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This paper describes a protein name tagging meth&?
which is a fundamental precursor to information ex-

traction of protein-protein interactions (PPIs) fro
MEDLINE abstracts. Previous work in bio-entity
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Abstract

We explore the use of morphological anal-
ysis as preprocessing for protein name
tagging. Our method finds protein names
by chunking based on morpheme the
smallest unit determined by the morpho-
logical analysis. This helps to recognize
the exact boundaries of protein names.
Moreover, our morphological analyzer
can deal with compounds. This offers
a simple way to adapt name descriptions
from biomedical resources for language
processing. Using GENIA corpus 3.01,
our method attains f-score of 70 points for
protein molecule names, and 75 points for
protein names including molecules, fami-
lies and domains.

Introduction

m

a sufficient token delimiter. Moreover, name de-
scriptions in biomedical resources are mostly com-
pounds. A conventional English preprocessing un-
dergoes a pipeline of simple tokenization and part-
of-speech tagging. The tokenization is based on a
graphic word for the subsequent part-of-speech tag-
ging to work. The conventional paradigm does not
properly handle peculiarities of biomedical English.
To remedy the problem, we propose morphological
analysis which achieves sophisticated tokenization
and adapts biomedical resources effectively.

Our method identifies protein names by chunk-
ing based ormorphemesthe smallest units deter-
mined by morphological analysis. We do not use
graphic words as a unit of chunking to avoid the
under-segmentationproblem. Suppose that a pro-
tein name appears as a substring of a graphic word.
Chunking based on graphic words fails, because
graphic words are too coarsely segmented. Instead,
chunking based on morpheme overcomes the prob-
lem, and the exact boundaries of protein names are
tter recognized.

Below, we describe our method of protein name
tagging, including preprocessing, feature extraction
(Section 2), and experimental results (Section 3).

(including protein) recognition can be ca‘tegorizetyve mention related work in bio-entity recognition

into three approaches: (a) exact and approxima{

éection 4) and give concluding remarks (Section 5).

string matching (Hanisch et al., 2003), (b) hand2 Protein Name Tagging

crafted rule-based approaches (Fukuda et al., 199
(Olsson et al., 2002), and (c) machine learning (Co

lier et al., 2000), (Kazama et al., 2002).

Our task is to identify non-overlapping strings that
represent protein names in text. Figure 1 gives an

Previous approaches in (b) and (c) ignore the A graphic word is defined to be a string of contiguous
fact that bio-entities have boundary ambiguitie

alphanumeric characters with spaces on either sides; may in-

Selude hyphens and apostrophes, but no other punctuation marks.

Unlike general English, a space character is na@juoted from p.125 in Manning and Sidiae (1999).



overview. A plain sentence undergoes morphologi-
cal analysis and BaseNP recognition. The latter pre-
1 processing is to reflect an intuition that most protein
names are found in noun phrases. We extract fea-
Morphological tures from these preprocessing, and represgnt them
Analysis > as feature vectors. SVM-based chunking is per-
formed using the features to yield a protein name

Pl ai n Sentence

l Feature » SV M-based t d t
Extraction chunking agged sentence.
Base NP . 2.1 Morphological Analysis
Recognition

Our morphological analysis gives (a) sophisticated
tokenization, (b) part-of-speech tagging and (c) an-
notation of value-added information such as the
Protein Name Tagged Sentence stemmed form of a word, accession numbers to
biomedical resources. Our morphological analyzer

Figure 1: Overview of our protein name taggingfor biomedical English,cocal:?, is inspired by the
method. work of Yamashita and Matsumoto (2000).

