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Abstract

This paperproposesa machinelearning
basedquestion classification methodus-
ing a kernel function, Hierarchical Di-
rected Acyclic Graph (HDAG) Kernel.
TheHDAG Kerneldirectly acceptsstruc-
turednaturallanguagedata,suchassev-
eral levels of chunksand their relations,
andcomputesthevalueof thekernelfunc-
tion at a practicalcostandtime while re-
flecting all of thesestructures. We ex-
amine the proposedmethod in a ques-
tion classificationexperimentusing5011
Japanesequestions that are labeled by
150 question types. The resultsdemon-
stratethatour proposedmethodimproves
theperformanceof question classification
over thatby conventionalmethodssuchas
bag-of-wordsandtheir combinations.

1 Intr oduction

Open-domain Question Answering (ODQA) in-
volvestheextractionof correctanswer(s)to a given
free-form factual question from a large collection
of texts. ODQA hasbeenactively studied all over
theworld sincethestartof theQuestion Answering
TrackatTREC-8in 1999.

The definition of ODQA tasksat theTREC QA-
Track has been revised and extendedyear after
year. At first,ODQA followedthePassageRetrieval
methodasusedatTREC-8.Thatis, theODQA task
wasto answera question in the form of strings of

50 bytesor 250bytesexcerptedfrom a large setof
news wires. Recently, however, the ODQA taskis
consideredto be a taskof extractingexact answers
to a question. For instance,if a QA systemis given
the question“When wasQueenVictoria born?”, it
should answer“1832”.

Typically, QA systemshavethefollowingcompo-
nentsfor achieving ODQA:

Questionanalysis analyzesa given question and
determinesthequestion typeandkeywords.

Text retrieval findsthetop � paragraphsor docu-
mentsthatmatchtheresultof thequestion anal-
ysiscomponent.

Answer candidateextraction extractsanswercan-
didatesof the given questionfrom the docu-
mentsretrievedby thetext retrieval component,
basedon theresultsof thequestion types.

Answer selection selects the most plausible an-
swer(s)to the given question from amongthe
answercandidatesextractedby theanswercan-
didateextractioncomponent.

One of the most important processesof those
listedabove is identifying thetargetof intention in a
givenquestion to determinethetypeof sought-after
answer. This processof determiningthe question
type for a given question is usuallycalledquestion
classification. Without a question type, that is, the
resultof question classification,it would be much
moredifficult or evennearlyinfeasibleto selectcor-
rect answersfrom amongthe possible answercan-
didates,which wouldnecessarilybeall of thenoun



phrasesor namedentitiesin thetexts. Questionclas-
sificationprovidesthebenefitof a powerful restric-
tion thatreducesto apracticalnumberof theanswer
candidatesthatshouldbeevaluatedin theanswerse-
lectionprocess.

This work developsa machinelearningapproach
to questionclassification(Harabagiuet al., 2000;
Hermjakob,2001; Li andRoth,2002). We usethe
Hierarchical DirectedAcyclic Graph(HDAG) Ker-
nel (Suzukiet al., 2003),which is suitedto handle
structurednaturallanguagedata.It canhandlestruc-
tureswithin texts as the featuresof texts without
converting the structuresto the explicit representa-
tion of numericalfeaturevectors.Thisframework is
usefulfor question classification becausetheworks
of (Li andRoth,2002;Suzukietal., 2002a) showed
that richer information, suchas structuraland se-
mantical information inside a given question, im-
provesthequestion classificationperformanceover
usingtheinformationof justsimplekey terms.

In Section2, we presentthe question classifica-
tion problem. In Section3, weexplainourproposed
methodfor question classification. Finally, in Sec-
tion 4, wedescribeourexperimentandresults.

2 QuestionClassification

Question classification is definedasa taskthatmaps
a given question to more than one of � question
types(classes).

