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Abstract

We explore how virtual examples (artifi-
cialy created examples) improve perfor-
mance of text classification with Support
Vector Machines (SVMs). We propose
technigues to create virtual examples for
text classification based on the assump-
tion that the category of adocument is un-
changed even if a small number of words
are added or deleted. We evaluate the pro-
posed methods by Reuters-21758 test set
collection. Experimental results show vir-
tual examples improve the performance of
text classification with SVMs, especially
for small training sets.

1 Introduction

Corpus-based supervised learning is now a stan-
dard approach to achieve high-performance in nat-
ural language processing. However, the weakness
of supervised learning approach is to need an anno-
tated corpus, the size of which is reasonably large.
Even if we have agood supervised-learning method,
we cannot get high-performance without an anno-
tated corpus. The problem is that corpus annota
tion is labor intensive and very expensive. In or-
der to overcome this, several methods are proposed,
including minimally-supervised learning methods
(e.g., (Yarowsky, 1995; Blum and Mitchell, 1998)),
and active learning methods (e.g., (Thompson et
al., 1999; Sassano, 2002)). The spirit behind these
methodsisto utilize precious |abeled examples max-
imally.

Anacther method following the same spirit is one
using virtual examples (artificially created exam-
ples) generated from labeled examples. This method
has been rarely discussed in natural language pro-
cessing. In terms of active learning, Lewis and Gale
(1994) mentioned the use of virtual examplesin text
classification. They did not, however, take forward
this approach because it did not seem to be possi-
ble that a classifier created virtual examples of doc-
uments in natural language and then requested a hu-
man teacher to label them.

In the field of pattern recognition, some kind of
virtual examples has been studied. The first re-
port of methods using virtual examples with Sup-
port Vector Machines (SVMs) is that of Scholkopf
et al. (1996), who demonstrated significant improve-
ment of the accuracy in hand-written digit recogni-
tion (Section 3). They created virtual examplesfrom
labeled examples based on prior knowledge of the
task: dightly trandated (e.g., 1 pixel shifted to the
right) images have the same label (class) of the orig-
inal image. Niyogi et a. (1998) also discussed the
use of prior knowledge by creating virtual examples
and thereby expanding the effective training set size.

The purpose of this study is to explore the effec-
tiveness of virtual examples in NLP, motivated by
the results of Scholkopf et al. (1996). To our knowl-
edge, use of virtual examples in corpus-based NLP
has never been studied so far. It is, however, im-
portant to investigate this approach by which it is
expected that we can alleviate the cost of corpus an-
notation. In particular, we focus on virtual examples
with Support Vector Machines, introduced by Vap-
nik (1995). Thereason for thisisthat SVM is one of



most successful machine learning methods in NLP.
For example, NL tasks to which SVMs have been
applied are text classification (Joachims, 1998; Du-
mais et a., 1998), chunking (Kudo and Matsumato,
2001), dependency analysis (Kudo and Matsumoto,
2002) and so forth.

In this study, we choose text classification as a
first case of the study of virtual examplesin NLP be-
cause text classification in real world requires mini-
mizing annotation cost, and it is not too complicated
to perform some non-trivial experiments. Moreover,
there are simple methods, which we propose, to gen-
erate virtual examples from labeled examples (Sec-
tion 4). We show how virtual examples can improve
the performance of a classifier with SVM in text
classification, especialy for small training sets.

2 Support Vector Machines

In this section we give some theoretical definitions
of SVMs. Assumethat we are given thetraining data
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The decision function g in SVM framework is de-
fined as:
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where K isakernel function, b € R isathreshold,
and «; are weights. Besides, the weights o; satisfy
the following constraints:
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where C' is a misclassification cost. The vectors x;
with non-zero «; are called Support Vectors. For
linear SVMs, the kernel function K is defined as:

K(z;,x) =z; - x.
In this case, Equation 2 can be written as:
fle) =

where w = Y!_, y;a;@;. To train an SVM is to
find o; and b by solving the following optimization
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The solution gives an optimal hyperplane, whichisa
decision boundary between the two classes. Figure 1
illustrates an optimal hyperplane and its support vec-
tors.

