reflect the fol-
lowing observation. A general English word tends
to have the same morpheme-based segmentation and
word-based segmentation, i.e. the degree of bound-
ary ambiguity is low. On the other hand, a pro-
tein coding word tends to have different morpheme-
based segmentation and word-based segmentation,
i.e., the degree of boundary ambiguity is high.

For each morpheme, we have four binary features
lmor, ldel, rmor, andrdel. lmor is 1 if the morpheme
is the leftmost morpheme of a word tokenized by
the morphological analyzer, and 0 otherwise.ldel
is 1 if the morpheme is the leftmost morpheme of a
graphic word, and 0 otherwise. Similarly,rmor is
1 if the morpheme is the rightmost morpheme of a
word tokenized by the morphological analyzer, and
0 otherwise.rdel is 1 if the morpheme is the right-
most morpheme of a graphic word, and 0 otherwise.



2.3.2 Lexical Feature

The lexical features are multi-valued features.
In this work, we considerpart-of-speech, stemmed
form and string features (e.g. lower-cased string,
upper-case letter, numerals, prefix and suffix).

2.3.3 Biomedical Feature

The biomedical feature is designed to encode
biomedical domain resource information. The mor-
phological analyzer tokenizes into words with rel-
evant references to biomedical resources. In addi-
tion, if the word is derived from a compound lexeme,
constituent morpheme information is also attached.
(Recall Table 2 for a compound lexeme example.)

The biomedical feature is subdivided into ase-
quencefeature and anontology feature. These-
quencefeature refers to a binary feature of accession
number reference to SP or PIR. For each word,sp-
word is set to 1 if the word has an accession number
of SP. For each morpheme,sp-morphemeis set to
1 if the morpheme has an accession number of SP.
pir-word andpir-morphemeof PIR are the same as
those of SP. Theontologyfeature refers to a binary
feature of accession number reference to GO. We
havego-word and go-morphemefor GO. Suppose
a sentence contains a compound lexeme in Table 2.
For the word “ERK activator kinase 1”,sp-wordis
set to 1, butpir-word andgo-wordare set to 0. For
the morpheme “ERK”, bothsp-morphemeandpir-
morphemeare set to 1, butgo-morphemeis set to
0.

If sp-wordor pir-word are set to 1, it means that
the word exactly matches with a protein name de-
scription in SP or PIR. Unfortunately, it is rare due
to variant writing of protein names. However, we
can expect a sort of approximate matching, by con-
sidering morpheme-based featuressp-morphemeor
pir-morpheme. Moreover, we add ontology fea-
tures (go-word, go-morpheme) in order to obtain
thesaurus effects.

2.3.4 Syntactic Feature

The syntactic feature is to reflect an intuition that
most protein names are found in noun phrases.

We use two syntactic features, anindicator mor-
phemefeature and aheadmorpheme candidatefea-
ture. Both features are relevant only for BaseNP
constituent morphemes.

Fukuda et al. (1998) observe that terms such as
“receptor” or “enzyme” that describe the function or
characteristic of a protein tend to occur in or nearby
a protein name. They use those terms as indicators
of presence of a protein name. We also express them
as aindicator morphemefeature, but with an addi-
tional constraint that indicators are only influential
to morphemes found in the same BaseNP.

In addition, Arabic and Roman numerals and tran-
scription of Greek alphabets are frequently used to
specify an individual protein. We call those speci-
fiers in this paper. Without a deep analysis of com-
pound words, it is hard to determine the morpheme
that a specifier depends on, since the specifier could
be on the left (“alpha-2 catenin”) or on the right (“in-
terleukin 2”) of the head morpheme. We assume
that such specifier morpheme and its head candidate
morpheme exist within the same BaseNP boundary
and express the observation as theheadmorpheme
candidatefeature for each specifier morpheme.

With the absence of a powerful parser, the syn-
tactic features provides only approximation. How-
ever, indicator morphemesuggests a protein name
existence andheadmorpheme candidateintends to
discriminate specifiers appear nearby protein-coding
morphemes from the rest.

2.4 Chunking as Sequential Classification

Our protein name tagging is formulated as
IOB2/IOE2 chunking (Tjong Kim Sang and Veen-
stra, 1999). Essentially, our method is the same as
Kudo and Matsumoto (2001) in viewing the task as
a sequence of classifying each chunk label by SVM.
The main difference is that our chunking is based on
morphemes, and uses features described in Section
2.3 to serve the needs in protein name tagging.

3 Experimental Results

3.1 Experiment using Yapex Corpus

We first conduct experiments with Yapex corpus5,
the same corpus used in Olsson et al. (2002) to get
a direct comparison with the good-performing rule-
based approach6. There are 99 abstracts for training

5http://www.sics.se/humle/projects/prothalt/
6Olsson et al. (2002) claim they outperform

Fukuda et al. (1998) evaluated with Yapex corpus. To
date, Fukuda et al. (1998) reports the best result in rule-based
approach, evaluated with their closed corpus.