In the generalconceptof QA systems,the result
of question classification is usedin a downstream
process,answerselection, to selectacorrectanswer
from amongthelargenumberof answercandidates
that areextractedfrom the sourcedocuments.The
resultof the question classification,that is, the la-
belsof the question types,can reducethe number
of answercandidates.Therefore,we no longerhave
to evaluateevery nounphrasein the sourcedocu-
mentsto seewhetherit providesacorrectanswerto
agivenquestion. Evaluatingonly answercandidates
thatmatchtheresultsof question classificationis an
efficientmethodof obtaining correctanswers.Thus,
question classification is an importantprocessof a
QA system.Betterperformancein questionclassi-
fication will leadto bettertotal performanceof the
QA system.

2.1 QuestionTypes: Classesof Questions

Numerousquestion taxonomieshave beendefined,
but unfortunately, nostandardexists.

In thecaseof theTRECQA-Track,mostsystems
have theirown question taxonomy, andthesearere-
constructedyearby year. For example,(Ittycheriah
et al., 2001) defined31 original question typesin
two levels of hierarchicalstructure. (Harabagiuet
al., 2000)alsodefineda large hierarchicalquestion
taxonomy, and(Hovy etal.,2001)defined141ques-
tion typesof ahierarchicalquestion taxonomy.

Within all of thesetaxonomies,question typesare
definedfrom theviewpoint of thetargetintentionof
thegivenquestions,andthey havehierarchicalstruc-
tures,eventhoughthesequestiontaxonomiesarede-
finedby differentresearchers.Thisbecausethepur-
poseof question classification is to reducethelarge
numberof answercandidatesby restrictingthe tar-
getintentionvia questiontypes.Moreover, it is very
usefulto handlequestiontaxonomyconstructedin a
hierarchicalstructurein the downstreamprocesses.
Thus,question typesshouldbe the target intention
andconstructedin ahierarchicalstructure.

2.2 Properties

Question classificationis quitesimilar to Text Cate-
gorization, which is oneof the major tasksin Nat-
ural Language Processing (NLP). Thesetasksre-
quire classification of the given text to certainde-
finedclasses.In general,in thecaseof text catego-
rization, the given text is onedocument,suchasa
newspaperarticle, andthe classesare the topicsof
the articles. In the caseof question classification,
a given text is oneshortquestion sentence,andthe
classesarethe target answerscorrespondingto the
intentionof thegivenquestion.

However, questionclassification requiresmuch
morecomplicatedfeaturesthantext categorization,
asshown by (Li andRoth,2002). They provedthat
question classificationneedsricherinformationthan
simplekey terms(bag-of-words),whichusuallygive
us high performancein text classification. More-
over, the previous work of (Suzuki et al., 2002a)
showed that the sequential patternsconstructedby
differentlevelsof attributes,suchaswords, part-of-
speech(POS)andsemanticalinformation,improve
theperformanceof question classification. The ex-



perimentsin theseprevious works indicated that
the structuraland semanticalfeaturesinside ques-
tionshave thepotentialto improve theperformance
of questionclassification. In other words, high-
performancequestion classificationrequiresus to
extract the structural and semanticalfeaturesfrom
thegivenquestion.

2.3 Learning and Classification Task

This paper focuseson the machine learning ap-
proach to question classification. The machine
learningapproachhasseveraladvantagesover man-
ualmethods.

First, the construction of a manualclassifierfor
questions is a tedious task that requiresthe analy-
sisof a largenumberof questions. Moreover, map-
ping questions into question typesrequiresthe use
of lexical itemsand,therefore,anexplicit represen-
tation of the mappingmay be very large. On the
otherhand,machinelearningapproachesonly need
to definefeatures.Finally, theclassifiercanbemore
flexibly reconstructedthana manualonebecauseit
can be trainedon a new taxonomyin a very short
time.

As themachinelearningalgorithm, we chosethe
Support VectorMachines(SVMs)(CortesandVap-
nik, 1995) becausethe work of (Joachims,1998;
Taira and Haruno, 1999) reportedstate-of-the-art
performancein text categorizationaslong asques-
tion classification is a similar processto text catego-
rization.

3 HDAG Kernel

Recently, thedesignof kernelfunctionshasbecome
ahot topic in theresearchfield of machinelearning.
A specifickernelcandrasticallyincreasetheperfor-
manceof specifictasks.Moreover, a specifickernel
can handlenew featurespacesthat are difficult to
managedirectlywith conventionalmethods.

