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Abstract

Though dynamic programming matching
can carry out approximate string matching
when there may be deletions or insertions
in a document, its effectiveness and
efficiency are usually too poor to use it for
large-scale information retrieval. In this
paper, we propose a method of dynamic
programming matching for information
retrieval. This method is as effective as a
conventional information retrieval system,
even though it is capable of approximate
matching. It is also as efficient as a
conventional system.
Keywords: Dynamic programming,
Corpus-based, Japanese.

1 Introduction

The dynamic programming method is well-known
for its ability to calculate the edit distance between
strings. The method can also be applied to informa-
tion retrieval. Dynamic programming matching can
measure the similarity between documents, even if
there are partial deletions or insertions. However,
there are two problems in applying this method to
information retrieval. One problem is search effec-
tiveness. It is poor because dynamic programming
matching lacks an adequate weighting schema. The
second problem is computational efficiency. Also,
lack of an adequate indexing schema means that dy-
namic programming matching usually has to process
the entire document.

Yamamoto et al. proposed a method of dynamic
programming matching with acceptable search ef-
fectiveness (Yamamoto et al., 2000; Yamamoto,
Takeda, and Umemura, 2003). They report that
the effectiveness of dynamic programming match-
ing improves by introducing an IDF (Inverse Doc-
ument Frequency) weighting schema for all strings
that contribute similarity. They calculate matching
weights not only for words but also for all strings.
Although they report that effectiveness is improved,
the speed of their method is slower than that of
conventional dynamic programming matching, and
much slower than that of a typical information re-
trieval system.

In this paper, we aim to improve the retrieval ef-
ficiency of the dynamic programming method while
keeping its search effectiveness. From a mathemat-
ical point of view, we have only changed the defini-
tion of the weighting. The mathematical structure of
similarity remains the same as that of the dynamic
programming method proposed by (Yamamoto et
al., 2000; Yamamoto, Takeda, and Umemura, 2003).
Although it has the same definition, the new weight-
ing method makes it possible to build a more effi-
cient information retrieval system by creating the in-
dex in advance. To our surprise, we have observed
that our proposed method is not only more efficient
but also more effective.

2 Similarities Based on Dynamic
Programming Matching

In this section, we introduce several similarities
proposed by (Yamamoto et al., 2000; Yamamoto,
Takeda, and Umemura, 2003). All of them are a



form of dynamic programming matching. These
similarities include translation of the edit distance.
This distance has been described by several authors.
We have adoptedKorfhage’s definition: ‘the edit
distance is the minimum number of edit operations,
such as insertion and deletion, which are required to
map one string into the other’ (Korfhage, 1997).

There are three related similarities. The first is dy-
namic programming matching, which is simply con-
version of the edit distance. The second similarity
is an extension of the first similarity, introducing a
character weighting for each contributing character.
The third and proposed similarity is an extension of
the second one, using string weight instead of char-
acter weight.

2.1 Dynamic Programming Matching

As stated above, dynamic programming (DP)
matching is a conversion of edit distance. We call
this similarity SIM1. While the edit distance (ED) is
a measure of difference, counting different charac-
ters between two strings , SIM1 is a measure of sim-
ilarity, counting matching characters between two
strings. ED and SIM1 are defined as follows:

Definition 2.1 Edit Distance (Korfhage, 1997)
Let α andβ be strings,x andy be a character, and

“” be empty string.

• If both strings are empty then

ED(“”, “”) = 0.0

• If x 6= y then

ED(x, y) = 1.0

• If their first characters are the same then
ED(xα, xβ) =

MIN(ED(α, xβ), ED(xα, β),
ED(α, β) + 1.0)

• Otherwise
ED(xα, yβ) =

MIN(ED(α, yβ), ED(xα, β),
ED(α, β))

Definition 2.2 SIM1
Let α andβ be strings,x andy be a character, and

“” be empty string.

• If both strings are empty then

SIM1(“”, “”) = 0.0

• If x 6= y then

SIM1(x, y) = 0.0

• If their first characters are the same then
SIM1(xα, xβ) =

MAX(SIM1(α, xβ), SIM1(xα, β),
SIM1(α, β) + 1.0)

• Otherwise

SIM1(xα, yβ) =
MAX(SIM1(α, yβ), SIM1(xα, β),

SIM1(α, β))

2.2 Character Weight DP Similarity

SIM1 adds 1.0 to the similarity between two strings
for every matching character, and this value is con-
stant for all the time. Our assumption for the new
function is that different characters make different
contributions. For example, in Japanese informa-
tion retrieval, Hiragana characters are usually used
for functional words and make a different contribu-
tion than Kanji characters, which are usually used
for content words. Thus, it is natural to assign a dif-
ferent similarity weight according to the nature of
the character. The below method of defining Charac-
ter Weight DP Similarity adds not 1.0 but a specific
weight depending on the matching character. We
call this similarity SIM2. It resemblesUkkonen’s
Enhanced Dynamic Programming ASM (Approxi-
mate String Matching) (Berghel and Roach, 1996).
The weight is expressed by a function calledScore.
SIM2 is defined as follows:

Definition 2.3 SIM2
Let α andβ be strings,x andy be a character, and

“” be empty string.