Table 3: Parameter used in the SVM-based chun-
ker YamCha. See (Kudo and Matsumoto, 2001) for
more information about parameters.

parameter description
type of kernel polynomial
degree of kernel 2
direction of parsing foreward for IOB2, backward for IOE2
context window -2 -1, 0, +1, +2
multi-class one-vs-rest

Table 4: Evaluation criteria used in this paper.

criteria description
strict count Correct if the boundaries of system and

those of answer matches on Both side.
left count Correct if the Left boundary of system and

that of answer matches.
right count Correct if the Right boundary of system and

that of answer matches.
sloppy count Correct if any morpheme estimated by system

overlaps with any morpheme defined by answer.

and 101 abstracts for testing.
Each sentence undergoes preprocessing, feature

extraction and SVM-based chunking to obtain a pro-
tein name tagged sentence. We also use YamCha
for this task. Parameters for YamCha are summa-
rized in Table 3. Our evaluation criteria follow that
of Olsson et al. (2002). We calculate the standard
measures of precision, recall and f-score for each
boundary condition ofstrict, left, right andsloppy
described in Table 4.

The performance of our method on Yapex corpus
is summarized in Tables 5 and 6, along with that
of Yapex protein tagger.7. Our method achieves as
good result as a hand-crafted rule-based approach,
despite the small set of training data (99 abstracts)
which works unfavorable to machine learning ap-
proaches. The better performance instrict could be
attributed to chunking based on morphemes instead
of words.

Yapex has a good recall rate while our method
enjoys a good precision in all boundary conditions.
A possible explanation for the low recall is that the
training data was small (99 abstracts) for SVM to
generalize the characteristics of protein names. As

7Results reported in Olsson et al. (2002) are different from
the Yapex web site. Gunnar Eriksson has indicated us to quote
the web site as the performance of Yapex protein tagger.

Table 5: Results on Yapex corpus (99 abstracts for
training and 101 abstracts for testing). P(precision),
R(recall) and F(f-score) are shown. The table shows
the protein tagger with an IOB2 chunking with for-
ward parsing.

Yapex Protein Tagger SVM (IOB2,forward)
P R F P R F

strict 0.620 0.599 0.610 0.738 0.557 0.635
left 0.706 0.682 0.693 0.827 0.625 0.712
right 0.749 0.723 0.736 0.789 0.596 0.679
sloppy 0.843 0.814 0.828 0.892 0.674 0.768

Table 6: The table shows the protein tagger with an
IOE2 chunking with backward parsing.

Yapex Protein Tagger SVM (IOE2,backward)
P R F P R F

strict 0.620 0.599 0.610 0.738 0.554 0.633
left 0.706 0.682 0.693 0.801 0.602 0.688
right 0.749 0.723 0.736 0.797 0.599 0.684
sloppy 0.843 0.814 0.828 0.880 0.661 0.755

we will shortly report in the next subsection, we
no longer observe a low recall when training with
the medium-sized (590 abstracts) and the large-sized
(1600 abstracts) data.

IOB2 chunking with forward parsing gives bet-
ter results inleft, while IOE2 chunking with back-
ward parsing gives better results inright. The re-
sult follows our intuition that IOB2 chunking with a
forward parsing intensively learns the left boundary
between B(egin) and O(utside), while IOE2 chunk-
ing with a backward parsing intensively learns the
right boundary between E(nd) and O(utside). Use
of a weighted voting of multiple system outputs, as
discussed in (Kudo and Matsumoto, 2001), is left for
future research.

Effects of each feature in IOB2 chunking with for-
ward parsing are summarized in Table 7. Each fea-
ture is assessed by subtracting the focused feature
from the maximal model in Table 5. Since the test
dataset is only 101 abstracts, it is difficult to observe
any statistical significance. Based on the offsets, the
result suggests that an incorporation of biomedical
features (sequenceandontology) is crucial in pro-
tein name tagging. The contribution of syntactic fea-
tures is not as significant as we originally expect.
Considering syntactic features we use are approxi-
mate features obtained from BaseNP boundaries, the
outcome may be inevitable. We plan to investigate



Table 7: Effects of each feature contribution onstrict
boundary condition. The F-score is subtracted from
the maximal model in IOB2 chuking with forward
parsing (Table 5). The upper rows show effects of a
single feature removed. The lower rows show effects
of multiple features with the same class removed.
See Section 2.3 for description of each feature.

feature F offset rank
sequence 0.599 -0.036 1
part-of-speech 0.614 -0.021 2
string 0.615 -0.020 3
ldel andrdel 0.628 -0.007 4
indicator term 0.628 -0.007 4
headmorpheme candidate0.632 -0.003 6
ontology 0.633 -0.002 7
stemmed form 0.634 -0.001 8
biomedical 0.594 -0.041 1
lexical 0.598 -0.037 2
syntactic 0.623 -0.012 3
boundary 0.627 -0.008 4

further into effective syntactic features such as word
dependency from a word dependency parser.

