
Question-Answering Based on Virtually Integrated Lexical
Knowledge Base

Key-Sun Choi
KAIST,Korterm

Daejeon
305-701 Korea
kschoi@cs.ka
ist.ac.kr

Jae-Ho Kim
KAIST,Korterm

Daejeon
305-701 Korea
jjaeh@world.
kaist.ac.kr

Masaru
Miyazaki

NHK STRL
Tokyo 157-8510

Japan
miyazaki.m-
fk@nhk.or.jp

Jun Goto
NHK STRL

Human Science
Tokyo 157-8510

Japan
 goto.j-

fw@nhk.or.jp

Yeun-Bae Kim
NHK STRL

Human Science
Tokyo 157-8510

Japan
 kimu.y-

go@nhk.or.jp

Abstract

This paper proposes an algorithm for cau-
sality inference based on a set of lexical
knowledge bases that contain information
about such items as event role, is-a hier-
archy, relevant relation, antonymy, and
other features. These lexical knowledge
bases have mainly made use of lexical
features and symbols in HowNet. Several
types of questions are experimented to
test the effectiveness of the algorithm here
proposed. Particularly in this paper, the
question form of “why” is dealt with to
show how causality inference works.

1 Introduction

A virtually linked knowledge base is designed to
utilize a pre-constructed knowledge base in a dy-
namic mode when it is in actual use.

An open-domain question answering architec-
ture must consist of various components and
processes (Pasça, 2001) that include WordNet-
like resources, part of speech tagging, parsing,
named entity recognition, question processing,
passage retrieval, answer extraction, and answer
justification. Consider a question like the follow-
ing: “Why do doctors cure patients?”

The answer may be obtained by commonsense
knowledge as follows:

1. A patient suffered from a
disease.

2. A doctor cures the disease.
3. The doctor cures at hospi-

tal.

4. Doctor is an occupation.
5. So the doctor cures the

patient.

These sentences are transformed into proposi-
tional forms, as illustrated below:

6. sufferFrom(patient,disease)
7. cure(doctor,disease)
8. cure(doctor,at-hospital)
9. occupation(doctor)
10. cure(doctor,patient)

Linguistic knowledge bases like WordNet
(Miller, 1995), EDR dictionary (Yokoi, 1995) and
HowNet (Dong, 1999) have been used to interpret
these sentences.

Moldovan et al. (2002) generated lexical chains
from WordNet in order to trace these topically re-
lated paths and thereby to search for causal expla-
nations. A conceptual word Cj inside of a gloss
under a synset Ci is linked to the synset Cj.

HowNet (Dong et al. 1999) is a linguistic
knowledge base that is designed to have the defini-
tion of words and concepts as well as event role
and role-filling entities. Commonsense knowledge
like naive physics is also built up through event
role relation like the relation of sufferFrom requir-
ing cure.

HowNet is modularized into separate knowl-
edge spaces for entity hierarchy, event hierarchy,
antonymy, syntax, attributes, etc. Relations be-
tween various concepts (e.g., part-of, relevance,
location) are defined implicitly in the definition of
each concept.

This paper will focus on building an algorithm
that allows for searching for some topical paths in
order to find causal explanations for questions like
“Why do doctors cure patients?” or “Why do pa-
tients pay money?” as illustrated in Figure 1.

patient doctor occupation money

$cure *cure earn $earn
#occupation

converse

agent=patient
possession=money
target=?

agent=?
possession=money
source=patient

entity

syn

event

*pay $pay

give take

(1)

(2) (3)

(4)

(5)

(6)(7)

(8)

(9)

patient doctor occupation money

$cure *cure earn $earn
#occupation

converse

agent=patient
possession=money
target=?

agent=?
possession=money
source=patient

entity

syn

event

*pay $pay

give take

(1)

(2) (3)

(4)

(5)

(6)(7)

(8)

(9)
Figure 1: A Snapshot of a virtually integrated
knowledge base for the question: “Why do patients
pay money to doctors?”

In the following sections, issues on the virtual in-
tegration of knowledge bases, their algorithms and
experimentations are presented.

2 Underlined Knowledge Bases and Vir-
tual Integration

In Figure 1, each marked numbering has the fol-
lowing meaning:

(1) Entity hierarchy: entity is the top node in
the hierarchy of entities.

(2) entity is the hypernym of patient, doctor,
occupation, and money in the line (3).

(3) Concepts or word entries are listed in this
line. All concepts and word entries repre-
sent their definition by a list of concepts
and marked pointers.