• If both strings are empty then

SIM2(“”, “”) = 0.0

• If x 6= y then

SIM2(x, y) = 0.0

• If their first characters are the same then
SIM2(xα, xβ) =

MAX(SIM2(α, xβ), SIM2(xα, β),
SIM2(α, β) + Score(x))

• Otherwise

SIM2(xα, yβ) =
MAX(SIM2(α, yβ), SIM2(xα, β),

SIM2(α, β))



2.3 String Weight DP Similarity

DP procedure usually considers just a single char-
acter at a time, but since some long substrings can
receive good scores, it is natural to consider all pre-
fixes of the longest common prefix, not just the next
character.

While SIM2 uses a character weight whenever a
character matches between strings, a single char-
acter may not be enough. In some cases, even
when each character has a low weight, the string
as a whole may be a good clue for information re-
trieval. For example, ”chirimenjyako” is a Japanese
word that could be a retrieval key word. This word,
which means ”boiled and dried baby sardines,” con-
sists only of Hiragana characters ”chi-ri-me-n-jya-
ko” but each character would make a small contri-
bution in SIM2.

The proposed similarity is called String Weight
DP Similarity, which is a generalization of SIM2.
We call this similarity SIM3. It considers the weight
of all matching strings and is defined as follows:

Definition 2.4 SIM3
Let α andβ be strings,x andy be a character, and

“” be empty string.

• If both strings are empty then

SIM3(“”, “”) = Score(“”) = 0.0

• Otherwise
SIM3(α, β) =

MAX(SIM3s(α, β), SIM3g(α, β))

– SIM3s(ξα, ξβ) =
MAX(Score(γ) + SIM3(δα, δβ))

where ξ(= γδ) is the maximum length
string matching from the first character.

– SIM3g(xα, yβ) =
MAX(SIM3(α, yβ), SIM3(xα, β),

SIM3(α, β))

2.4 Weighting Function

Yamamoto et al. have used IDF (Inverse Document
Frequency) as a weight for each string. The weight
is computed using aScorefunction as follows:

Definition 2.5 Yamamoto et al.’sScore function
Let ξ be string,df(ξ) the frequency of documents

includingξ in the document set for retrieval, andN
be the number of documents in the set.

Score(ξ) = IDF (ξ) = −log(df(ξ)/N)

The standard one-character-at-a-time DP method
assumes that long matches cannot receive exception-
ally good scores. In other words, it regardsScore(ξ)
as 0 if the length ofξ is greater than one. If the
Score function obeys the inequality,Score(δγ) <
Score(δ) + Score(γ) for all substringsδ and γ,
the best path would consist of a sequence of sin-
gle characters, and we would not need to consider
long phrases. However, we are proposing a different
Score function. It sometimes assigns good scores to
long phrases, and therefore SIM2 has to be extended
into SIM3 to establish a DP procedure that considers
more than just one character at a time.

3 Proposed Weighting Function

Although SIM3, as shown in Section 2.3, has rea-
sonable effectiveness, its computation is harder than
that of the edit distance, and much harder than that
of the similarity used in a conventional information
retrieval system. In this paper, we have modified
the weighting function so that it keeps its effective-
ness while improving efficiency. To achieve this im-
provement, we use the SIM3 with the same defini-
tion but with a different score function.

3.1 Proposed String Weighting

We reduce the computational cost by limiting strings
that have positive scores. First, we selectbigramsas
such strings. In other words, we assign a score of
zero if the length of the string does not equal to 2.
Several language systems use Kanji characters (e.g.
Chinese and Japanese), andbigram is an effective
indexing unit for information retrieval for these lan-
guage systems (Ogawa and Matsuda, 1997). In addi-
tion, we may assume that the contribution of a longer
string is approximated by the totalbigram weight-
ing. We have also restricted our attention to infre-
quentbigrams. Thus, we have restricted the weight-
ing functionScoreas follows, whereK is the num-
ber decided by the given query.

