
A Maximum Entropy Chinese Character-Based Parser

Xiaoqiang Luo
1101 Kitchawan Road, 23-121

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
xiaoluo@us.ibm.com

Abstract

The paper presents a maximum entropy
Chinese character-based parser trained on
the Chinese Treebank (“CTB” hence-
forth). Word-based parse trees in
CTB are first converted into character-
based trees, where word-level part-of-
speech (POS) tags become constituent
labels and character-level tags are de-
rived from word-level POS tags. A
maximum entropy parser is then trained
on the character-based corpus. The
parser does word-segmentation, POS-
tagging and parsing in a unified frame-
work. An average label F-measure

���������
and word-segmentation F-measure 	�
 �
���
are achieved by the parser. Our re-
sults show that word-level POS tags can
improve significantly word-segmentation,
but higher-level syntactic strutures are of
little use to word segmentation in the max-
imum entropy parser. A word-dictionary
helps to improve both word-segmentation
and parsing accuracy.

1 Introduction: Why Parsing Characters?

After Linguistic Data Consortium (LDC) re-
leased the Chinese Treebank (CTB) developed at
UPenn (Xia et al., 2000), various statistical Chinese
parsers (Bikel and Chiang, 2000; Xu et al., 2002)
have been built. Techniques used in parsing En-
glish have been shown working fairly well when ap-
plied to parsing Chinese text. As there is no word
boundary in written Chinese text, CTB is manually

segmented into words and then labeled. Parsers de-
scribed in (Bikel and Chiang, 2000) and (Xu et al.,
2002) operate at word-level with the assumption that
input sentences are pre-segmented.

The paper studies the problem of parsing Chi-
nese unsegmented sentences. The first motivation
is that a character-based parser can be used directly
in natural language applications that operate at char-
acter level, whereas a word-based parser requires
a separate word-segmenter. The second and more
important reason is that the availability of CTB,
a large corpus with high quality syntactic annota-
tions, provides us with an opportunity to create a
highly-accurate word-segmenter. It is widely known
that Chinese word-segmentation is a hard problem.
There are multiple studies (Wu and Fung, 1994;
Sproat et al., 1996; Luo and Roukos, 1996) show-
ing that the agreement between two (untrained) na-
tive speakers is about upper � ��� to lower

�����
.

The agreement between multiple human subjects
is even lower (Wu and Fung, 1994). The rea-
son is that human subjects may differ in segment-
ing things like personal names (whether family and
given names should be one or two words), num-
ber and measure units and compound words, al-
though these ambiguities do not change a human
being’s understanding of a sentence. Low agree-
ment between humans affects directly evaluation of
machines’ performance (Wu and Fung, 1994) as it
is hard to define a gold standard. It does not nec-
essarily imply that machines cannot do better than
humans. Indeed, if we train a model with consis-
tently segmented data, a machine may do a bet-
ter job in “remembering” word segmentations. As
will be shown shortly, it is straightforward to en-
code word-segmentation information in a character-



based parse tree. Parsing Chinese character streams
therefore does effectively word-segmentation, part-
of-speech (POS) tagging and constituent labeling
at the same time. Since syntactical information
influences directly word-segmentation in the pro-
posed character-based parser, CTB allows us to test
whether or not syntactic information is useful for
word-segmentation. A third advantage of parsing
Chinese character streams is that Chinese words
are more or less an open concept and the out-of-
vocabulary (OOV) word rate is high. As morphol-
ogy of the Chinese language is limited, extra care
is needed to model unknown words when building
a word-based model. Xu et al. (2002), for example,
uses an independent corpus to derive word classes so
that unknown words can be parsed reliably. Chinese
characters, on the other hand, are almost closed. To
demonstrate the OOV problem, we collect a word
and character vocabulary from the first 	 ��� sen-
tences of CTB, and compute their coverages on the
corresponding word and character tokenization of
the last

�����
of the corpus. The word-based OOV

rate is � � 
 ��� while the character-based OOV rate is
only

���������
.