(4) A concept (or word) in (3) features defini-
tional relations to a list of concepts. For
example, a doctor definition is composed
of two concepts and their marking point-
ers: #occupation and *cure. Pointers in
HowNet represent relations between two
concepts or word entries, e.g., “#” means
“relevant” and “*” does “agent”.

(5) syn refers to the syntactic relation in the
question “Why do patients pay money to
doctors?”

(6) converse refers to the converse relation be-
tween events, e.g., give and take.

(7) Event hierarchy: For example, the hy-
pernym for pay is give and the hypernym
of give is event.

(8) Event role: Now, event roles are partially
filled with entities, e.g., patient and
money.

(9) Event role shift: The agent of give is
equalized to the source of take.

An overview of each component of the knowl-
edge base is in Figure 2, where three word entries
why, patient, and money are in the dictionary.
The four concept facets of entity, role, event, and
converse are described in this example, mainly as
part of linguistic knowledge.

pay

give take

agent=
possession=
target=

agent=
possession=
source=

Alter-possession
patient

doctor occupation money

cure

*cure earn $earn

#occupation

entity

give take

converse

event

earn

human

pay

why

role

question

cause

dictionary Concept
facets

pay

give take

agent=
possession=
target=

agent=
possession=
source=

Alter-possession
patient

doctor occupation money

cure

*cure earn $earn

#occupation

entity

give take

converse

event

earn

human

pay

why

role

question

cause

dictionary Concept
facets

Figure 2: HowNet Architecture in Example.

Some issues on ontology integration have been
discussed from various points of view. Pinto et al.
(1999) classified the notions of ontology integra-
tion into three types: integration, merging and
use/application. The term virtually integrated
means the view of ontology-based use/application.

This paper presents issues on and arguments for
linguistic knowledge base and commonsense
knowledge in (Lenat, Miller and Yokoi, 1995).
One of the arguments was whether linguistic
knowledge could be separated from commonsense
knowledge, but it was agreed that both types of
knowledge were essentially required for natural
language processing.

This paper was motivated by the desire to make
inferences using a lexical knowledge base, thus
successfully carrying out a kind of commonsense
reasoning.

3 Interpretation of Lexical Knowledge

Consider the following three sentences:
11. Doctors cure patients.
12. Doctors earn money.
13. Patients pay money.

One major concern is finding connectability
among words and concepts. As shown in Figure 2,
the following facts are derived:

14. Doctor is relevant to oc-
cupation.

15. Occupation allows you to
earn money.

Because there exists a converse relation be-
tween give and take, their hyponyms earn and pay
also fall under converse relation. It is something
like the following social commonsense as shown in
Figure 2: “If someone X pays money to the other Y,
Y earns money from X.”

We humans now understand the reason for
“why patients pay money.” The answer is that
“doctors cure patients as their occupation allowing
them to earn money.”

The following is a valid syllogism where Y is
being instantiated to doctor:

If “X pays money to Y” is
equivalent to “Y earns money
from X”1, and “a doctor earns
money from X”, then “X pays
money to the doctor”.

Consider the next syllogism: If “a doctor

cures X” and “doctor is an occupa-
tion” and Axiom 1, then “the doc-
tor earns money from X”.

Axiom 1 is needed to make such a syllogism
that “If Y cures X and Y is an occu-
pation, then Y earns money from
X.” Then our challenge is to find out this Axiom
1 from the lexical knowledge bases. It is a com-
monsense and thus there is a gap in the lexical
knowledge base.

The following is a list of questions derived
from the three sentences of 11, 12 and 13 which
are designed to discover such axioms (or rules)
from a set of lexical knowledge bases: “Why do

1 It is a converse relation.

doctors cure patient?”, “Why do doctors earn
money?”, and “Why do patients pay money to doc-
tors?”

4 Connectability: Similarity Measure

Consider the query “Why do doctors cure pa-
tients?” Tracing Figure 2 back through Figure 1
leads to obtaining logical forms from 6 through 10.
The best connectable path is planned from the first
word of the question.

For each pair of words, the function called
"similar(*,*)" will be estimated to choose the next
best tracing concepts (or words). similar's mis-
sions are summarized as (1) checking the connect-
ability between two nodes2, (2) selecting the best
sense of the node,3 (3) selecting the best tracing
candidate node in the next step. Finally, following
the guidance by similar allows us to explain the
question.

