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Abstract 

Machine-learning based entity extraction re-
quires a large corpus of annotated training to 
achieve acceptable results.  However, the cost 
of expert annotation of relevant data, coupled 
with issues of inter-annotator variability, 
makes it expensive and time-consuming to 
create the necessary corpora. We report here 
on a simple method for the automatic creation 
of large quantities of imperfect training data 
for a biological entity (gene or protein) extrac-
tion system. We used resources available in 
the FlyBase model organism database; these 
resources include a curated lists of genes and 
the articles from which the entries were 
drawn, together a synonym lexicon.  We ap-
plied simple pattern matching to identify gene 
names in the associated abstracts and filtered 
these entities using the list of curated entries 
for the article.  This process created a data set 
that could be used to train a simple Hidden 
Markov Model (HMM) entity tagger. The re-
sults from the HMM tagger were comparable 
to those reported by other groups (F-measure 
of 0.75). This method has the advantage of be-
ing rapidly transferable to new domains that 
have similar existing resources. 
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Introduction: Biological Databases 

 
There is currently an information explosion in 
biomedical research.  The growth of literature is 
roughly exponential, as can be seen in Figure 1 
which shows the number of literature references in 
FlyBase1 organized by date of publication over a 

hundred year span.2  This growth of literature 
makes it daunting for researchers to keep track of 
the information, even in very small subfields of 
biology. 

 
1 FlyBase is a database that focuses on research in the genetics 
and molecular biology of the fruit fly (Drosophila melangas-
Figure 1: FlyBase References, 1900-2000 
                                                                                          
tor), a model organism for genetics research: 
http://www.flybase.org. 

 
Increasingly, biological databases serve to collect 
and organize published experimental results.  A 
wide range of biological databases exist, including 
model organism databases (e.g., for mouse3 and 
yeast4) as well as various protein databases (e.g., 
Protein Information Resource5 (PIR) or SWISS-
PROT6 and   interaction databases such as the 
Biomolecular Interaction Network Database7 
(BIND). These databases are created by a process 
of curation, which is done by Ph.D. biologists who 
read the published literature to cull experimental 
findings and relations. These facts are organized 
into a set of structured fields of a database and 

 

2 Of course most of these early references in FlyBase are not 
in electronic form. The FlyBase database has been in existence 
since 1993. 
3 http://www.informatics.jax.org/ 
4 http://genome-www.stanford.edu/Saccharomyces/ 
5 http://pir.georgetown.edu/pirwww/pirhome3.shtml 
6 http://us.expasy.org/sprot/ 
7 http://www.bind.ca/ 

mailto:amorgan@mitre.org
http://www.flybase.org/
http://www.bind.ca/


linked to the source of information (the journal 
article).  As a result, curation is a time-consuming 
and expensive process; database curators are in-
creasingly eager to adopt text mining and natural 
language processing techniques to make curation 
faster and more consistent. As a result, there has 
been growing interest in the application of entity 
extraction and text classification techniques to the 
problem of biological database curation [Hirsch-
man02]. 
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Entity Extraction Methods 

There are two approaches to entity extraction.  The 
first requires manual or heuristic creation of rules 
to identify the names mentioned in text; the second 
uses machine learning to create the rules that drive 
the entity tagging. Heuristic systems require expert 
developers to create the rules, and these rules must 
be manually changed to handle new domains. Ma-
chine-learning based systems are dependent on 
large quantities of tagged data, consisting of both 
positive and negative examples.8  Figure 2 shows 
results from the IdentiFinder system [Bikel99] il-
lustrating that performance increases roughly with 
the log of quantity of training data. Given the ex-
pense of manual annotation of large quantities of 
data, the challenge for the machine learning ap-
proach is to find ways of creating sufficient quanti-
ties of training data cheaply. 

     Overall, hand-crafted systems seem to outper-
form learning-based systems for biology. How-

ever, it is clear that the quantities of training have 
been small, relative to the results reported for en-
tity extraction in e.g., newswire [Hirschman03]. 
There are several published sets of performance 
results for automatic named biological entity ex-
traction systems.  The system of Collier et al. [Col-
lier00] uses a hidden Markov model to achieve an 
F-measure9 of 0.73 when trained on a corpus of 
29,940 words of text from 100 MEDLINE ab-
stracts.   Contrast this with Figure 2, which reports 
results using over 600,000 words of training data, 
and an F-measure of 0.95 for English newswire 
entity extraction (and 0.91 for Spanish).   