The first step of training a character-based parser
is to convert word-based parse trees into character-
based trees. We derive character-level tags from
word-level POS tags and encode word-boundary in-
formation with a positional tag. Word-level POSs
become a constituent label in character-based trees.
A maximum entropy parser (Ratnaparkhi, 1997)
parser is then built and tested. Many language-
independent feature templates in the English parser
can be reused. Lexical features, which are language-
dependent, are used to further improve the baseline
models trained with language-independent features
only. Word-segmentation results will be presented
and it will be shown that POSs are very helpful while
higher-level syntactic structures are of little use to
word-segmentation – at least in the way they are
used in the parser.

2 Word-Tree to Character-Tree

CTB is manually segmented and is tokenized at
word level. To build a Chinese character parser,
we first need to convert word-based parse trees into
character trees. A few simple rules are employed in
this conversion to encode word boundary informa-
tion:

1. Word-level POS tags become labels in charac-
ter trees.

2. Character-level tags are inherited from word-
level POS tags after appending a positional tag;

3. For single-character words, the positional tag is
“s”; for multiple-character words, the first char-
acter is appended with a positional tag “b”, last
character with a positional tag “e”, and all mid-
dle characters with a positional tag “m”.

An example will clarify any ambiguity of the
rules. For example, a word-parse tree
“(IP (NP (NP ����� /NR ) (NP ��� /NN� �

/NN ) ) (VP ! � /VV ) " /PU )”
would become

“(IP (NP (NP (NR � /nrb � /nrm � /nre ) ) (NP (NN� /nnb � /nne ) (NN � /nnb � /nne ) ) ) (VP (VV! /vvb
�

/vve ) ) (PU " /pus ) ).” (1)

Note that the word-level POS “NR” becomes a la-
bel of the constituent spanning the three characters “�#�#� ”. The character-level tags of the constituent
“ �$�$� ” are the lower-cased word-level POS tag
plus a positional letter. Thus, the first character “� ” is assigned the tag “nrb” where “nr” is from
the word-level POS tag and “b” denotes the begin-
ning character; the second (middle) character “ � ”
gets the positional letter “m”, signifying that it is in
the middle, and the last character “ � ” gets the posi-
tional letter “e”, denoting the end of the word. Other
words in the sentence are mapped similarly. After
the mapping, the number of terminal tokens of the
character tree is larger than that of the word tree.

It is clear that character-level tags encode word
boundary information, and chunk-level1 labels are
word-level POS tags. Therefore, parsing a Chi-
nese character sentence is effectively doing word-
segmentation, POS-tagging and constructing syntac-
tic structure at the same time.

3 Model and Features

The maximum entropy parser (Ratnaparkhi, 1997) is
used in this study, for it offers the flexibility of inte-
grating multiple sources of knowledge into a model.
The maximum entropy model decomposes %'&)(+*�,.- ,
the probability of a parse tree ( given a sentence , ,
into the product of probabilities of individual parse

1A chunk is here defined as a constituent whose children are
all preterminals.



actions, i.e., / 0213�465 %7&98 3 *�,;:<8>= 3@?A5CB5 - . The parse ac-
tions 8 0215 are an ordered sequence, where D+E is the
number of actions associated with the parse ( . The
mapping from a parse tree to its unique sequence of
actions is 1-to-1. Each parse action is either tag-
ging a word, chunking tagged words, extend-
ing an existing constituent to another constituent,
or checking whether an open constituent should
be closed. Each component model takes the expo-
nential form:

%7&98 3 *�,;:<8 = 3@?A5CB5 -.F G�H�IKJMLONQP N�R�N &S,;:<8T=
3@?A5CB5 :<8 3 -VUW &S,;:<8T= 3@?A5CB5 - :

(2)

where
W &S,;:<8 = 3)?A5CB5 - is a normalization term to

ensure that %7&98 3 *�,X:<8>= 3)?A5CB5 - is a probability,R�N &S,;:<8 = 3@?A5CB5 :<8 3 - is a feature function (often binary)
and P N is the weight of R�N .