4.1 Observation and Evidence of Topical Re-
latedness

Let's try to follow the steps 6-10 given in the logi-
cal forms. In the question “Why do doctors cure
patient?” that focuses on three words doctor, cure,
and patient, we can trace some key words given in
example sentences as follows: patient ~ disease ~
cure ~ doctor ~ occupation ~ earn ~ pay ~ pa-
tient.

What kind of lexical relations are relevant to
each pair of words or concepts? Their observation
can be summarized as follows:

A) The relation between patient ~ disease is a
role relation of “sufferFrom(patient, dis-
ease)”.

B) A sequence of cure ~ doctor ~ occupation
~ earn lets us infer the relation among
cure ~ earn, which are closely linked by
their relevance relation to occupation.
Furthermore, earn and cure shares a
common subject of these two events.

C) The sequence of earn ~ pay is the result of
a converse event relation between earn
and pay.

D) pay ~ patient: The agent of pay is a ge-
neric human. In other words, pay is a hy-

2 A node means either concept or word.
3 It is similar with word sense disambiguation.

ponym for the act of human, one of whose
hyponym is patient.

Consider again the match between the tracing
sequences of concepts and the knowledge base.
Going into more details, notations with footnotes
will be given to each example. At this point, we
will give names and formalization based on the
observed characteristics.

A) Feature comparison: To find the role re-
lation among patient ~ disease, search the
definition of entities (referring to patient
and disease) in ways that two entities share
the same event concept (referring to
cure):4

patient ⊃ human∧$cure ∧*sufferFrom.
disease ⊃ medical∧$cure ∧ undesired.

B) Interrelation: To find the event interrela-
tion among cure ~ earn, two possible
paths are presented as follows.

• First, inverse interrelation: Two event's
role entities can be found by searching all of
entities using *earn ~ *cure that share the
same subject, and using *earn ~ $cure
where the subject of earn is the object of
cure.

• Second, sister interrelation: The following
logical form can be derived from Figure 2:5

doctor ⊃ *cure ∧ #occupation.
occupation ⊃ earn.

Because cure and occupation is in the defi-
nition of doctor, a probable logical implica-
tion can be derived as follows:6

*cure ⊃ ~#occupation.

C) Converse/antonymy: earn and pay have
their respective hypernyms take and give.
There exists a converse relation between
these two hypernyms.

4 According to HowNet convention, “$” represents patient,
target, possession, or content of an event, and “*” represents
agent, experiencer, or instrument. “⊃” means implies or has
features.
5 “#” means “relevant”.
6 “~” means “very probable”.

D) Inheritance: The relation among pay ~
patient is represented as follows:7

humanpatient
acthuman

actpay

p

p

*⊃

4.2 Rationale of Connectability

In the former section, we summarized four charac-
teristics8 of causality (relatedness)-based path find-
ing: feature comparison, interrelation,
converse/antonymy in their hypernym’s level, and
inheritance. Among search spaces available, it is
necessary to find out a measure of guiding the op-
timal9 path tracing.

We will call such a measure similar which will
be defined according to the four characteristics just
mentioned. Further details about the calculation
formula will be presented again later.

A) For “feature comparison”, the measure fea-
ture similar(X,Y) defines the notion of
similarity between the features in X and Y.

B) There are two interrelations in the last sec-
tion.

• For “inverse interrelation”', inverse simi-
lar(X,Y) calculates how much similarity ex-
ists between Xθ and Yθ in a manner that Xθ
= {Z | Z ⊂ θX}, where θX is an abstraction
of role-marked concepts like *X, $X, #X,
etc. Thus inverse similar(X,Y) = simi-
lar(Xθ,Yθ).

• For “sister interrelation”, the measure sister
similar(X,Y) means the following two situa-
tions: First, X and Y are features to define
one concept (say, W). Second, one of them,
say, Y's definitional feature concepts (refer-
ring to Z) are similar with X such that X and
Z are similar if W ⊃ X ∧Y and Y ⊃ Z.

C) Converse or antonymy: The converse re-
lation converse(X,Y) can be found by the
measure feature similar. converse(X,Y) is
formulated by X ⊂ θY and Y ⊂ θX where
θ = converse.

7 “ YX p ” means “Y is hypernym of X”.
8 Their exhaustiveness should be discussed later.
9 “optimal” will not be discussed.