2.1.1 Preliminaries

“““ : . We first define terms used in this paper with an
-associ ated substrate ;.. illustration in Figure 2.
‘ D D A lexemdis an entry in a dictionary. Aommon
SN prefix search(cpg is a standard technique for look-
| | ing up lexemes in morphological analysis of non-

| W } ' segmented languages. A dictionary is often a trie
— data structure so that all possible lexemes that match
with the prefix starting at a given position in the
sentence are retrieved efficiently. @®mmon pre-
fix search start positioficps star} is a position in a
sentence at which a dictionary lookup can start. A
ol common prefix search end positiaps endlis a po-
- sition in a sentence by which a matched lexeme must
*" end.

A tokenis a substring in a sentence which matches
with a lexeme in the dictionary, and is enclosed by a
— > > > cps start and a cps end. Note that the matched lex-

an SLP-76-associated substrate eme is retrieved from the dictionary by common pre-
w| [ w | w ‘ ‘ w ‘ fix search. Amarkis a special symbol or substring
[m| | m nmrm m || m | that by itself can form a token even when it appears
within a graphic word. Adelimiteris a special sym-
Figure 2: Definition of terms used in this papgr. POl or code that by itself cannot form a token but
is a cps start and a cps end. M is a mark and €@n work to delimit tokens. Note also that a delim-

D is a delimiter. The cps starts and cps ends cdfff" cannot appear on the boundaries of a token, but
be determined by mark&/ and delimitersD. — is Can appear inside a token. Examples of marks and

a token found in the dictionary by common prefixd€limiters are shown in Table 1. ,
search. A bold— is the optimal path in the trellis. A Wordis a substring in a sentence of which seg-
w is a word.m is a morpheme. mentation boundary is determined by the morpho-

[+
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2http://bmkd.gsc.riken.go.jp/ kaorux/r/cocab.html.en



trellis from the tokens, and (c) running a Viterbi-like

Table 1: Marks and delimiters used in cocab. Mark . : . .
ynamic programming on the trellis to find the path

include transcription of Greek alphabets that ofte%at best explains the iNbut sentence
appear in MEDLINE abstracts. b P '

Delimiter | Mark In Figure 2, — indicates tokens. Both “SLP-
space Ol {17%%8() 76" and “SLP-76-associatedubstrate” ¢ denotes a
tab 0123456789 _ space character) are tokens since they are lexemes in
CRILF thi‘bs?t?n%az”;’;’;a delta epsilon the dictionary, but “SLP-76-" is not a token since it
pRa=d is not a lexeme in the dictionary. It allows a lexeme-
based tokenization which can accommaodate a token

logical analysis. Amorphemés the smallest unit of that is shorter than, the same as, or longer than a

a word which is enclosed a cps start and the neare@phic word.

cps end to the cps start. The optimal path in the trellis gives a sequence
The task of morphological analysis is to find thedf words that the input sentence is "best’ tokenized

best pair (W*, T*) of word segmentatioiv* = and part-of-speech tagged. This is the word-based

wf, ..., w? and its parts of speech assignm@nt=  Output, shown as a sequencewfin Figure 2. In

* ...,t%, in the sense that the joint probability ofaddition, our morphologlca! analyzer produces the

the word sequence and the tag sequePgd’, T) is Morpheme-based output, given the word-based out-

maximized whefV = W* andT = T*. Formally, Put. This is a sequence of the smallest units in
each segmented word, shown as a sequence of

(W*, T*) = argmax P(W, T). (1) in Figure 2. Our chunking is based on morphemes
W) and takes note of words as features to overcome the

The approximate solution for this equation is giver¥nder-segmentation problem.

by 2.1.3 Adapting Biomedical Resources
W* = argmaxmax P(T|W) GENIA Corpus 3.0p s used to calculate a word
w T probability p(w|t), and a tag probability(t|t’, ")
_ PW|T)P(T) which is modeled by a simple trigram. To better
= argmaxmax ——————— . . . . .
W T P(W) cope with biomedical English, we enhance the dic-
= argmaxmax PW|T)P(T) tionary (i.e.p(w(t)) in a number of ways.
W