3 Virtual Examplesand Virtual Support
Vectors

Virtual examples are generated from labeled exam-
ples.! Based on prior knowledge of atarget task, the
label of agenerated exampleis set to the same value
asthat of the original example.

For example, in hand-written digit recognition,
virtual examples can be created on the assumption
that the label of an exampleis unchanged even if the
example is shifted by one pixel in the four princi-
pal directions (Scholkopf et al., 1996; DeCoste and
Scholkopf, 2002).

Virtual examples that are generated from support
vectors are called virtual support vectors (Scholkopf

1We discuss here only virtual examples which are generated

from labeled examples. Wedo not consider examples, the labels
of which are not known.



) o
T M o
Virtua ®

Examples ®

Figure 2: Hyperplane and Virtual Examples

et a., 1996). Reasonable virtual support vectors are
expected to give a better optimal hyperplane. As-
suming that virtual support vectors represent natu-
ra variations of examples of a target task, the de-
cision boundary should be more accurate. Figure 2
illustrates the idea of virtual support vectors. Note
that after virtual support vectors are given, the hy-
perplane is different from that in Figure 1.

4 Virtual Examplesfor Text Classification

We assume on text classification the following:

Assumption 1 The category of a document is un-
changed even if a small number of words are added
or deleted.

This assumption is reasonable. In typical cases of
text classification most of the documents usually
contain two or more keywords which may indicate
the categories of the documents.

Following Assumption 1, we propose two meth-
ods to create virtual examples for text classification.
One method isto del ete some portion of adocument.
Thelabel of avirtual exampleisgiven from the orig-
inal document. The other method is to add a small
number of words to a document. The words to be
added are taken from documents, the label of which
is the same as that of the document. Although one
can invent various methods to create virtual exam-
ples based on Assumption 1, we propose here very
simple ones.

Document Id | Feature Vector () Label (y)
1 (f15 f25 f3, f1, f5) +1
2 (f2, f1, f55 f6) +1
3 (f2, f35 f55 f6, f7) +1
4 (f1 f3, f3, fo, f10) -1
S (f1, f85 f10, f11) -1

Table 1: Example of Document Set

Before describing our methods, we describe text
representation which we used in this study. We to-
kenize a document to words, downcase them and
then remove stopwords, where the stopword list of
freeWAIS-sf? is used. Stemming is not performed.
We adopt binary feature vectors where word fre-
guency is hot used.

Now we describe the two proposed methods:
GenerateByDeletion and GenerateByAddition. As-
sumethat we are given afeature vector (adocument)
x and =’ is agenerated vector from x. GenerateBy-
Deletion algorithm is:

1. Copy = to z’.

2. For each binary feature f of &/, if rand() <
t then remove the feature f, where rand() is
a function which generates a random number
from 0 to 1, and ¢ is a parameter to decide how
many features are deleted.

For example, suppose that we have a set of docu-
ments asin Table 1. Some possible virtual examples
generated from Document 1 by GenerateByDeletion
algorithm ae (f2a f3, fa, 5, +1)! (fla [f3, f1, +1)1
or (fh f27 f47 f57 +1)

On the other hand, GenerateByAddition algo-
rithmis:

1. Collect from atraining set documents, the label
of which is the same asthat of .

2. Concatenate al the feature vectors (documents)
to create an array a of features. Each element
of a is afeature which represents aword.

3. Copy = to z’.

2pAvailable at hitp:/Is6-www.informatik.uni-dortmund.defir/
projects/freeWAI S-sf/



Category Name | Training | Test
earn 2877 | 1087
acq 1650 | 719
money-fx 538 | 179
grain 433 | 149
crude 389 | 189
trade 369 | 117
interest 347 | 131
ship 197 89
whesat 212 71
corn 181 56

Table 2: Number of Training and Test Examples

4. For each binary feature f of «/, if rand() < ¢
then select a feature randomly from « and put
ittox’.

For example, when we want to generate a virtual
example from Document 2 in Table 1 by Generate-
ByAddition algorithm, first we create an array a =
(f1, f2, f35 fas f55 f2, f45 f55 fos f2, f3, f55 fos f7)-

In this case, some possible virtual examples by
GenerateByAddition are (fi, f2, fa, f5, f6, +1),
(f2s f3s fas f5, fo, +1), or (f2, fa, f5, fo, f7,+1).
Anexample such as (fo, fa, [5, f6, f10, +1) iSnever
generated from Document 2 because there are no
positive documents which have fij.