 

                                                          

8 For negative examples, the "closed world" assumption gen-
erally is taken to apply: if an entity is not tagged, it is assumed 
to be a negative example. 

 
Krauthammer et al. [Krauthammer00] have taken a 
somewhat different approach which encodes char-
acters as 4-tuples of  DNA bases; they then use 
BLAST together with a lexicon of gene names to 
search for 'gene name homologies'. They report an 
F-measure of 0.75 without the use of a large set of 
rules or annotated training data. 
 
The PASTA system [Gaizauskas03] uses a combi-
nation of heuristic and machine-learned rules to 
achieve a higher F-measure over a larger number 
of classes: F-measure of 0.83 for the task of identi-
fying 12 classes of entities involved in the descrip-
tion of roles of residues in protein molecules. 
Because they used heuristic rules, they were able 
to get these results with a relatively small training 
corpus of 52 MEDLINE abstracts (roughly 12,000 
words). 

Figure 2: Performance of BBN's IdentiFinder named entity 
recognition system relative to the amount of training data, from 
[Bikel99] 

 
These results suggest that machine learning meth-
ods will not be able to compete with heuristic rules 
until there is a way to generate large quantities of 
annotated training data. Biology has the advantage 
that there are rich resources available, such as lexi-
cons, ontologies and hand-curated databases.  
What is missing is a way to convert these into 
training corpora for text mining and natural lan-
guage processing.  Craven and Kumlien [Cra-
ven99] developed an innovative approach that used 
fields in a biological database to locate abstracts 
which mention physiological localization of pro-
teins. Then via a simple pattern matching algo-
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rithm, they identified those sentences where the 
relation was mentioned and matched these with 
entries in the Yeast Protein Database (YPD).  In 
this way, they were able to automatically create an 
annotated gold standard, consisting of sentences 
paired with the curated relations derived from 
those sentences. They then used these for training 
and testing a machine-learning based system.  This 
approach inspired our interest in using existing 
resources to create an annotated corpus automati-
cally.   

3 

r 

3.1 

                                                          

FlyBase: Organization and Resources 

We focused on FlyBase because we had access to 
FlyBase resources from our work in the creation of 
the KDD 2002 Cup Challenge Task 1 [Yeh03].   
Through this work, we had become familiar with 
the multi-stage process of curation.  An early task 
in the curation pipeline is to determine, for a given 
article, whether there are experimental results that 
need to be added to the database. This was the task 
used as the basis for the KDD text data mining 
"challenge evaluation". A later task in the pipeline 
creates a list of the Drosophila genes discussed in 
each curated article. This is the task we focus on in 
this paper.   
 
An example of a FlyBase entry can be seen in Fig-
ure 3 which shows part of the record for the gene 
Toll. Under Molecular Function and Biological 
Process we see that the gene is responsible for en-
coding a transmembrane receptor protein involved 
in antimicrobial humoral response (part of the 
innate immune system of the fly).  We see furthe
that  “Tl” and “CG5490” are synonymous for Toll 
(top of the entry next to Symbol), and the link 
Synonyms leads to a long synonym list which in-
cludes: “Fs(1)Tl”, “dToll”, “CT17414”, “Toll-1”, 
“Fs(3)Tl”, “mat(3)9”, “mel(3)10”, and “mel(3)9”.  
Many of these facts about Toll are linked to a par-
ticular literature reference in the database.  For ex-
ample, following the link for Transcripts will lead 
to a page with links to the abstract of a paper by 
Tauszig et al. [Tauszig00] which reports on ex-
periments which measured the lengths of RNA 
transcribed from the Toll gene. 
 
For FlyBase, Drosophila genes are the key bio-
logical entities; each entity (e.g., gene) is associ-
ated with a unique identifier for the underlying 

physical entity. If there were a one-to-one relation-
ship between gene name and unique identifier, the 
gene identification task would be straightforward.  
However, both polysemy and synonymy occur fre-
quently in the naming of biological entities, and 
the gene names of Drosophila are considered to be 
particularly problematic because of creative nam-
ing conventions10.  For example, “18 wheeler”, 
“batman”, and “rutabaga” are all Drosophila gene 
names. A single entity (as represented by a unique 
identifier) may have a number of names like Toll 
or even ATPα, which has 38 synonyms listed in 
FlyBase.     