First, we collect human protein hames (including
arg max m:;%XHp(wi\ti)p(ti\ti—z,ti—l) synonyms) and their accession numbers from pro-
W i tein sequence repositories, SwissProt (SP) (Boeck-
and mann et al., 2003) and Protein Information Re-
source (PIR) (Wu et al.,, 2002). We convert each
T* = argmaxP(T|W") entry description to a lexeme. A part-of-speech of
T the lexeme is set to a common nouN ) where
~ arg;naxHp(wf\ti)P(ti\ti—%tz’—l)- the minimum word probability of VNV is assigned
! for p(w|t). An accession number of the entry is
2.1.2 Lexeme-based Tokenization also recorded in the miscellaneous information field

In order to avoid spurious segmentation, we delf the lexeme. Similarly, Gene Ontology (GO)
termine cps starts and cps ends in a sentence. Maffsonsortium., 2000) terms are converted to lexemes
and delimiters in a sentence are used to find cp¥here accession number as well as the root cate-
starts and cps ends in the sentence, showhas 901y are keptin the miscellaneous information field.
| respectively in Figure 2. Third, we use UMLS Specialist Lexicon (NLM,

Once cps starts and cps ends are determined, tHe02) to obtain the stemmed form of a lexeme. A
problem is to solve the equation of morphologicafinal twist is to associate constituent information for
analysis. It consists of (a) finding a set of token§ach compound lexeme. A lexeme is compound if
that match lexemes in the dictionary, (b) building a *http:/iwww-tsuijii.is.s.u-tokyo.ac.jp/GENIA/
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Table 2: A compound lexeme example. “cost’ iSfour recognizers, and interpret the tag as outside of

log of an inverse of(wl[t). “constituents” are ob- a BaseNP if all recognizers estimate the “O(utside)

; ; ; . .. tag, otherwise inside of a BaseNP. The intention is
tained from searching single lexemes in the dictio-"="." " "~ " -
o e . . . to distinguish words that are definitely not a con-

nary. “sp” and “pir” are associated with accession . .
o . . : stituent of a BaseNP (outside) from words that may

numbers. “go” is associated with an accession nuni-

) . be a constituent of a BaseNP (inside). In this way,
ber and a root category from moleculanction, bi- . . . .
. we obtain approximate boundaries of BaseNPs in a
ological process, and cellulasomponent.

sentence.
key [ value Introducing BaseNP recognition as a part of pre-
iggtace string Egsggcm’ator Kinase 1 processing is motivated by an intuition that most
part-of-speech NN protein names reside in a noun phrase. Our chunking
gfé%fnnggform sp:Q02750 is based on morphemes. An indication of whether a
constituents | ERK pir:JQ1400,sp:P29323 morpheme -IIeS Wlth.m or OUtSI(.j.e a BaseNP bound-
activator ary seems informative. In addition, the morpheme-
kinase  go:016301:moleculdunction  based chunking would have narrower local context
e than the word-based chunking for the same window

size. Our intention of approximate BaseNP bound-
aries is to provide the feature extraction compo-

it consists of multiple morphemes, and single othelsant with the top-down information of morpheme’s
wise. An example of a compound lexeme is ShOWBIobaI scope.

in Table 2. _
. . 2.3 Feature Extraction

In the conventional paradigm, a token cannot have
a white space character. However, 71.6 % of nam#e extract four kinds of features from preprocess-
description in SP are entries of multiple graphidng. Morphological analysis gives information for
words. This has been a bottleneck in adaptingoundary features, lexical features and biomedical
biomedical resources into language processing. fgatures. BaseNP recognition gives information for
contrast, our morphological analysis can deal with 8yntactic features.
lexeme with a white space character, and thus offefs3 1 Boundary Feature
a simple way to mt_:orporate biomedical resources in o - chunking is based on morphemes of which
language processing. When a sentence is morpho- . o : ;

. : . ... poundaries may or may not coincide with graphic
logically analyzed, miscellaneous information fiel

. . words. The boundary feature is to reflect the fol-
is attached, which can be used for the feature extra]c- . ) .