D) Using inheritance property in the concept
hierarchy, relations between hypernym of
concepts X and Y are inherited to X and Y
in a way that X and Y is similar if there
exist X’ and Z such that 'XX p , Z ⊃ θX’,
and ZY p where θ is a pointer or null.
This inheritance tracing can be determined
by how much similar X and Y are in terms
of their path upward based on the relation
of hypernym. We will define path similar.
But tracing the path upward following hy-
pernym links is to be described later ac-
cording to the algorithm.

A measure called similar will be defined based
on the discussion in this section. Then an algorithm
is introduced through this measure with an exam-
ple.

5 Measures

In the last section, we discussed four kinds of the
measure similar.

• path similar,

• feature similar,

• inverse similar,

• sister similar.

For feature, inverse, and sister similar func-
tions, path similar is used as a basis of calculation.
They are different with respect to both their search
method and the depth of expanding features. fea-
ture similar finds similar features by using path
similar. inverse similar(X,Y) searches for entries
that contain X and Y as features and then use the
path similar. In the same way, sister similar finds
sister concepts, expands them, and finally meas-
ures using the path similar.

Since path similar plays a key role in all these
search and measure processes, its role will be ex-
plained in the next subsection. Other measures are
only dealt with as part of the algorithm.

5.1 Similarity Based on Hierarchy and Fea-
ture

The mission of the measuring function simi-
lar(X,Y) is to calculate their relevancy between
two concepts or words whether they are of type
entity, event, or of some other type.

If X and Y belong to different types of knowl-
edge plane (e.g., entity and event), it is hard to
compare their hypernym path upward to the top
concept. However, if different types of concepts
have any relevance to (connect) causality, we will
use feature similar or inverse similar after find-
ing the same type of concepts to calculate the path
similar. Now we will explain the above by using
two pairs of concept type: entity-entity and entity-
event, without loss of generality.

First, pathsimilar(entity X, entity Y) is de-
fined as follows:

)()(

)()(2

),(

YpathXpath

YpathXpath

YXrpathsimila

++

++

+

∩×
=

where path+(X) is the ordered list of hypernym for
X by descending order from the top concept. For
example,

path+(doctor)
= [entity...animate...human.doctor]
path+(patient)
= [entity...animate...human.patient]

Because |path+(X)| counts the number of nodes on
the path, pathsimilar(doctor,patient) = 2×
6/(7+7)=0.857.

Second, pathsimilar(entity N, event V) is de-
fined as follows:

pathsimilar(N,V)
= Max pathsimilar(N.feature,V)

where N.feature means the feature list in the defi-
nition of N. The following is an illustrative exam-
ple for the definition:

money ⊃ $earn,*buy,#sell, $setAside,
it is equivalent to the following:

money.feature=[$earn,*buy,#sell,$setAside].
So pathsimilar(money,earn)=pathsimilar(earn,earn)
=1. According to this Max function, the selection
priorities for the path can be specified.

Third, pathsimilar(event V, entity N) is de-
fined by inverse similar as follows: pathsimi-
lar(V,N) = Max pathsimilar(V.inverse, N). For
example, pathsimilar(cure, doctor) = Max path-
similar(cure.inverse, doctor) = Max pathsimi-
lar({doctor, medical worker, medicine, patient},
doctor).

Fourth, pathsimilar(event X, event Y) shares
the same formula with pathsimilar(entity X, en-

tity Y) shown before. But, we can give another
inverse pathsimilar(event X, event Y) = Max
pathsimilar(X.inverse, Y.inverse).

5.2 Logical Implication and Expansion Depth

All of the relations in Figure 2 are translated into
logical form (see below). As shown in “Interpreta-
tion as Abduction” (Hobbs et al. 1988), “abductive
inference is inference to the best explanation”.
These relations showed “the interpretation of a text
is the minimal explanation of why the text would
be true” based on the abductive inference. By the
same token, “the interpretation of a question is the
minimal explanation of why the question would be
true” based on a set of lexical knowledge bases.

Before proceeding to our algorithm, an example
will be applied to abductive inference briefly as a
set of logical forms as well as a diagram in Figure
3.

16. doctor ⊃ human, #occupation,
*cure, medical.

17. medicine ⊃ *cure.
18. disease ⊃ $cure.
19. cure ⊃ medical,

{agent,patient,content}.
20. medical ⊃ #cure.
21. converse(pay,earn) ⊃

agent=source,
target=agent.

22. patient ⊃ human,$cure.
23. occupation ⊃ affairs, earn.
24. cause(cure,sufferFrom) ⊃

patient=experiencer,
content=content.