The HDAG Kernel is a new kernelfunction that
is designedto easilyhandlestructurednaturallan-
guagedata.Accordingto thediscussionin thepre-
vious section,richer information suchasstructural
and semanticalinformation is required for high-
performancequestion classification.

We think that the HDAG Kernel is suitable for
improving the performanceof question classifica-

tion: TheHDAG Kernelcanhandlevariouslinguis-
tic structureswithin texts, suchaschunksandtheir
relations,asthefeaturesof thetext without convert-
ing suchstructuresto numericalfeaturevectorsex-
plicitly.

3.1 Feature Space

Figure 1 shows examplesof the structureswithin
questionsthatarehandledby theHDAG kernel.

As shown in Figure1, theHDAG kernelaccepts
severallevelsof chunksandtheirrelationsinsidethe
text. Thenodesrepresentseverallevelsof chunksin-
cludingwords, anddirectedlinks representtheir re-
lations. Suppose �����
	 ���
����� and ������	 ���
����� rep-
resenteachnode. Somenodeshave a graphinside
themselves,which arecalled“non-terminalnodes”.
Eachnodecan have more thanone attribute, such
aswords,part-of-speechtags,semanticinformation
like WordNet(Fellbaum,1998),andclassnamesof
the namedentity. Moreover, nodesare allowed to
not have any attribute, in other words, we do not
have to assignattributesto all nodes.

The “attribute sequence”is a sequenceof at-
tributes extracted from the node in sub-pathsof
HDAGs. One type of attribute sequencebecomes
oneelementin thefeaturevector. Theframework of
theHDAG Kernelallows nodeskipsduring theex-
tractionof attributesequences,andits costis based
thedecayfactor ��������� ��!�" , sinceHDAG Kernel
dealswith not only the exact matchingof the sub-
structuresbetweenHDAGsbut alsotheapproximate
structurematchingof them.

Explicit representationof feature vectors in
the HDAG kernel can be written as #$��%�"'&��#)(*��%�"�+-,.,-,/+.#102��%�"�" , where # representsthe ex-
plicit featuremappingfrom theHDAG to thefeature
vectorand � representsthe numberof all possible
typesof attributesequencesextractedto theHDAGs.
Thevalueof # � ��%2" is thenumberof occurrencesof
the3 ’ thattributesequencein theHDAG % , weighted
accordingto thenodeskip.

Table 1 shows a exampleof attribute sequences
thatareextractedfrom theexamplequestion in Fig-
ure 1. The symbol 4 in thesub-pathcolumnshows
that more thanonenodeskip occurredthere. The
parentheses“( )” in the attribute sequencecolumn
representsthe boundariesof a node. For example,
attribute sequence“purchased-(NNP-Bush)”is ex-
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Figure1: Exampleof text structure handledby HDAG (Fromthequestionsin TREC-10)

Table1: Examplesof attributesequences,elements
of featurevectors,extractedfrom theexampleques-
tion in Figure1

sub-path attributesequence: element value5
6 PERSON 15/7 George 15 7 NNP 15 7 -598 George-Bush 15/7 -5 8 NNP-Bush 15/7 -5 8 George-NNP 15 7 -598 NNP-NNP 1
.
.
.

.

.

.
.
.
.5/: -5 6 purchased-(NNP-Bush) 15 : -5.6 purchased-(PERSON) 15 : -5.6 purchased-(Bush) ;

.

..
.
..

.

..5 : - < - 5.6>= purchased-(NP) ; :
.
..

.

..
.
..5?: -59@ - < - 5 6>= VBD-(a-small-interest)-(which-baseball-team) ; 75 : -5 @ - < - 5.6>= purchased-(NP)-(which-team) ; 8

tractedfrom sub-path“ �BA -��( ”, and“NNP-Bush” is
in thenode�C( .

Thereturnvalueof theHDAG Kernelcanbede-
finedas:

D EGFIHKJML�NPORQSEGFILUTVQMEGJ�LXWBNZY[]\�^ Q [ EGFBLBT*Q [ EGJMLXH (1)

where input objects _ and ` are the objectsrep-
resentedin HDAG % ( and %ba , respectively. Ac-
cordingto thisformula,theHDAG Kernelcalculates
theinnerproductof thecommonattributesequences
weightedaccordingto their nodeskips andthe oc-
currencebetweenthetwo HDAGs, % ( and % a .