Given a set of features and a corpus of training
data, there exist efficient training algorithms (Dar-
roch and Ratcliff, 1972; Berger et al., 1996) to find
the optimal parameters Y P N�Z . The art of building
a maximum entropy parser then reduces to choos-
ing “good” features. We break features used in this
study into two categories. The first set of features
are derived from predefined templates. When these
templates are applied to training data, features are
generated automatically. Since these templates can
be used in any language, features generated this way
are referred to language-independent features. The
second category of features incorporate lexical in-
formation into the model and are primarily designed
to improve word-segmentation. This set of features
are language-dependent since a Chinese word dic-
tionary is required.

3.1 Language-Independent Feature Templates
The maximum entropy parser (Ratnaparkhi, 1997)
parses a sentence in three phases: (1) it first tags the
input sentence. Multiple tag sequences are kept in
the search heap for processing in later stages; (2)
Tagged tokens are grouped into chunks. It is pos-
sible that a tagged token is not in any chunk; (3)
A chunked sentence, consisting of a forest of many
subtrees, is then used to extend a subtree to a new
constituent or join an existing constituent. Each ex-
tending action is followed by a checking ac-
tion which decides whether or not to close the ex-
tended constituent. In general, when a parse action

8 3 is carried out, the context information, i.e., the in-
put sentence , and preceding parse actions 8 = 3@?A5CB5 ,
is represented by a forest of subtrees. Feature func-
tions operate on the forest context and the next parse
action. They are all of the form:R�N2[ &S,X:<8>= 3)?A5CB5 -\:<8 3 -^]_Fa` N &S,X:<8>= 3)?A5CB5 -cbd&98 3 FO8 N -\:

(3)

where ` N &S,;:<8T= 3@?A5CB5 - is a binary function on the con-
text.

Some notations are needed to present features.
We use egf to denote an input terminal token, h<f its
tag (preterminal), i f a chunk, and G f a constituent
label, where the index j is relative to the current
subtree: the subtree immediately left to the current
is indexed as k � , the second left to the current sub-
tree is indexed as kml , the subtree immediately to the
right is indexed as

�
, so on and so forth. n f�o p repre-

sents the root label of the qsr�t -child of the j2r�t subtree.
If qXu � , the child is counted from right.

With these notations, we are ready to introduce
language-independent features, which are broken
down as follows:

Tag Features
In the tag model, the context consists of a win-

dow of five tokens – the token being tagged and
two tokens to its left and right – and two tags on
the left of the current word. The feature templates
are tabulated in Table 1 (to save space, templates are
grouped). At training time, feature templates are in-
stantiated by the training data. For example, when
the template “ e ?A5 :vhcw ” is applied to the first charac-
ter of the sample sentence,
“(IP (NP (NP (NR � /nrb � /nrm � /nre ) ) (NP (NN� /nnb � /nne ) (NN

�
/nnb

�
/nne ) ) ) (VP (VV! /vvb

�
/vve ) ) (PU " /pus ) )”,

a feature R &@e ?A5 F *BOUNDARY* :vhvwxFyjAz�{|- is
generated. Note that e ?A5 is the token on the left
and in this case, the boundary of the sentence. The
template “ emw�:vh^w ” is instantiated similarly as R &@e}wmF�~:vh w F�jAz�{|- .
Chunk Features

As character-level tags have encoded the chunk
label information and the uncertainly about a chunk
action is low given character-level tags, we limit the
chunk context to a window of three subtrees – the
current one plus its left and right subtree. i f in Ta-
ble 2 denotes the label of the j r�t subtree if it is not



Index Template (context,future)
1 egfT:vhcw}&@j�F�kmld:�k � : � : � :�l�-
2 egf�egf�� 5 :vh^w�&@j�F�k � : � -
3 egf�egf�� 5 egf�����:vhcw�&@j�F�k�ld:�k � : � -
4 h ?A5 :vhcw
5 h ? � h ?A5 :vh w

Table 1: Tag feature templates: e f &@j Fkmld: � : � : � :�l�- : current token (if jxF � ) or * j�* r�t to-
ken on the left (if jau � ) or right (if j � ). h f &@jxFkmld:�k � : � : � :�l�- : tag.

a chunk, or the chunk label plus the tag of its right-
most child if it is a chunk.