 
Figure 3: FlyBase entry for Toll 

 

Resources 

We obtained a copy of part the FlyBase database,11 
including the lists of genes discussed in each paper 
examined by the curators.  Using the BioPython12 
modules, we were able to obtain MEDLINE ab-
stracts for 15,144 for these papers.  We decided to 

 
10 At the other end of the spectrum is the yeast nomenclature 
which is strictly controlled – see <http://genome- 
www.stanford.edu/Saccharomyces/gene_guidelines.shtml> for 
nomenclature conventions. 
11 Special thanks to William Gelbart, David Emmert, Beverly 
Matthews, Leyla Bayraktaroglu, and Don Gilbert. 
12 http://www.biopython.org/ 



set aside the same articles used in the KDD Cup 
Challenge [Yeh03] for evaluation purposes.  This 
left a training set of 14,033 abstracts, consisting of 
a total of 2,664,324 lexemes identified by our 
tokenizer. 
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It was only with some reluctance that we decided 
to focus on journal abstracts. From our earlier 
work, we recognized that the majority of the in-
formation entered into FlyBase is missing from the 
abstracts and can be found only in the full text of 
the article [Hirschman03]. However, due to copy-
right restrictions, there is a paucity of freely avail-
able full text for journal articles.  What articles are 
available in electronic form vary in their format-
ting, which can cause considerable difficulty in 
automatic processing. MEDLINE abstracts have a 
uniform format and are readily available. Many 
other experiments have been performed on 
MEDLINE abstracts for similar reasons. 
 
We also created a synonym lexicon from FlyBase.  
We found 35,971 genes with associated ‘gene 
symbols’ (e.g. Tl is the gene symbol for Toll) and 
48,434 synonyms; therefore, each gene has an av-
erage of 2.3 alternate naming forms, including the 
gene symbol.  The lexicon also allowed us to asso-
ciate each gene with one a unique FlyBase gene 
identifier, providing "term normalization." 

Experiments 

For purposes of evaluation, our task was the identi-
fication of mentions of Drosophila genes in the 
text of abstracts.  We also included mentions of 
protein or transcript where the associated gene 
shared the same name. This occurs when, for ex-
ample, the gene name appears as a pre-nominal 
modifier, as in "the zygotic Toll protein".  We did 
not include mentions of protein complexes because 
these are created out of multiple polypeptide 
chains with multiple genes (e.g., hemoglobin). We 
also did not include families of proteins or genes 
(e.g. lectin), particular alleles of a gene, genes 
which are not part of the natural Drosophila ge-
nome such as reporter genes (e.g. LacZ), and the 
names of genes from other organisms (e.g. sonic 

hedgehog, the mammalian gene homologous to the 
Drosophila hedgehog gene).13 

Background 

Our initial experiment [Hirschman03] had looked 
at creating a gene name finder by simple pattern 
matching, using the extensive FlyBase list of genes 
and their synonyms and identifying each mention 
which occurred in the lexicon with the appropriate 
unique identifier. This yielded spectacularly poor 
results: recall14 on the full papers was quite high 
(84%), but precision was 2%!  For abstracts, the 
recall was predictably lower (31%) and precision 
remained low at 7%.  Our analysis showed that 
polysemy (described in Section 5) and the large 
intersection of gene names with common English 
words caused most of the performance problems. 
In the initial run, where a name was ambiguous, 
we recorded all gene identifiers; this raised recall 
but lowered precision.  After removing all the 
names which were ambiguous for a gene, precision 
climbed to 5% for full papers and 17% in abstracts, 
with a corresponding drop in recall (77% for full 
papers, 28% for abstracts).  We also tried a few 
simple filters, such as ignoring all terms three 
characters or less in length, but the best precision 
we could achieve was 29% in abstracts, certainly 
unacceptable. 
 