5 Experimental Resultsand Discussion

5.1 Test Set Collection

We used the Reuters-21578 dataset® to evaluate the
proposed methods. The dataset has several splitsof a
training set and atest set. We used here “ModApte”
split, which is most widely used in the literature on
text classification. This split has 9,603 training ex-
amples and 3,299 test examples. More than 100 cat-
egories are in the dataset. We use, however, only the
most frequent 10 categories. Table 2 shows the 10
categories and the number of training and test exam-
plesin each of the categories.

5.2 Performance M easures

We use F-measure (van Rijsbergen, 1979; Lewis
and Gale, 1994) as a primal performance measure

SAvailable from David D. Lewiss page: http://
www.daviddlewis.com/resources/testcollections/reuters21578/

to evaluate the result. F-measure is defined as;

F-measure = (+5)pg (4)

B +q
where p isprecision and ¢ isrecall and 3 isaparam-
eter which decides the relative weight of precision
and recall. The p and the ¢ are defined as:

number of positive and correct outputs
number of positive outputs
number of positive and correct outputs
number of positive examples

In Equation 4, usualy 8 = 1 is used, which means
it gives equal weight to precision and recall.

When we evaluate the performance of a classifier
to a multiple category dataset, there are two ways
to compute F-measure: macro-averaging and micro-
averaging (Yang, 1999). The former way is to first
compute F-measure for each category and then aver-
agethem, whilethelatter way isto first compute pre-
cision and recall for all the categories and use them
to calculate the F-measure.

53 SVM setting

Through our experiments we used our original SVM
tools, the algorithm of which is based on SMO (Se-
guential Minimal Optimization) by Platt (1999). We
used linear SYMs and set a misclassification cost C'
t00.016541 which is1/(the average of « - ) where
x is a feature vector in the 9,603 size training Set.
For simplicity, we fixed C through all the experi-
ments. We built abinary classifier for each of the 10
categories shown in Table 2.

54 Results

First, we carried out experiments using GenerateBy-
Deletion and GenerateByAddition separately to cre-
ate virtual examples, where a virtual example was
created per Support Vector. We did not generate
virtual examples from non support vectors. We set
the parameter ¢ t0 0.05* for GenerateByDeletion and
GenerateByAddition for all the experiments.

To build an SVM with virtual examples we use
the following steps:

*We first tried t = 0.01,0.05, and 0.10 with GenerateBy-
Deletion using the 9603 size training set. The valuet = 0.05

yielded best micro-average F-measure for the test set. We used
the same value also for GenerateByAddition.



1. Trainan SVM.
2. Extract Support Vectors.

3. Generate virtual examples from the Support
Vectors.

4. Train another SVM using both the origina la-
beled examples and the virtual examples.

We evaluated the performance of the two methods
depending on the size of atraining set. We created
subsamples by selecting randomly from the 9603
size training set. We prepared seven sizes: 9603,
4802, 2401, 1200, 600, 300, and 150° Micro-
average F-measures of the two methods are shown
in Table 3. We see from Table 3 that both the meth-
ods give better performance than that of the origi-
nal SVM. The smaller the number of examples in
the training set is, the larger the gain is. For the
9603 size training set, the gain of GenerateByDele-
tion is 0.75 (= 90.17 — 89.42), while for the 150
size set, the gain is 6.88 (= 60.16 — 53.28). These
results suggest that in the smaller training sets there
are not enough various examples to give a accurate
decision boundary and therefore the effect of virtual
examples is larger at the smaller training sets. It
is reasonable to conclude that GenerateByDeletion
and GenerateByAddition generated good virtual ex-
amples for the task and this led to the performance
gain.

After we found that the simple two methods to
generate virtual support vectors were effective, we
examined a combined method which is to use both
GenerateByDeletion and GenerateByAddition. Two
virtual examples are generated per Support Vector.
The performance of the combined method is also
shown in Table 3. The performance gain of the com-
bined method is larger than that with either Gener-
ateByDeletion or GenerateByAddition.