25. possibleConsequence(cure,
beRecovered) ⊃
patient=experiencer,
content=stateIni.

While pursuing the path tracing enabling mini-

mal explanation, now we are going to propose
a connectability measure similar such as
“weighted abduction” (Hobbs et al. 1988). As
“likelihood estimation” is useful to consider a
“bounded conditioning” (Russell & Norvig, 1995)
in a belief network, the “expansion depth” of simi-
lar will be useful for the explanation path tracing
for the purpose of the minimal explanation of the
question.

commercial
$earn
*buy
#sell
$setAside

patient pay moneywhy

human
*sufferFrom
$cure

agent
content
source

payer*
money
advanced$

doctor

give

hypernym

take

hypernym

occupation affirs
earn

human
#occupation
*cure
medical

inverse

converse

commercial
$earn
*buy
#sell
$setAside

patient pay moneywhy

human
*sufferFrom
$cure

agent
content
source

payer*
money
advanced$

doctor

give

hypernym

take

hypernym

occupation affirs
earn

human
#occupation
*cure
medical

human
#occupation
*cure
medical

inverse

converse

Figure 3: Virtual Linking for Causality

The “expansion depth level” of similar has two
kinds of utilities: one is to find the minimal expla-
nation, and the other is to be dynamically adapt-
able to the level of interaction. This level of
similar is defined as a function simi-
lar(Level)(X,Y) for X and Y, concepts or words in
the following manner:

• similar(0)=pathsimilar: they use only them-
selves and their hypernym path from X and
Y.

• similar(1)=feature_similar: they use their
features that are expanded one more than
similar(0).

• similar(2)=inverse_similar

• similar(3)=sister_similar
=inverse_similar×feature_similar.

Depending on what level of similar is chosen,
the search paths may be changed. A snapshot up to
similar(2) is given in Figure 4.

Figure 4: Snapshot for similar(2).

human
* sufferFrom
$cure

doctor cure patient why

human
#occupation
*cure
medical

agent
patient
content
medical

medicine*
disease&
medical#

human
* sufferFrom
$cure

doctor cure patient why

human
#occupation
*cure
medical

agent
patient
content
medical

 medicine*

medical#

medicine*

disease$

medical#

6 Tracing Algorithms

6.1 Algorithm Crossover

The overall algorithm 10 flow depends on simi-
lar(Level) as in the next program.

Algorithm Crossover
For Level=0...N until stopping
condition is satisfied:

 Expand the trace
by similar(Level)

For example, when Level=1, the algorithm cross-
over finds a very primitive answer to the question
“Why do doctors cure patients?” We will expand
other features of doctor except for cure because
cure has a syntactic relation between doctor and
patient.

As shown in the logical forms (16~24) intro-
duced in the previous section, this algorithm in
Level=1 can find the following concepts as a re-
sult: medical, human, cure ($cure, *cure).

When Level=2, the algorithm crossover will
seek higher-order relations (like the hypothesis)
from the concept (by inverse_similar), con-
verse/antonymy relations (by feature_similar),
and event relations (if any, for use in knowing
the cause or consequence relation). Consider again
our example "Why do doctors cure patients?" by
using the previous section's logical forms. The re-
sults are as follows:

*cure = {doctor, medicine}
$cure = {patient, disease}
*sufferFrom = {patient}
$sufferFrom = {disease}

Its generated meaning may be “If a doctor cures a
patient, the patient is recovered from disease.
Because patients suffer from diseases, doctors cure
the patients. Patients are recovered after getting
cured.”

6.2 Stopping Condition

Stopping conditions for the algorithm crossover
are as follows:

(1) Event roles are filled up.
(2) If no event is found in the feature defini-

tion, increase similar level.

10 This algorithm will be called “crossover”.

(3) [weak stopping condition] When there is
no event, one of the other features is com-
monly shared between two concepts. For
example, medical is a common feature be-
tween doctor and cure.

6.3 Hypernym Climbing

In section 4.2, inheritance was discussed for the
purpose of finding a relation among pay ~ patient.
After trying to make Level=2 in section 5.2, we
have been motivated to find the interrelation be-
tween hypernyms. The algorithm crossover is up-
dated.

Algorithm Crossover+
For Level=0..N until stopping
condition is satisfied:

Expand the trace
by similar(Level)

If Level >= 2, then
repeat climb up hypernym
until it matches with

the higher relation.