3.2 Efficient Calculation Method

In general,thedimension of thefeaturespace� in
equation(1) becomesvery high or even infinity. It
mightthusbecomputationally infeasibleto generate
featurevector #$��%2" explicitly.

To solvethisproblem,wefocusontheframework
of the kernelfunctions definedfor a discretestruc-
ture, Convolution Kernels(Haussler, 1999). One
of the most remarkablepropertiesof this kernel
methodology is thatit cancalculatekernelfunctions
by the “inner productsbetweenpairs of objects”
while it retainstheoriginalrepresentationof objects.
Thismeansthatwedonothaveto mapinputobjects
to thenumericalfeaturevectorsby explicitly repre-
sentingthem,aslong asan efficient calculation for
theinnerproductsbetweenapairof texts is defined.

However, Convolution Kernelsare abstractcon-
cepts. The Tree Kernel (Collins and Duffy, 2001)
andString SubsequenceKernel (SSK)(Lodhi et al.,
2002)areexamplesof instancesin theConvolution
Kernelsdevelopedin theNLP field.

The HDAG Kernelalsousethis framework: we
canlearnandclassifywithout creatingexplicit nu-
merical featurevectorslike equation(1). The effi-
cientcalculation of innerproductsbetweenHDAGs,
thereturnvalueof HDAG Kernel,wasdefinedin a
recursive formulation(Suzukiet al., 2003).This re-
cursiveformulationfor HDAG Kernelcanberewrit-
ten as “for loops” by usingthe dynamicprogram-
ming technique.Finally, the HDAG Kernelcanbe
calculatedin c2�d	 � 	e	 �f	 " time.



Table2: Distribution of 5011questionsover question typehierarchyg
questiontype #

0 !TOP 4963
1 NAME 3190
2 PERSON 824
3 *LASTNAME 0
3 *MALE FIRSTNAME 1
3 *FEMALE FIRSTNAME 2
2 ORGANIZATION 733
3 COMPANY 119
3 *COMPANY GROUP 0
3 *MILIT ARY 4
3 INSTITUTE 26
3 *MARKET 0
3 POLITICAL ORGANIZATION 103
4 GOVERNMENT 38
4 POLITICAL PARTY 43
4 PUBLIC INSTITUTION 19
3 GROUP 96
4 !SPORTS TEAM 20
3 *ETHNIC GROUP 4
3 *NATIONALITY 4
2 LOCATION 752
3 GPE 265
4 CITY 77
4 *COUNTY 1
4 PROVINCE 47
4 COUNTRY 116
3 REGION 23
3 GEOLOGICAL REGION 22
4 *LANDFORM 9
4 *WATER FORM 7
4 *SEA 3
3 *ASTRAL BODY 5
4 *STAR 2
4 *PLANET 2
3 ADDRESS 59
4 POSTAL ADDRESS 24
4 PHONE NUMBER 22
4 *EMAIL 4
4 *URL 8
2 FACILITY 147
3 GOE 99
4 SCHOOL 27
4 *MUSEUM 3
4 *AMUSEMENT PARK 4
4 WORSHIPPLACE 10
4 STATION TOP 12
5 *AIRPORT 6
5 *STATION 3
5 *PORT 3
5 *CAR STOP 0

g
questiontype #

3 LINE 24
4 *RAILROAD 3
4 !ROAD 11
4 *WATERWAY 0
4 *TUNNEL 1
4 *BRIDGE 1
3 *PARK 2
3 *MONUMENT 3
2 PRODUCT 468
3 VEHICLE 37
4 *CAR 8
4 *TRAIN 2
4 *AIRCRAFT 5
4 *SPACESHIP 8
4 !SHIP 12
3 DRUG 15
3 *WEAPON 4
3 *STOCK 0
3 *CURRENCY 8
3 AWARD 11
3 *THEORY 1
3 RULE 66
3 *SERVICE 2
3 *CHARCTER 4
3 METHOD SYSTEM 33
3 ACTION MOVEMENT 21
3 *PLAN 1
3 *ACADEMIC 5
3 *CATEGORY 0
3 SPORTS 11
3 OFFENCE 10
3 ART 78
4 *PICTURE 2
4 *BROADCAST PROGRAM 6
4 MOVIE 15
4 *SHOW 4
4 MUSIC 13
3 PRINTING 31
4 !BOOK 10
4 *NEWSPAPER 7
4 *MA GAZINE 4
2 DISEASE 44
2 EVENT 99
3 *GAMES 8
3 !CONFERENCE 17
3 *PHENOMENA 6
3 *WAR 3
3 *NATURAL DISASTER 5
3 *CRIME 6
2 TITLE 97