) owing observation. A general English word tends
tion component.

to have the same morpheme-based segmentation and
2.2 BaseNP Recognition word-based segmentation, i.e. the degree of bound-

BaseNP recognition is applied to obtain approxi&’y @mbiguity is low. On the other hand, a pro-

mate boundaries of BaseNPs in a sentence. THN coding word tends to have different morpheme-
CoNLL-1999 shared task dataset is used for traif@S€d segmentation and word-based segmentation,
ing with YamChathe general purpose SVM-based-€- the degree of boundary ambiguity is high.
chunkef. There are four kinds of chunk tags in the FOr €ach morpheme, we have four binary features
CoNLL-1999 dataset, namely I0B1, 10B2, |0E1 Imor, Idel, rmor, andrdel. Imoris 1 if the morpheme
and I0E2 (Tjong Kim Sang and Veenstra, lggg)i_s the Ieftmost_morpheme of a word tokenized by
We follow Kudo and Matsumoto (2001) to train four € morphological analyzer, and 0 otherwiseel
BaseNP recognizers, one for each chunk tag. TH& 1 if the morpheme is the leftmost morpheme of a
word-based output from the morphological analydraphic word, and 0 otherwise. Similariynor is

sis is cascaded to each BaseNP recognizer to marK! the morpheme is the rightmost morpheme of a

BaseNP boundaries. We collect outputs from th&0rd tokenized by the morphological analyzer, and
0 otherwise.rdel is 1 if the morpheme is the right-

4http//C|alst-naraaC]p/~takbku/SOftware/yamcha/) most morpheme Of a graphlc Word, and 0 Otherw|se



2.3.2 Lexical Feature Fukuda et al. (1998) observe that terms such as

The lexical features are multi-valued features. €Ceptor” or “enzyme” that describe the function or

In this work, we considepart-of-speechstemmed characteristic of a protein tend to occur in or nearby
form and string features (e.g. lower-cased string,a protein name. They use those terms as indicators

upper-case letter, numerals, prefix and suffix).  Of Présence of a protein name. We also express them
as aindicator morphemdeature, but with an addi-

2.3.3 Biomedical Feature tional constraint that indicators are only influential
The biomedical feature is designed to encodt® morphemes found in the same BaseNP.
biomedical domain resource information. The mor- In addition, Arabic and Roman numerals and tran-
phological analyzer tokenizes into words with relscription of Greek alphabets are frequently used to
evant references to biomedical resources. In addipecify an individual protein. We call those speci-
tion, if the word is derived from a compound lexemefiers in this paper. Without a deep analysis of com-
constituent morpheme information is also attacheghound words, it is hard to determine the morpheme
(Recall Table 2 for a compound lexeme example.) that a specifier depends on, since the specifier could
The biomedical feature is subdivided intosa- be on the left (“alpha-2 catenin”) or on the right (*in-
quencefeature and arontology feature. These- terleukin 2”) of the head morpheme. We assume
quencdeature refers to a binary feature of accessiothat such specifier morpheme and its head candidate
number reference to SP or PIR. For each wept, mMorpheme exist within the same BaseNP boundary
wordis set to 1 if the word has an accession numbemnd express the observation as tleadmorpheme
of SP. For each morphemsp-morphemés set to candidatefeature for each specifier morpheme.
1 if the morpheme has an accession number of SP.With the absence of a powerful parser, the syn-
pir-word andpir-morphemeof PIR are the same as tactic features provides only approximation. How-
those of SP. Thentologyfeature refers to a binary ever,indicator morphemesuggests a protein name
feature of accession number reference to GO. Wexistence andieadmorpheme candidatetends to
have go-word and go-morphemdor GO. Suppose discriminate specifiers appear nearby protein-coding
a sentence contains a compound lexeme in Table rRorphemes from the rest.
For the word “ERK activator kinase 18p-wordis 2 4 chunking as Sequential Classification
set to 1, bupir-word andgo-wordare set to 0. For

the morpheme “ERK”, botfsp-morphemand pir- Our protein name tggging' is formulated as
morphemeare set to 1, bugo-morphemds set to IOB2/IOE2 chunking (Tjong Kim Sang and Veen-
0. stra, 1999). Essentially, our method is the same as