6.4 Algorithm Crossover++

Consider again the question "Why do patients pay
money to doctors?" As shown in Figure 1, the best
trace is $cure ~ *cure ~ *earn ~ $pay. It provides
an explanation for the statement that “patients are
cured by doctors ~ doctors earn money ~ patients
pay money to doctors”. This minimal explanation
is observed by switching over the role pointers θ
whenever tracing is performed. For example,
$cure was switched over to *cure. This extended
version of algorithm is called Crossover++.

7 Evaluation

By the algorithm Crossover’s, the behavior of
“why”-type questions are investigated by extract-
ing the answer paths as follows.
Q: Why does patient pay money?
Path: patient ~ $cure ~ doctor ~ #occupation ~
$earn ~ money
Q: Why does researcher read textbook?
Path: researcher ~ #knowledge ~ #information ~
readings ~ textbook

Paths between two concepts can now be found
by simply checking the presence of a path among
the concepts reached from an initial concept. Table

1 and Table 2 show examples of the number of
paths as a function of path size.

Reached concepts path size Source
concept 1 2 3

cure 275 593 24854
eat 268 605 24903

study 276 358 23172
food 532 650 18066

human 6713 3686 51171
money 328 1312 19827

Table 1: Examples of destination concepts reached
starting from one source concept

Paths number length Concept1 Concept2 1 2 3
cure human 0 78 26
pay money 0 7 3

human money 0 3 7
food human 0 0 28
read write 0 4 6
earn pay 0 0 7

Table 2: The number of paths between pairs of
concepts

8 Discussion

HowNet (Dong et al. 1999-2003) has already de-
fined the words and concepts using the features of
concepts. Each event role is also defined under the
notion of feature. On the other hand, WordNet
(Miller, 1995) consists of synsets and their glosses.
Moldovan et al. (2002) showed a lexical chain to
use words in glosses in order to trace the topically
related paths.

Their search boundary is restricted to the
shapes: V, W, VW, and WW. In this paper, cross-
over* is shown to be flexible and search for a more
probable explanation.

9 Conclusion

In this paper, we have attempted to show how to
link pre-existing lexical knowledge bases to one
another. The major issue was to generate a path to
give explanation paths for answering the “why”-
type question. While observing the causality path
behavior, we proposed the measure similar and
also the algorithm crossover. It is compared with
the “weighted abduction” (Hobbs et al. 1988) and
“lexical chain” (Moldovan et al. 2002).

With the ability to provide explanations de-
pending on the level of the measure similar, our
proposed algorithm adapts itself to the user knowl-
edge level and well as to the type of interactive
questions to enable more detailed level of ques-
tion-answering.

References
Zhen Dong and Q. Dong. 1999-2003. Hownet,

http://www.keenage.com/

Jerry R. Hobbs, Mark Stickel, Douglas Appelt and
Paul Martin. 1988. Interpretation as Abduction,
Proceedings of the Conference on 26th Annual
Meeting of the Assocation for Computational Lin-
guistics.

Doug Lenat, George Miller, and Toshio Yokoi. 1995.
CYC, WordNet, and EDR: Critiques and Re-
sponses, Communications of the ACM, 38(11):45-
48.

Bernardo Magnini and Manuela Speranza. 2002.
Merging Global and Specialized Linguistic On-
tologies, Proceedings of Ontolex 2002 (Workshop
held in conjunction with LREC-2002), Las Palmas.

George Miller. 1995. WordNet: a lexical database.
Communications of the ACM, 38(11):39-41.

Dan Moldovan and Adrian Novischi. 2002. Lexical
Chains for Question Answering, Proceedings of
COLING 2002, Taipei.

Takanoa Ogino and Masahiro Kobayashi. 2000. Verb
Patterns extracted from EDR Concept Description,
IPSJ SIGNotes Natural Language Abstract,
No.138 – 006:39-46.

Alexandru Marius Pasça. 2001. High-Performance,
Open-Domain Question Answering from Large
Text Collections. Ph.D Dissertation, Southern
Methodist University.

H. Sofia Pinto, Asunción Gómez-Pérez and João P.
Martins. 1999. Some Issues on Ontology Integra-
tion, Proceedings of the IJCAI-99 workshop on
Ontologies and Problem-Solving Methods (KRR5),
Stockholm.

Stuart Russell and Peter Norvig. 1995. Artificial
Intelligence: A Modern Approach. Prentice-Hall.

Toshio Yokoi. 1995. The EDR Electronic Dictionary.
Communications of the ACM, 38(11).