We were, however, encouraged by the relatively 
high recall in full papers. Analysis showed that 
many of the missing names were contained only in 
figures or tables that had not been downloaded.  
While these were counted as recall errors when 
compared to the FlyBase curation, there were, in 
fact, no mentions of these genes in the text that had 
been downloaded for this experiment.  Similarly, 
for abstracts, while the recall appeared low com-
pared to the complete set of genes discussed in the 
full paper, these genes were simply not mentioned 
in the abstract.  So from an information extraction 

 
13 There are no curated lists of complexes or families in Fly-
Base, so we did not train a tagger for these tasks. In our man-
ual curation, we did create separate tags for complexes and 
families, since we believe that these will be important for fu-
ture tasks.  
14 Note that these measures of recall and precision are based 
on the list of unique Drosophila genes curated in a paper. This 
is quite different from recall and precision measuring the men-
tions of gene names in a paper. We used the measure of 
unique genes in a paper because this allowed us to take advan-
tage of the existing FlyBase expert curated resources. 



point of view, the simple pattern matching 
achieved a very high recall for genes mentioned in 
the text being processed. 

4.2 

4.3 

4.4 

Generating Noisy Training Data 

The initial experiment demonstrated that exact 
match using rich lexical resources was not useful 
on its own. However, we realized that we could 
use the lists of curated genes from FlyBase to con-
strain the possible matches within an abstract – that 
is, to "license" the tagging of only those genes 
known to occur in the curated full article.  Our 
hope was that this filtered data would provide large 
quantities of cheap but imperfect or noisy training 
data.  
 
Our next experiment focused on generating this 
large but noisy training corpus.  We used our inter-
nal tokenizer, punctoker, originally designed for 
use with newswire data.  There were some errors in 
tokenization, since biological terms have a very 
different morphology from newswire– see 
[Cohen02] for an interesting discussion of tokeni-
zation issues. Among the problems in tokenization 
were uses of "-" instead of white space, or "/" to 
separate recombinant genes.  However, an informal 
examination of errors did not show tokenization 
errors to be a significant contributor to the overall 
performance of the entity extraction system. 
 
To perform the pattern matching, we created a suf-
fix tree of all the synonyms known to FlyBase for 
those genes. This was important, since many bio-
logical entity names are multi-word terms.   We 
then used longest-extent pattern matching to find 
candidate mentions in the abstract of the paper.  
The system tagged only terms licensed by the as-
sociated list of genes for the abstract, assigning the 
appropriate unique gene identifier. Even with the 
FlyBase filtering, this method resulted in some 
errors.  For example, an examination of an abstract 
describing the gene to revealed the unsurprising 
result that all the uses of the word "to" did not refer 
to the gene.  However, the aim was to create data 
of sufficient quantity to lessen the effects of this 
noise. 

Evaluation 

In order to measure performance, we created a 
small doubly annotated test corpus.  We selected a 

sample of 86 abstracts and had two annotators 
mark these abstracts for gene name mentions as 
previously described.  Mentions of families and 
foreign genes were also identified with different 
tags during this process, but not evaluated.   One 
curator was a professional researcher in biology 
with experience as a model organism genome da-
tabase curator (Colosimo).  This set of annotations 
was taken as the "gold-standard". The second an-
notator was the system developer with no particu-
lar annotation experience (Morgan). With two 
annotators, we were able to measure inter-
annotator agreement (F-measure of 0.87). We also 
measured the quality of the automatically created 
training data by using the lexical pattern matching 
procedure with filtering to generate annotations for 
86 abstracts in the test set.  The F-measure was 
0.83, when compared against the gold standard, 
shown in Table 1 below. 

 
Ta

HMM Tagging With Noisy Training Data 

We now had a large quantity of noisy training data 
that we could use to train a statistical tagger.   This 
methodology is illustrated in Figure 4.  We chose 
the HMM-based trainable entity tagger phrag15 
[Palmer99] to extract the names in text.  We 
trained phrag on different amounts of training data 
and measured performance.  Our evaluation metric 
was the standard metric used in named entity 
Abstracts
from

PubMed

Lexicon

FlyBase

Large Quantity
of Noisy

Training Data

Plain Text

Genes Tagged

Gene1 Gene2

Other1 Other2

Start End

Text automatically tagged using
FlyBase references and a lexicon is
used to train up a tagger capable of
tagging gene names in new text,
including gene names never observed
before.