. . Kudo and Matsumoto (2001) in viewing the task as
If sp-wordor pir-word are set to 1, it means that o
W pirw ! a sequence of classifying each chunk label by SVM.

the word exactly matches with a protein name de: L . o
scription in SP or PIR. Unfortunately, it is rare dueQrhe main difference is that our chunking is based on

to variant writing of protein names. However, Wemorphemes, and uses'feature_s described i.n Section
can expect a sort of approximate matching, by cor?—'3 to serve the needs in protein name tagging.
sidering morpheme-based featusgsmorphemer
pir-morpheme Moreover, we add ontology fea-
tures @o-word go-morphemgin order to obtain 3.1 Experiment using Yapex Corpus
thesaurus effects.

3 Experimental Results

We first conduct experiments with Yapex corpus
2.3.4 Syntactic Feature the same corpus used in Olsson et al. (2002) to get
a direct comparison with the good-performing rule-

The syntactic feature is to reflect an intuition tha ot
based approaéhThere are 99 abstracts for training

most protein names are found in noun phrases.
We use two syntactic features, andlicator mor- Shttp:/iwww.sics.se/humle/projects/prothalt/
phemefeature and d@eadmorpheme candidatea- ®Olssonetal. (2002) ~ claim  they  outperform
Igukuda etal. (1998) evaluated with Yapex corpus. To
ture. Both features are relevant only for BaseNR

) ate, Fukuda et al. (1998) reports the best result in rule-based
constituent morphemes. approach, evaluated with their closed corpus.



Table 3: Parameter used in the SVM-based chufable 5: Results on Yapex corpus (99 abstracts for
ker YamCha. See (Kudo and Matsumoto, 2001) faraining and 101 abstracts for testing). P(precision),

more information about parameters. R(recall) and F(f-score) are shown. The table shows
parameter [ description the protelr_l tagger with an 10B2 chunking with for-
type of kernel polynomial ward parsing.

degree of kernel 2 i
direction of parsing| foreward for I0OB2, backward for IOE2 Yapex Protein Tagger| - SVM (I0B2,forward)

; P R F P R F
context window -2-1,0,+1, +2 .
multi-class one-vs-rest strict | 0.620 0.599 0.610| 0.738 0.557 0.635
left 0.706 0.682 0.693| 0.827 0.625 0.712
right 0.749 0.723 0.736| 0.789 0.596 0.679
sloppy | 0.843 0.814 0.828| 0.892 0.674 0.768

Table 4: Evaluation criteria used in this paper. , _
Table 6: The table shows the protein tagger with an

IOE2 chunking with backward parsing.

criteria | description

strict count Correct if the boundaries of system and Yapex Protein Tagger| SVM (IOE2,backward)
those of answer matches on Both side. o) R E =) R E
left count Correct if the Left boundary of system and

strict | 0.620 0.599 0.610| 0.738 0.554 0.633
left 0.706 0.682 0.693| 0.801 0.602 0.688
right 0.749 0.723 0.736| 0.797 0.599 0.684
0.843 0.814 0.828| 0.880 0.661 0.755

that of answer matches.

right count Correct if the Right boundary of system and
that of answer matches. I
sloppy | count Correct if any morpheme estimated by systemS oppy
overlaps with any morpheme defined by answer.