3.2 Experiment with GENIA Corpus

In order to experiment our method with a larger
dataset, we use GENIA corpus 3.01 released re-
cently. Unlike Yapex corpus, GENIA corpus con-
tains 2000 abstracts and uses a hierarchical tagset.
For our experiment, we use two definitions for a pro-
tein: one to identifyG#protein molecule and
the other to identifyG#protein X. The former is
a narrower sense of protein names, and more close
to a protein name in Yapex corpus where the protein
name is defined as something that denotes a single
biological entity composed of one or more amino
acid chain. The latter covers a broader sense of pro-
tein, including families and domains. We evaluate
our method with the two versions of protein names
since the desired granularity of a protein name de-
pends on the application.

Two datasets are prepared in this experiment. One
is GENIA 1.1 subset and the other is GENIA 3.01
set. The GENIA 1.1 subset contains 670 abstracts
from GENIA 3.01 where the same Medline IDs are
also found in GENIA corpus 1.1. In addition, we
split the GENIA 1.1 subset into the test dataset of
80 abstracts used in Kazama et al. (2002)8 and the
training dataset of the remaining 590 abstracts. The

8http://www-tsujii.is.s.u-tokyo.ac.jp/ kazama/papers/testid

Table 8: Results on GENIA 1.1 subset of 670 ab-
stracts (590 abstracts for training and 80 abstracts
for testing).

G#proteinmolecule G#proteinX
P R F P R F

strict 0.657 0.604 0.629 0.694 0.695 0.694
left 0.687 0.632 0.658 0.755 0.755 0.755
right 0.697 0.641 0.667 0.757 0.757 0.757
sloppy 0.727 0.669 0.697 0.827 0.828 0.827

Table 9: Results on GENIA 3.01 set of 2000 ab-
stracts (1600 abstracts for training and 400 abstracts
for testing).

G#proteinmolecule G#proteinX
P R F P R F

strict 0.711 0.683 0.697 0.757 0.742 0.749
left 0.742 0.712 0.726 0.804 0.788 0.796
right 0.752 0.722 0.737 0.805 0.789 0.797
sloppy 0.787 0.755 0.771 0.858 0.841 0.850

GENIA 3.01 set is an entire set of GENIA corpus
3.01. We randomly split the entire set so that 4/5 of
which is used for training the remaining 1/5 is used
for testing.

Results in Tables 8 and 9 show that the broader
classG#protein X is easier to learn than the nar-
rower classG#protein molecule . Results of
protein name recognition in Kazama et al. (2002)
using GENIA 1.1 are 0.492, 0.664 and 0.565 for
precision, recall, f-score respectively. GENIA
1.1 has only one class for protein name (GE-
NIA#protein ), while GENIA 3.01 has hierarchi-
cally organized tags for a protein name class. As-
suming thatGENIA#protein in GENIA 1.1 cor-
responds toG#protein X in GENIA 3.01, we
could claim that our method gives better results
to their SVM approach. The better performance
could be attributed to chunking based on morpheme
instead of graphic words and better adaptation of
biomedical resources. Next, we compare Yapex
performance withG#protein molecule trained
with 1600 abstracts (cf. Table 5 and Table 9), though
tagging policy and corpus are different. Our method
significantly outperforms instrict, better inleft and
right, slightly lost insloppy. With a large dataset of
training data (1600 abstracts), we obtain 70 points of
f-score forG#protein molecule and 75 points
of f-score forG#protein X, which are compara-
ble to approaches reported in the literature.



An increase of training data from 590 abstracts
to 1600 abstracts helps the overall performance im-
prove, given the corpus error is minimized. Our
internal experiments with GENIA 3.0 (the version
was corrected to GENIA 3.01) reveal that the cor-
pus error is critical in our method. Even corpus er-
rors have been successfully removed, it would not
be practical to increase the size of labor-intensive
annotated corpus. Use of unlabeled data in con-
junction with a small but quality set of labeled data.
e.g. Collins and Singer (1999), would have to be ex-
plored.

4 Related Work

Tanabe and Wilbur (2002) use a hybrid approach of
transformation-based learning (Brill Tagger) with
rule-based post processing. An obvious drawback in
their approach as with other rule-based approaches
including Fukuda et al. (1998) is that the approaches
cannot handle many correlated features. As pointed
out in their paper, errors in the early stage of rule
application are often propagated to the later stage,
damaging the overall performance. In contrast, our
method can deal with correlated features owing to
the generalization characteristic of SVM.

5 Conclusion

This paper describes a method to find protein names
by chunking based on amorpheme, which leads to
better recognition of protein name boundaries. For
this, we propose morphological analysis of which
core technologies are found in non-segmented lan-
guages. With the large dataset (1600 abstracts for
training and 400 abstracts for testing in GENIA
3.01), we obtain f-score of 70 points for protein
molecule names and 75 points for protein names, in-
cluding molecules, families, domains etc. The re-
sults are comparable to previous approaches in the
literature. We focus protein names as a case study.
However, given annotated corpus of similar size and
quality, the same approach can be applied to other
bio-entities such as gene names.
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