Trainable
Tagger

Figure 4: Schematic of  Methodology 

     
15 P
http
F-measure Precision Recall
Training Data

Quality 0.83 0.78 0.88

Inter-
annotator

Agreement
0.87 0.83 0.91

 

ble 1: Training data quality and inter-annotator agreement  
                                                      
hrag is available for download at 
://www.openchannelfoundation.org/projects/Qanda 



evaluation, requiring the matching of a name's ex-
tent and tag (except that for our experiment, we 
were only concerned with one tag, Drosophila 
gene).   Extent matching meant exact matching of 
gene name boundaries at the level of tokens:   Ex-
actly matching boundaries were considered a hit.  
Inexact answers are considered a miss.  For exam-
ple, a multiword gene name such as "fas receptor", 
which has been tagged for "fas" but not for "recep-
tor" would constitute a miss (recall error) and a 
false alarm (precision error).  
 
Table 2 shows the performance of the basic system 
as a function of the amount of training data.  As 
with Figure 2, we see there is a diminishing return 
as the amount of training data is increased.   At 2.6 
million words or training data, phrag achieved an 
entity identification F-measure of 73%.  We then 
made a simple modification of the algorithm to 
correct for variations in orthography due to capi-
talization and representation of Greek letters:  we 
simply expanded the search for letters such as "∆" 
to include "Delta" and "delta".  By expanding the 
matching of terms using the orthographical and 
case variants, performance of phrag improved 
slightly, shown in Table 3, improving our best 
performance to an F-measure of 75%.   
 
Figure 5 shows these results in a graphical form.  
Two things are apparent from this graph.  Based on 
the results shown in Figure 2, we might expect the 
performance to be linear with the logarithm of the 
amount of training data, and in this case there is a 
Training Data F-measure Precision Recall
531522 0.62 0.73 0.54
529760 0.64 0.75 0.56

1342039 0.72 0.80 0.65
2664324 0.73 0.79 0.67

No Orthographic Correction

  
Table 2: Performance as a function of training data 
 
Training Data F-measure Precision Recall

531522 0.65 0.76 0.56
529760 0.66 0.74 0.59
522825 0.67 0.76 0.59

1322285 0.72 0.77 0.67
1342039 0.75 0.80 0.70
2664324 0.75 0.78 0.71

Orthographic Correction

 
Table 3: Improved performance with orthographical correction 
for Greek letters and case folding for term matching in training 
data  

 

5 

                                                          

rough fit with a correlation coefficient of .88.  The 
other result which stands out is that there is con-
siderable variation in the performance when train-
ed on different training sets of the same size.  We 
believe that this is due to the very limited amount 
of testing data. 

Error Analysis 

We have identified three types of polysemy in 
Drosophila gene names in FlyBase.  In some cases, 
one name (e.g., “Clock”) can refer to two distinct 
genes: period or Clock.  The term with the most 
polysemy is “P450” which is a family of genes and 
is listed as a synonym for 20 different genes in 
FlyBase.  In addition, the same term is often used 
interchangeably to refer to the gene, RNA tran-
script, or the protein. [Hazivassloglou01] presents 
interesting results that demonstrate that experts 
only agree 78% of the time on whether a particular 
mention refers to a gene or a protein.16  The most 
problematic type of polysemy occurs because 
many Drosophila gene names are also regular Eng-
lish words such as "white", “cycle”, and "bizarre". 
There are some particularly troublesome examples 
that occur because of frequent use of short forms 
(abbreviations) of gene names, e.g., "we", "a", 
"not”, and even “and” each occur as gene names.  
These short forms are often abbreviations for the 
full gene name.  For example, the gene symbol of 
the gene takeout is "to", and the symbol for the 

 
16 The entity tagging task for FlyBase was defined to extract 
gene-or-protein names; however, in cases where the article 
talks only about the protein and not about the gene, the protein 
name may not appear on the list of curated genes for the arti-
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

100000 1000000 10000000

Training Data (# of Lexemes)

F-
m

ea
su

re

Figure 5: Performance as a function of the amount of train-
ing data.  The line is a least-squares logarithmic fit with an 
R2 value of .8814. 
cle, leading to apparent false positives in tagging. 



gene wee is "we".  It may be that more sophisti-
cated handling of abbreviations can address some 
of these issues. 
An error analysis looking at the results of our sta-
tistical tagger demonstrated some unusual behav-
ior.  Because our gene name tagger phrag uses a 
first order Markov model, it relies on local context 
and occasionally makes errors such as not tagging 
all of the occurrences of the term "rutabaga" in an 
abstract about rutabaga as gene names.  This cer-
tainly opens up the opportunity for some sort of 
post processing step to resolve these problems. 
 