• If string length is 2 andcf(ξ) < K then

Score(ξ) = −log(df(ξ)/N)

• OtherwiseScore(”) = 0.0

3.2 Using a Suffix Array for Indexing
Since we have restricted the number of match-
ing strings, and all the matching strings appear in



a query, we can collect all the positions of such
strings. To make it possible, we need some index-
ing in advance. We have used a suffix array for this
index. Below we summarize our proposed algorithm
using a suffix array:

I. Make a suffix array of the document set.

II. For each query,

A. Make a set of substrings consisting of two
characters (bigram).

B. For a given number n, extract the total n of
less frequentbigrams, calculating corpus
frequency.

C. For eachbigramfrom step B,
i. Record all positions in which thebi-

gram appears in the query and docu-
ment set,

ii. Record all documents that contain the
bigram.

D. For each document recorded,
i. Compute the similarity between the

query and the document with SIM3,
using the recorded position of the cor-
respondingbigram.

ii. Assign the similarity to the document.
E. Extract the most similar 1000 documents

from the recorded documents as a retrieval
result for the query.

We call the retrieval method described above Fast
Dynamic Programming (FDP). In general, retrieval
systems use indexes to find documents. FDP also
uses an index as a usual method. However, unlike
conventional methods, FDP requires information not
only on the document identification but also on the
position ofbigrams.

Manber and Myers proposed a data structure
called “suffix array.” (Manber and Myers, 1993)
Figure 1 shows an example of suffix array. Each
suffix is expressed by one integer corresponding to
its position. We use this suffix array to find out the
position of selectedbigrams. A suffix array can be
created inO(N log(N)) time because we need to
sort all suffixes in alphabetical order. We can get
the position of any string inO(log(N)) time by a
binary search of suffixes and by then obtaining its
corresponding position.

4 Experiment

In the experiment, we compared the proposed FDP
method with SIM1, SIM2, and SIM3, which were
described in Section 2. We measured three values:

Figure 1: Suffix Array

search effectiveness, memory usage, and execution
time.

We used the NTCIR1 collection (NTCIR Project,
1999). This collection consists of 83 retrieval topics
and roughly 330,000 documents of Japanese tech-
nical abstracts. The 83 topics include 30 training
topics (topic01-30); the rest are for testing (topic31-
83). The testing topics were more difficult than the
training topics. Each topic contains five parts, “TI-
TLE”, “DESCRIPTION”, “NARRATIVE”, “CON-
CEPT”, and “FIELD.” We retrieved using “DE-
SCRIPTION,” which is retrieval query and a short
sentence.

All the experiments reported in this section were
conducted using a dual AMD Athlon MP 1900+
with 3GB of physical memory, running TurboLinux
7.0.

4.1 Search Effectiveness

The proposed FDP method restricts the number of
bigramsthat can contribute to string matching. That
is, only a small number of strings are considered. It
was not clear whether FDP maintains its effective-
ness like SIM3. To verify it, we compared the effec-
tiveness of FDP with that of SIM1, SIM2, and SIM3.
We also needed to know how the effectiveness might
vary by the number ofbigrams. We set numbern
at 5, 10, 15, 20, 30, 50, and 500. They were named
FDP5, FDP10, FDP15, FDP20, FDP30, FDP50, and
FDP500, respectively.



Table 1: Statistical Significant Test for difference of MAP (α = 0.005, ν = 83− 1)

SIM2 SIM3 FDP5 FDP10 FDP15 FDP20 FDP30 FDP50 FDP500
SIM1 << << << << << << << << <<
SIM2 << = < << << << << <<
SIM3 = = < << << << <<
FDP5 = << << << << <<
FDP10 = << < < <
FDP15 < = = =
FDP20 = = =
FDP30 = =
FDP50 =

Table 2: Search Effectiveness for Topic01-30

Method 11 pt. average R-precision
SIM1 0.1349 0.1790
SIM2 0.1948 0.2296
SIM3 0.2691 0.3024
FDP5 0.2547 0.2649
FDP10 0.2948 0.3089
FDP15 0.3109 0.3446
FDP20 0.3207 0.3574
FDP30 0.3176 0.3421
FDP50 0.3131 0.3377
FDP500 0.3172 0.3419

The NTCIR1 collection also contains a relevance
judgment. We obtained the 11-point average pre-
cision and R-precision using standard tools called
TRECEVAL. And we tested about statistical signif-
icance for difference of MAP (Mean Average Preci-
sion) (Kishida et al., 2002).