Index Template (context,future)
1 i�f�:<8dw�&@j�F�k � : � : � -
2 i f i f�� 5 :<8 w &@j�F�k � : � -

Table 2: Chunk feature templates: i f &@j�F�k � : � : � -
is the chunk label plus the tag of its right most child
if the j2r�t tree is a chunk; Otherwise i�f is the con-
stituent label of the j r�t tree.

Again, we use the sentence (1) as an example. As-
sume that the current forest of subtrees is
(NR � /nrb � /nrm � /nre ) � /nnb � /nne � /nnb�

/nne ! /vvb
�

/vve " /pus ,
and the current subtree is “ � /nnb”, then instan-

tiating the template i ?A5 :<8�w would result in a featureR &9i ?A5 FOD�����jAz G :<8dwmFOi�`���j���D�D - .
Extend Features

Extend features depend on previous subtree and
the two following subtrees. Some features uses child
labels of the previous subtree. For example, the in-
terpretation of the template on line 4 of Table 3 is
that G ?A5 is the root label of the previous subtree,n = ?A5 o ?A5CB is the label of the right-most child of the
previous tree, and G w is the root label of the current
subtree.

Check Features

Most of check feature templates again use con-
stituent labels of the surrounding subtrees. The tem-
plate on line 1 of Table 4 is unique to the check
model. It essentially looks at children of the cur-
rent constituent, which is intuitively a strong indica-
tion whether or not the current constituent should be
closed.

Index Template (context,future)
1 G ?A5 G f�:<8�w�&@j�F � : � :�l�-
2 G ?A5 n = ?A5 o ? f B :<8�w}&@j�F � :�l�-3 G ?A5 G w G 5
4 G ?A5 n = ?A5 o ?A5CB G w�:<8�w5 G ?A5 n = ?A5 o ?A5CB G w G 5 :<8dw6 G ?A5 n = ?A5 o ?A5CB n = ?A5 o ? � B :<8dw

Table 3: Extend feature templates: G fA&@j Fk � : � : � :�l�- is the root constituent label of the j r�t
subtree (relative to the current one); n = ?A5 o ? f B &@j�F� :�l�- is the label of the j r�t rightmost child of the
previous subtree.

Index Template (context,future)
1 G wm��n�w�o 52����� n�w�o f���:<8�w
2 G w�o ?A5 :<8�w
3 G w�n�w�o 3 :<8dw}&@�QF � :�ld: ����� :vj2��-
4 G ?A5 :<8 w
5 G 5 :<8dw
6 G ? � G ?A5 :<8 w
7 G 5 G ��:<8dw

Table 4: Check feature templates: G f�&@j Fk � : � : � :�l�- is the constituent label of the j6r�t subtree
(relative to the current one). n = w�o 3�B is the � r�t child la-
bel of the current constituent.

3.2 Language-Dependent Features

The model described so far does not depend on any
Chinese word dictionary. All features derived from
templates in Section 3.1 are extracted from training
data. A problem is that words not seen in training
data may not have “good” features associated with
them. Fortunately, the maximum entropy framework
makes it relatively easy to incorporate other sources
of knowledge into the model. We present a set of
language-dependent features in this section, primar-
ily for Chinese word segmentation.

The language-dependent features are computed
from a word list and training data. Formerly, let � be
a list of Chinese words, where characters are sepa-
rated by spaces. At the time of tagging characters
(recall word-segmentation information is encoded
in character-level tags), we test characters within a
window of five (that is, two characters to the left and
two to the right) and see if a character either starts,
occurs in any position of, or ends any word on the
list � . This feature templates are summarized in Ta-



ble 5. {�&@e�fT:<��- tests if the character emf starts any
word on the list � . Similarly, ��&@emf�:<� - tests if the
character e�f occurs in any position of any word on
the list � , and G &@e f :<� - tests if the character e f is
the last position of any word on the list � .