we will shortly report in the next subsection, we

and 101 abstracts for testing. no longer observe a low recall when training with

Each sentence undergoes preprocessing, feattii@ medium-sized (590 abstracts) and the large-sized
extraction and SVM-based chunking to obtain a pro1600 abstracts) data.
tein name tagged sentence. We also use YamChaOB2 chunking with forward parsing gives bet-
for this task. Parameters for YamCha are summder results inleft, while IOE2 chunking with back-
rized in Table 3. Our evaluation criteria follow thatward parsing gives better resultsright. The re-
of Olsson et al. (2002). We calculate the standargult follows our intuition that IOB2 chunking with a
measures of precision, recall and f-score for ead®rward parsing intensively learns the left boundary
boundary condition ostrict, left, right andsloppy between B(egin) and O(utside), while IOE2 chunk-
described in Table 4. ing with a backward parsing intensively learns the

The performance of our method on Yapex corpught boundary between E(nd) and O(utside). Use
is summarized in Tables 5 and 6, along with tha®f @ weighted voting of multiple system outputs, as
of Yapex protein taggérﬂ Our method achieves asdiscussed in (Kudo and Matsumoto, 2001), is left for
good result as a hand-crafted rule-based approadHture research.
despite the small set of training data (99 abstracts) Effects of each feature in IOB2 chunking with for-
which works unfavorable to machine learning apward parsing are summarized in Table 7. Each fea-
proaches. The better performancestrict could be ture is assessed by subtracting the focused feature
attributed to chunking based on morphemes insted@®m the maximal model in Table 5. Since the test
of words. dataset is only 101 abstracts, it is difficult to observe

Yapex has a good recall rate while our metho@ny statistical significance. Based on the offsets, the
enjoys a good precision in all boundary conditionst€sult suggests that an incorporation of biomedical
A possible explanation for the low recall is that thefeatures ¢equencend ontology is crucial in pro-
training data was small (99 abstracts) for SVM td€in name tagging. The contribution of syntactic fea-
generalize the characteristics of protein names. Adres is not as significant as we originally expect.
— _ _ Considering syntactic features we use are approxi-

Results reported in Olsson et al. (2002) are different from . .
the Yapex web site. Gunnar Eriksson has indicated us to quomate features obtained from BaseNP boundaries, the
the web site as the performance of Yapex protein tagger. outcome may be inevitable. We plan to investigate



Table 7: Effects of each feature contributiongtrict  Table 8: Results on GENIA 1.1 subset of 670 ab-
boundary condition. The F-score is subtracted fromtracts (590 abstracts for training and 80 abstracts
the maximal model in 10B2 chuking with forward for testing).

parsing (Table 5). The upper rows show effects of a

. G#proteinmolecule G#proteinX

single feature removed. The lower rows show effects P R F P R F

of multiple features with the same class removed.strict | 0.657 0.604 0.629 0.694 0.695 0.694

See Section 2.3 for description of each feature. 'rie;ht 8-28; 8-22? g-ggg 8;23 8;2? 8;23
feature | F offset rank sloppy | 0.727 0.669 0.697 0.827 0.828 0.827
sequence 0.599 -0.036 1
Bng oo o1 0021 2 Table 9: Results on GENIA 3.01 set of 2000 ab-
Idel andrdel 0.628 -0.007 4 stracts (1600 abstracts for training and 400 abstracts
indicator term _ 0.628 -0.007 4 for testing).
headmorpheme candidate0.632 -0.003 6 G#proteinmolecule GHproteinX
ontology 0.633 -0.002 7 p R E o) R E
stemmed form oo o Strict | 0.711 0.683 0607 0.757 0.742 0.749
lexical 0598 -0.037 5 left 0.742 0.712 0.726 0.804 0.788 0.796
suntactic 0623 -0.012 3 right | 0.752 0.722 0.737 0.805 0.789 0.797
b‘(’)un dary 0627 -0.008 A sloppy | 0.787 0.755 0.771 0.858 0.841 0.850