g
questiontype #

3 !POSITION TITLE 97
2 *LANGUAGE 8
2 *RELIGION 6
1 NATURAL OBJECT 96
2 ANIMAL 18
2 VEGETABLE 15
2 MINERAL 54
1 COLOR 10
1 TIME TOP 779
2 TIMEX 652
3 TIME 50
3 DATE 594
3 *ERA 5
2 PERIODX 125
3 *TIM E PERIOD 9
3 *DATE PERIOD 9
3 *WEEK PERIOD 4
3 *MONTH PERIOD 6
3 !YEAR PERIOD 41
1 NUMEX 882
2 MONEY 187
2 *STOCK INDEX 0
2 *POINT 9
2 PERCENT 94
2 MULTIPLICATION 10
2 FREQUENCY 27
2 *RANK 8
2 AGE 58
2 MEASUREMENT 133
3 PHYSICAL EXTENT 53
3 SPACE 18
3 VOLUME 14
3 WEIGHT 22
3 *SPEED 9
3 *INTENSITY 0
3 *TEMPERATURE 7
3 *CALORIE 1
3 *SEISMIC INTENSITY 2
2 COUNTX 326
3 N PERSON 162
3 N ORGANIZATION 49
3 N LOCATION 27
4 *N COUNTRY 9
3 *N FACILITY 6
3 N PRODUCT 47
3 *N EVENT 8
3 *N ANIMAL 7
3 *N VEGETABLE 0
3 *N MINERAL 0
0 *OTHER 48

4 Experiment

4.1 Data Set

We usedthree different QA data setstogetherto
evaluatethe performanceof our proposedmethod.
Oneis the1011questionsof NTCIR-QAC11, which
were gatheredfrom ’dry-run’, ’formal-run’ and
’additional-run.’ The secondis the 2000questions
describedin (Suzukiet al., 2002b). The lastoneis
the 2000questions of CRL-QA data2. Thesethree
QA datasetsarewritten in Japanese.

Thesedatawere labeledwith the 150 question
typesthat are definedin the CRL-QA data,along
with one additional questiontype, “OTHER”. Ta-
ble2 shows all of thequestiontypesweusedin this
experiment,where h representsthedepthof the hi-

1http://www.nlp.cs.ritsumei.ac.jp/qac/
2http://www.cs.nyu.edu/˜sekine/PROJECT/CRLQA/

erarchyand# representsthenumberof questionsof
eachquestion type, including the numberof ques-
tionsin “child question types”.

While considering questionclassification as a
learningandclassificationproblem,we decidednot
to usequestion typesthatdonot have enoughques-
tions(morethantenquestions), indicatedby anas-
terisk (*) in front of thenameof thequestiontype,
becauseclassifierlearningis verydifficult with very
few data. In addition, after theabove operations,if
only onequestiontype belongs to oneparentques-
tion type,we alsodeletedit, which is indicatedby
an exclamationmark (!). Ultimately, we evaluated
68question types.

4.2 ComparisonMethods

We comparedtheHDAG Kernel(HDAG) to abase-
line methodthatis sometimesreferredto asthebag-



of-wordskernel, abag-of-words(BOW) with apoly-
nomial kernel (d1: first degreepolynomial kernel,
d2: seconddegreepolynomialkernel).

HDAG andBOW differ in how they consider the
structuresof a given question. BOW only con-
sidersattributes independently (d1) or combinato-
rially (d2) in a given question. On the otherhand,
HDAG canconsider thestructures(relations) of the
attributesin a givenquestion.