Furthermore, we carried out another experiment
with a combined method to create two virtual exam-
ples with GenerateByDeletion and GenerateByAd-
dition respectively. That is, four virtual examples
were generated from a Support Vector. The perfor-
mance of that setting is shown in Table 3. The best

5Since we selected samples randomly, some smaller training

sets of low frequent categories may have had few or even zero
positive examples.
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Figure 4: Macro-Average F-Measure versus Num-
ber of Examplesin the Training Set. For the smaller
training sets F-measures cannot be computed be-
cause the precisions are undefined.

result is achieved by the combined method to create
four virtual examples per Support Vector.

For the rest of this section, welimit our discussion
to the comparison of the results of the original SVM
and SVM with four virtual examples per SV (SVM
with 4 VSVs). The learning curves of the origina
SVM and SVM with 4 VSVsare shown in Figures 3
and 4. It isclear that SVM with 4 VSVs outper-
forms the original SVM considerably in terms of
both micro-average F-measure and macro-average
F-measure. SVM with 4 VSVs achieves a given
level of performance with roughly half of the labeled
examples which the origina SVM requires. One
might suppose that the improvement of F-measure



Number of Examplesin Training Set
Method 9603 4802 2401 1200 600 300 150
Original SVM 89.42 86.58 81.69 7724 71.08 64.44 53.28
SVM + 1VSV per SV (GenerateByDeletion) | 90.17 88.62 8445 81.11 7532 7011 60.16
SVM + 1 VSV per SV (GenerateByAddition) | 90.00 8851 84.48 81.14 7533 69.59 60.04
SVM + 2 VSVsper SV (Combined) 90.27 89.33 86.27 8359 7744 7281 64.22
SVM + 4V SVsper SV (Combined) 9045 89.69 8712 8497 79.16 7325 65.05

Table 3: Comparison of Micro-Average F-measure of Different Methods. “VSV” means virtua SV.

' SVM+ zlll\/irtual S'Vs pér SV M
SVM ---x---

Error Rate (%)

100 1000
Number of Examples in Training Set

Figure 5: Error Rate versus Number of Examplesin
the Training Set

is realized simply because the recall gets highly
improved while the error rate increases. We plot
changes of the error rate for 32990 tests (3299 tests
for each of the 10 categories) in Figure 5. SVM with
4 VSVs still outperforms the original SVM signifi-
cantly.®

The performance changes for each of the 10 cat-
egories are shown in Tables 4 and 5. SVM with 4
VSVs is better than the original SVM for almost
all the categories and all the sizes except for “inter-
est” and “wheat” at the 9603 size training set. For
low frequent categories such as “ship”, “wheat” and
“corn”, the classifiers of the origina SVM perform
poorly. There are many cases where they never out-
put ‘positive’, i.e. the recall is zero. It suggests that
the original SVM failsto find agood hyperplane due
to the imbalanced training sets which have very few

®We have done the significance test which is called “p-test”
in (Yang and Liu, 1999), requiring significance at the 0.05 level.
Although at the 9603 size training set the improvement of the
error rate is not statistically significant, in al the other casesthe
improvement is significant.

positive examples. In contrast, SVM with 4 VSVs
yields better results for such harder cases.

6 Conclusion and Future Directions

We have explored how virtual examplesimprovethe
performance of text classification with SVMs. For
text classification, we have proposed methods to cre-
ate virtual examples on the assumption that the label
of a document is unchanged even if a small num-
ber of words are added or deleted. The experimen-
tal results have shown that our proposed methods
improve the performance of text classification with
SVMs, especialy for small training sets. Although
the proposed methods are not readily applicable to
NLP tasks other than text classification, it is notable
that the use of virtual examples, which has been very
little studied in NLP, is empirically evaluated.

In the future, it would be interesting to employ
virtual examples with methods to use both labeled
and unlabeled examples (e.g., (Blum and Mitchell,
1998; Nigam et a., 1998; Joachims, 1999)). The
combined approach may yield better results with a
small number of labeled examples. Another interest-
ing direction would be to develop methods to create
virtual examples for the other tasks (e.g., named en-
tity recognition, POS tagging, and parsing) in NLP.
We believe we can use prior knowledge on these
tasks to create effective virtual examples.
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