further into effective syntactic features such as wor@ENIA 3.01 set is an entire set of GENIA corpus
dependency from a word dependency parser. 3.0.1. We randomly gp_lit the entire setso tha_t 4/5 of
3.2 Experiment with GENIA Corpus }/(\;rr]l::er]stl;;sed for training the remaining 1/5 is used
In order to experiment our method with a larger Resuits in Tables 8 and 9 show that the broader
dataset, we use GENIA corpus 3.01 released rgrassG#protein X is easier to learn than the nar-
cently. Unlike Yapex corpus, GENIA corpus con-royer classG#protein _molecule . Results of
tains 2000 abstracts and uses a hierarchical tagssiotein name recognition in Kazama et al. (2002)
For our experiment, we use two definitions foraproUSing GENIA 1.1 are 0.492, 0.664 and 0.565 for
tein: one to identifyG#protein _molecule and precision, recall, f-score respectively. GENIA
the other to identifyG#protein _X. The formeris 1 1 pas only one class for protein nameE:

a narrower sense of protein names, and more CIORﬁ’A#protein ), while GENIA 3.01 has hierarchi-
to a protein name in Yapex corpus where the protei@a”y organized tags for a protein name class. As-
name is defined as something that denotes a Sin@ﬁming thalGENIA#protein  in GENIA 1.1 cor-
biological entity composed of one or more ami”%sponds toG#protein X in GENIA 3.01, we
acid chain. The latter covers a broader sense of pregid claim that our method gives better results
tein, including families and domains. We evaluatg, their SVM approach. The better performance
our method with the two versions of protein namegoy|d be attributed to chunking based on morpheme
since the desired granularity of a protein name dnstead of graphic words and better adaptation of
pends on the application. _ biomedical resources. Next, we compare Yapex
_ Two datasets are prepared in this e_:xperlment. O’Eferformance witltG#protein _molecule trained

is GENIA 1.1 subset and the other is GENIA 3.0lyth 1600 abstracts (cf. Table 5 and Table 9), though
set. The GENIA 1.1 subset contains 670 abstracfgqging policy and corpus are different. Our method
from GENIA 3.01 where the same Medline IDs are&jgnjficantly outperforms istrict, better inleft and
also found in GENIA corpus 1.1. In addition, wejght, slightly lost insloppy With a large dataset of

split the GENIA 1.1 subset into the test dataset Ofaining data (1600 abstracts), we obtain 70 points of
80 abstracts used in Kazama et al. (260@)d the ¢ gcore forG#protein _molecule and 75 points
training dataset of the remaining 590 abstracts. Thg .score forG#protein X, which are compara-

8http:/www-tsuiii.is.s.u-tokyo.ac.jp/ kazama/papersitestid ble to approaches reported in the literature.



An increase of training data from 590 abstractfReferences
to 1600 abstracts helps the overall performance ings Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter,
prove, given the corpus error is minimized. Our A. Estreicher, E. Gasteiger, M.J. Martin, K. Michoud,
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was corrected to GENIA 3.01) reveal that the cor- 2003 The SWISS-PROT protein knowledgebase and

. 1 its supplement TrEMBLNucleic Acids Res31:365—
pus error is critical in our method. Even corpus er- 3,

rors have been successfully removed, it would no& Collier. C. Nobat 4 3. Tsuiii. 2000 Extracti

: : : y - N. Collier, C. Nobata, and J. Tsujii. . Extracting
be practical to increase the size of labor |nt_enS|v the Names of Genes and Gene Products with a Hidden
annotated corpus. Use of unlabeled data in con- parkov Model. COLING, pages 201-207.

junction with a small but quality set of labeled data.lvI Collins and Y. Singer. 1999. Unsupervised Models
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plored. 100-110.

4 Related Work The Gene Ontology Consortium. 2000. Gene ontology:
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transformation-based learning (Brill Tagger) with e

rule-based post processing. An obvious drawback ffr TFUkUdéﬂ\',T% TSU"‘thay A.tTartr)ura, di IfyT akagi. %9_98-
: : _ owara Information extraction: identrying protein
their approach as with other rule-based approachesnames from biological paperBSE pages 705-716,
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