We selectedSVM for the learningandclassifica-
tion algorithm. Additionally, we evaluatedthe per-
formanceusingSNoW3 to compareour methodto
indirectly the SNoW-basedquestion classifier(Li
andRoth,2002). Note that BOW wasusedasfea-
turesfor SNoW.

Finally, we compared the performances of
HDAG-SVM, BOW(d2)-SVM, BOW(d1)-SVM,
and BOW-SNoW. The parametersof each com-
parison method were set as follows: The decay
factor � was 0.5 for HDAG, and the soft-margini

of all SVM wasset to 1. For SNoW, we usedj &k!M,elMm�+9n�&o��,Kp , and qr&ol . Theseparameters
wereselectedbasedonpreliminaryexperiments.

4.3 DecisionModel

SincetheSVM is a two-class classificationmethod,
we have to makea decisionmodelto determinethe
question typeof a givenquestion thatis adaptedfor
question classification,whichis amulti-classhierar-
chicalclassificationproblem.

Figure2 shows how we constructedthefinal de-
cisionmodelfor questionclassification.

First,we made68SVM classifiersfor eachques-
tion type, and then we constructed“one-vs-rest
models” for eachnodein the hierarchicalquestion
taxonomy. Oneof theone-vs-restmodelswascon-
structedby someof theSVM classifiers,whichwere
the child question typesof the focusednode. For
example,the one-vs-restmodelat the node“TOP”
wasconstructedby five SVM classifiers:“NAME”,
“NATURAL OBJECT”, “COLOR”, “TIME TOP”
and “NUMEX”. The total numberof one-vs-rest
modelswas17.

Finally, the decisionmodel was constructedby
setting one-vs-restmodelsin the hierarchicalques-
tion taxonomy to determinethemostplausibleques-

3http://l2r.cs.uiuc.edu/˜cogcomp/cc-software.html

Dicision Model

NAME

TOP

NATURAL_OBJECT NUMEX

: one SVM classifier

: one-vs-rest model :
constructed by the SVM 
classifiers of child QTs

PERSON

: label of question type

Figure 2: Hierarchical classifier constructed by
SVM classifiers

tion typeof agivenquestion.

4.4 Features

We set four feature sets for each comparison
method.

1. wordsonly (W)

2. wordsandnamedentities(W+N)

3. wordsandsemanticinformation(W+S)

4. words, namedentitiesand semanticinforma-
tion (W+N+S)

The wordswereanalyzedin basicform, andthe
semanticinformationwasobtained from the “Goi-
taikei” (Ikeharaet al., 1997), which is similar to
WordNetin English. Words,chunksandtheir rela-
tionsin thetexts wereanalyzedby CaboCha(Kudo
andMatsumoto,2002),andnamedentitieswerean-
alyzedby the SVM-basedNE tagger(Isozakiand
Kazawa,2002).

Note thatevenwhenusingthesamefeaturesets,
methodof how to constructfeaturespacesare en-
tirely differentbetweenHDAG andBOW.

4.5 Evaluation Method

We evaluatedthe 5011 questions by using five-
fold cross-validationandusedthefollowing two ap-
proachesto evaluatetheperformance.



Table 3: Resultsof questionclassificationexperi-
mentby five-foldcross-validation

Macc
W W+N W+S W+N+S

HDAG-SVM 0.862 0.871 0.877 0.882
BOW(d2)-SVM 0.841 0.847 0.847 0.856
BOW(d1)-SVM 0.839 0.843 0.837 0.851

BOW-SNoW 0.760 0.774 0.800 0.808

Qacc
W W+N W+S W+N+S

HDAG-SVM 0.730 0.736 0.742 0.749
BOW(d2)-SVM 0.678 0.691 0.686 0.704
BOW(d1)-SVM 0.679 0.686 0.671 0.694

BOW-SNoW 0.562 0.573 0.614 0.626

1. Averageaccuracy of each one-vs-restmodel
(Macc)
This measureevaluatesthe performanceof
eachone-vs-restmodelindependently. If aone-
vs-restmodel classifiesa given questioncor-
rectly, it scoresa1, otherwise, it scoresa0.