Index Template (context,future)
1 {�&@e�f�:<��-\:vh^w�&@j�F�kmld:�k � : � : � :�l�-
2 ��&@egfT:<��-\:vh^w�&@j�F¡kmld:�k � : � : � :�l�-
3 G &@egf¢:<� -\:vhcw}&@j�F�kmld:�k � : � : � :�l�-

Table 5: Language-dependent lexical features.
A word list can be collected to encode different

semantic or syntactic information. For example, a
list of location names or personal names may help
the model to identify unseen city or personal names;
Or a closed list of functional words can be collected
to represent a particular set of words sharing a POS.
This type of features would improve the model ro-
bustness since unseen words will share features fired
for seen words. We will show shortly that even a
relatively small word-list improves significantly the
word-segmentation accuracy.

4 Experiments

All experiments reported here are conducted on the
latest LDC release of the Chinese Treebank, which
consists of about l�� ��£ words. Word parse trees
are converted to character trees using the procedure
described in Section 2. All traces and functional
tags are stripped in training and testing. Two re-
sults are reported for the character-based parsers: the
F-measure of word segmentation and F-measure of
constituent labels. Formally, let ¤#¥�&@�^-\:\¤§¦T&@�c- be the
number of words of the � r�t reference sentence and its
parser output, respectively, and ¨©&@�^- be the number
of common words in the �Cr�t sentence of test set, then
the word segmentation F-measure is

ª;«C¬C­ F l L 3 ¨©&@�^-L 3 [ ¤ ¥ &@�^-�®¯¤ ¦ &@�^- ] � (4)

The F-measure of constituent labels is computed
similarly:

ª p±°�² F l L 3 D³&@�^-L 3 [ �.¥�&@�^-2®$��¦>&@�^-^] : (5)

where � ¥ &@�^- and � ¦ &@�^- are the number of con-
stituents in the � r�t reference parse tree and parser

output, respectively, and D´&@�c- is the number of
common constituents. Chunk-level labels converted
from POS tags (e.g., “NR”, “NN” and “VV” etc in
(1)) are included in computing label F-measures for
character-based parsers.

4.1 Impact of Training Data

The first question we have is whether CTB is large
enough in the sense that the performance saturates.
The first set of experiments are intended to answer
this question. In these experiments, the first 	 ���
CTB is used as the training set and the rest

�����
as

the test set. We start with
�����

of the training set
and increase the training set each time by

�����
. Only

language-independent features are used in these ex-
periments.

Figure 1 shows the word segmentation F-measure
and label F-measure versus the amount of training
data. As can be seen, F-measures of both word
segmentation and constituent label increase mono-
tonically as the amount of training data increases.
If all training data is used, the word segmentation
F-measure is 	�� �¶µ�� and label F-measure

����� � � .
These results show that language-independent fea-
tures work fairly well – a major advantage of data-
driven statistical approach. The learning curve also
shows that the current training size has not reached
a saturating point. This indicates that there is room
to improve our model by getting more training data.
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Figure 1: Learning curves: word-segmentation F-
measure and parsing label F-measure vs. percentage
of training data.



4.2 Effect of Lexical Features
In this section, we present the main parsing results.
As it has not been long since the second release of
CTB and there is no commonly-agreed training and
test set, we divide the entire corpus into 10 equal par-
titions and hold each partition as a test set while the
rest are used for training. For each training-test con-
figuration, a baseline model is trained with only lan-
guage independent features. Baseline word segmen-
tation and label F-measures are plotted with dotted-
line in Figure 2. We then add extra lexical features
described in Section 3.1 to the model. Lexical ques-
tions are derived from a 58K-entry word list. The
word list is broken into 4 sub-lists based on word
length, ranging from 2 to 5 characters. Lexical fea-
tures are computed by answering one of the three
questions in Table 5. Intuitively, these questions
would help the model to identify word boundaries,
which in turn ought to improve the parser. This is
confirmed by results shown in Figure 2. The solid
two lines represent results with enhanced lexical
questions. As can be seen, lexical questions improve
significantly both word segmentation and parsing
across all experiments. This is not surprising as lex-
ical features derived from the word list are comple-
mentary to language-independent features computed
from training sentences.
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Segmentation (baseline)
Label (with LexFeat)
Label (baseline)

Figure 2: Parsing and word segmentation F-
measures vs. the experiment numbers. Lines with
triangles: segmentation; Lines with circles: label;
Dotted-lines: language-independent features only;
Solid lines: plus lexical features.