The fact that phrag uses this local context can 
sometimes be a strength, enabling it to identify 
gene names it has never seen.  We estimated the 
ability of the system to identify new terms as gene 
names by substituting strings unknown to phrag in 
place of all the occurrences of gene names in the 
evaluation data.  The performance of the system at 
correctly identifying terms it had never observed 
gave a precision of 68%, a recall of 22% and an F-
measure of 33%.  This result is relatively encour-
aging, compared with the 3.3% precision and 4.4% 
recall for novel gene names reported by Krau-
thammer.  Recognizing novel names is important 
because the nomenclature of biological entities is 
constantly changing and entity tagging systems 
should to be able to rapidly adapt and recognize 
new terms.   

6 Conclusion and Future Directions 

We have demonstrated that we can automatically 
produce large quantities of relatively high quality 
training data; these data were good enough to train 
an HMM-based tagger to identify gene mentions 
with an F-measure of 75% (precision of 78% and 
recall of 71%), evaluated on our small develop-
ment test set of 86 abstracts.    This compares fa-
vorably with other reported results as described in 
Section 2, and as discussed below, we believe that 
we can improve upon these results in various ways.  
These results are still considerably below the re-
sults from [Gaizauskas03] and may be too low to 
be useful as a building block for further automated 
processing, such as relation extraction.  However, 
in the absence of any shared benchmark evaluation 
sets, cross-system performance cannot be evalu-
ated since the task definition and evaluation cor-
pora differ from system to system.   

 
We plan to take this work in several directions.  
First, we believe that we can improve the quality of 
the underlying automatically generated data, and 
with this, the quality of the entity tagging. There 
are several things that could be improved.  
 
A morphological analyzer trained for biological 
text would eliminate some of the tokenization er-
rors and perhaps capture some of the underlying 
regularities, such as addition of Greek letters or 
numbers (with or without preceding hyphen) to 
specify sub-types within a gene family. There can 
also be considerable semantic content in gene 
names and their formatting.  For example, many 
Drosophila genes are differentiated from the genes 
of other organisms by prepending a "d" or "D", 
such as "dToll".  Gene names can also be explicit 
descriptions of their chromosomal location or even 
function (e.g. Dopamine receptor). 
 
The problem of matching abbreviations has been 
tackled by a number of researchers [e.g. Puste-
jovsky02 and Liu03].  As was mentioned above, it 
seems that ambiguity for "short forms" of gene 
names could be partially resolved by detecting lo-
cal definitions for abbreviations.  It should also be 
possible to apply part of speech tagging and corpus 
statistics to avoid mis-tagging of common words, 
such as “to” or “and”.  
 
In the longer term, this methodology provides an 
opportunity to go beyond gene name tagging for 
Drosophila. It can be extended to other domains 
that have comparable resources (e.g. other model 
organism genome databases, other biological enti-
ties), and entity tagging itself provides the founda-
tion for more complex tasks, such as relation 
extraction (e.g. using the BIND database) or attrib-
ute extraction (e.g. using FlyBase to identify at-
tributes such as RNA transcript length, associated 
with protein coding genes). 
 
Second, the existence of a synonym lexicon with 
unique identifiers provides data for term normali-
zation, a task of potentially greater utility to biolo-
gists than the tagging of every mention in an 
article.  There are currently few corpora with anno-
tated term normalization; using the methodology 
outlined here makes it possible to produce large 
quantities of normalized data.  The identification 



and characterization of abbreviations and other 
transformations would be particularly important in 
normalization.   
By exploiting the rich set of biological resources 
that already exist, it should be possible to generate 
many kinds of corpora useful for training high-
quality information extraction and text mining 
components. 
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