Tables 2 and 3 show the search effectiveness for
all methods. We found that FDP20 is the most ef-
fective. Table 1 shows the results of one-sided t-test
for difference of MAPx̄i − ȳi, wherex̄i andȳi are
MAP of i-th method in the first row and MAP of
i-th method in the first column, respectively. The
level of significanceα is 0.005 and the degree of
freedomν is 83 − 1. The Symbols<<,<,= rep-
resent ”much less thanα”, ”less thanα, and ”not
less thanα”, respectively. We found that except for
FDP5 and FDP10, the other FDPs are significantly
more effective than SIM3 at a level of significance
0.005. In additional, this shows that FDP30, FDP50,
and FDP500 are not significantly more effective than
FDP20. These have demonstrated our proposed FDP

Table 3: Search Effectiveness for Topic31-83

Method 11 pt. average R-precision
SIM1 0.0545 0.0845
SIM2 0.1245 0.1596
SIM3 0.1807 0.2083
FDP5 0.1277 0.1505
FDP10 0.1766 0.2013
FDP15 0.2144 0.2280
FDP20 0.2398 0.2621
FDP30 0.2353 0.2485
FDP50 0.2354 0.2488
FDP500 0.2350 0.2477

method maintains its effectiveness, even though the
strings that contribute similarity are restricted to a
small number ofbigrams. Also, it is interesting that
the FDP with 20bigramsis significantly more effec-
tive than the one with many morebigrams.

4.2 Memory Usage

The proposed method needs to record all the posi-
tions consideredbigrams. A memory area is there-
fore required to hold position information; in the
worst case, the memory size required is the prod-
uct of the number of documents and the number of
substrings in a query. This means the memory re-
quirement could be very large. However, using FDP,
we have found that the amount of memory requested
is of a reasonable size.

In other words, the size of the memory area is the
total sum of collection frequency for all strings that
contribute similarity. We examined the amount of
memory used by comparison for the total sum of col-
lection frequency.
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Figure 2: Memory Usage (Total Number of Collection Frequency for Each String)
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Figure 3: Memory Usage for Different Number of Restricted Bigrams

Figure 2 shows the total sum of collection fre-
quency for three kinds of string sets. In the fig-
ure, AllNgram is for sets of all substrings consid-
ered by SIM3, AllBigram is for sets of allbigrams,
and 20Bigram is for sets of 20bigramsconsidered
by FDP20. The field surrounded by the plot line
and the horizontal axis represents the total sum of
collection frequency. As the figure shows, AllBi-
gram and 20Bigram occupy a much smaller field
than AllNgram. This means the memory require-
ment of FDP is much smaller than that of SIM3.
This result shows that FDP is possible to efficiently
perform large-scale information retrieval on a com-
puter with a reasonable amount of memory.

Figure 3 shows enlarged graphs of AllBigram and

20Bigram from Figure 2. The figure shows that
20Bigram equals AllBigram for most queries, but
not always. However, as shown in Table 2 and Ta-
ble 3, FDP20 actually has the highest precision in all
FDPs. This means that considering morebigramsis
not necessarily an advantage. Probably, by choosing
substrings with a high contribution, we manage to
get rid of noisy strings.

4.3 Execution Time

We measured execution time under the same con-
ditions as described in Section 4.1. Notice we im-
plemented SIM1, SIM2, and SIM3 in C language.
On the other hand, FDP is implemented in Java
(JDK1.3.1.04). When we noted the time required



to make a suffix array, we found that FDP took 1.5
times as long as SIM in Figure 4. Thus, for the same
algorithm, the execution speed of Java is generally
slower than that of C language.

Figures 5 and 6 show the time taken to retrieve
for each topic01-30 and topic31-83. In the figures,
the vertical axis is the number of documents, and the
horizontal axis is the execution time. We found that
all SIMs took much longer than FDPs. This demon-
strates that our algorithm in Section 3 sharply im-
proves execution speed. Moreover, we found that
execution time did not increase exponentially even
if the candidate documents for retrieval increased;
instead, the retrieval collection becomes larger and
larger. This suggests that FDP is an effective DP
technique for large-scale information retrieval.

5 Related Work

Our proposed technique is a type of DP matching.
The most typical application of DP matching is gene
information research, because DP is effective for
gene information matching. However, this system
has a very slow processing speed.

In recent years, advances in this field of re-
search have meant that high-speed systems have
been required for gene information retrieval. A
high-speed gene information retrieval system called
BLAST was developed (Setubal and Meidanis,
2001). BLAST has achieved higher processing
speed by using heuristics that specify characteristic
gene arrangements, rather than using DP matching.
In contrast, we have managed to achieve fast match-
ing using the DP technique.

Moreover, in music information retrieval, an error
in copying a tune corresponds to a deficit (deletion)
and insertion of data. For this reason, a music search
engine has been built based on the DP technique (Hu
and Dannenberg, 2002). Since there is a great deal
of music information available these days, scalabil-
ity is also an important problem for music informa-
tion retrieval systems. Our proposed DP method is
scalable and can cope with deficits. It therefore has
potential applications in music information retrieval.

6 Conclusion

In this study, we proposed a DP matching method
for large-scale information retrieval. To improve

its efficiency, this method selects the strings that
contribute more to retrieval. This selection process
reduces the memory requirement and frequency of
memory access. We conclude that our method is
suitable for large-scale information retrieval where
approximate matching is required.
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