2. Average accuracy of each given question
(Qacc)
This measureevaluatesthe total performance
of the decision model, the questionclassifier.
If eachgivenquestionis classifiedin a correct
question type,it scoresa1, otherwise,it scores
a0.

In Qacc,classifyingwith acorrectquestiontypeim-
pliesthatall of theone-vs-restmodelsfrom thetop
of the hierarchyof the questiontaxonomyto the
givenquestion typemustclassifycorrectly.

4.6 Results

Table 3 shows the resultsof our question classifi-
cationexperiment,which is evaluatedby five-fold
cross-validation.

5 Discussion

First, we could increasethe performanceby using
the informationon namedentitiesandsemanticin-
formationcomparedto only usingthewords,which
is thesameresultgivenin (Li andRoth,2002).This
resultproved that high-performancequestion clas-
sification requiresnot only word featuresbut also
many moretypesof informationin thequestion.

Table 4: Accuracy of eachquestion(Qacc)evalu-
atedat differentdepthsof hierarchyin question tax-
onomys

# of QTs W W+N W+S W+N+S
HDAG-SVM

1 5 0.946 0.944 0.953 0.948
2 25 0.795 0.794 0.800 0.803
3 55 0.741 0.743 0.751 0.756
4 68 0.730 0.736 0.742 0.749

BOW(d2)-SVM
1 5 0.906 0.914 0.908 0.925
2 25 0.736 0.748 0.748 0.763
3 55 0.687 0.698 0.695 0.712
4 68 0.678 0.691 0.686 0.704

BOW(d1)-SVM
1 5 0.906 0.918 0.905 0.917
2 25 0.736 0.752 0.730 0.752
3 55 0.688 0.697 0.678 0.701
4 68 0.679 0.686 0.671 0.694

BOW-SNoW
1 5 0.862 0.870 0.880 0.896
2 25 0.635 0.640 0.687 0.696
3 55 0.570 0.582 0.623 0.634
4 68 0.562 0.573 0.614 0.626

Second,ourproposedmethodshowedhigherper-
formancethan any methodusing BOW. This re-
sult indicatesthat the structural informationin the
question, which includes several levels of chunks
andtheir relations,mustprovide powerful features
to classify the target intention of a given question.
We assumethat such structural information must
provide shallow semanticinformation of the text.
Therefore,it is naturalto improve the performance
to identify the intention of the question in orderto
usethe structuralinformationin the mannerof our
proposedmethod.

Table4 shows the resultsof Qaccat eachdepth
of the questiontaxonomy. The resultsof depth h
representthe total performancemeasuredby Qacc,
considering only theupperh levelsof questiontypes
in the questiontaxonomy. If the depthgoeslower,
all resultsshow worseperformance.Therearesev-
eralreasonsfor this. Oneproblemis theunbalanced
trainingdata,wherethe lower depthquestiontypes
have fewer positive labeledsamples(questions)as
shown in table2. Moreover, during the classifica-
tion processmisclassification is multiplied. Conse-
quently, if theupper-level classifierperformedmis-
classification, we would no longergeta correctan-



swer, even thougha lower-level classifierhas the
ability to classifycorrectly. Thus,using a machine
learningapproach(not only SVM) is not suitable
for deephierarchicallystructuredclasslabels. We
should arrangea question taxonomy that is suit-
able for machinelearningto achieve the total per-
formanceof questionclassification.

The performanceby using SVM is better than
thatby SNoW, evenin handlingthesamefeatureof
BOW. One advantageof usingSNoW is its much
fasterlearningandclassifyingspeedthan thoseof
SVM. We shouldthusselectthe bestapproachfor
the purpose, dependingon whetherspeedor accu-
racy is needed.

6 Conclusions

This paperpresentsa machinelearningapproachto
question classification. WeproposedtheHDAG ker-
nel, a new kernel function, that can easily handle
structurednaturallanguagedata.

Our experimentalresultsproved that featuresof
thestructure in agivenquestion,whichcanbecom-
putedby theHDAG kernel,areusefulfor improving
the performanceof question classification. This is
becausestructures inside a text provide the seman-
tic featuresof question that are requiredfor high-
performancequestion classification.
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