Another observation is that results vary greatly
across experiment configurations: for the model

trained with lexical features, the second exper-
iment has a label F-measure

��µd�¶���
and word-

segmentation F-measure 	�� ����� , while the sixth ex-
periment has a label F-measure ��� ����� and word-
segmentation F-measure 	 ��� � � . The large variances
justify multiple experiment runs. To reduce the vari-
ances, we report numbers averaged over the 10 ex-
periments in Table 6. Numbers on the row start-
ing with “WS” are word-segmentation results, while
numbers on the last row are F-measures of con-
stituent labels. The second column are average F-
measures for the baseline model trained with only
language-independent features. The third column
contains F-measures for the model trained with extra
lexical features. The last column are releative error
reduction. The best average word-segmentation F-
measure is 	�
 �
��� and label F-measure is

���������
.

F-measure
baseline LexFeat Relative(%)

WS(%) 94.6 96.0 26
Label(%) 80.0 81.4 7

Table 6: WS: word-segmentation. Baseline:
language-independent features. LexFeat: plus lex-
ical features. Numbers are averaged over the 10 ex-
periments in Figure 2.

4.3 Effect of Syntactic Information on
Word-segmentation

Since CTB provides us with full parse trees, we want
to know how syntactic information affects word-
segmentation. To this end, we devise two sets of
experiments:

1. We strip all POS tags and labels in the Chinese
Treebank and retain only word boundary infor-
mation. To use the same maximum entropy
parser, we represent word boundary by dummy
constituent label “W”. For example, the sample
sentence (1) in Section 2 is represented as:

(W � /wb � /wm � /we ) (W � /wb � /we ) (W�
/wb
�

/we ) (W ! /wb
�

/we ) (W " /ws ).

2. We remove all labels but retain word-level POS
information. The sample sentence above is rep-
resented as:

(NR � /nrb � /nrm � /nre ) (NN � /nnb � /nne
) (NN � /nnb � /nne ) (VV ! /vvb � /vve ) (PU" /pus ).



Note that positional tags are used in both setups.
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Figure 3: Usefulness of syntactic information:
(black) dash-dotted line – word boundaries only,
(red) dashed line – POS info, and (blue) solid line
– full parse trees.

With these two representations of CTB, we re-
peat the 10 experiments of Section 4.2 using the
same lexical features. Word-segmentation results
are plotted in Figure 3. The model trained with word
boundary information has the worst performance,
which is not surprising as we would expect infor-
mation such as POS tags to help disambiguate word
boundaries. What is surprising is that syntactic in-
formation beyond POS tags has little effect on word-
segmentation – there is practically no difference be-
tween the solid line (for the model trained with
full parse trees) and the dashed-line (for the model
trained with POS information) in Figure 3. This re-
sult suggests that most ambiguities of Chinese word
boundaries can be resolved at lexical level, and high-
level syntactic information does not help much to
word segmentation in the current parser.

5 Related Work

Bikel and Chiang (2000) and Xu et al. (2002) con-
struct word-based statistical parsers on the first re-
lease of Chinese Treebank, which has about 100K
words, roughly half of the training data used in this
study. Bikel and Chiang (2000) in fact contains two
parsers: one is a lexicalized probabilistic context-
free grammar (PCFG) similar to (Collins, 1997);
the other is based on statistical TAG (Chiang, 2000).
About � µ�� F-measure is reported in (Bikel and Chi-
ang, 2000). Xu et al. (2002) is also based on PCFG,

but enhanced with lexical features derived from the
ASBC corpus2 . Xu et al. (2002) reports an overall
F-measure ��� � l � when the same training and test
set as (Bikel and Chiang, 2000) are used. Since our
parser operates at character level, and more training
data is used, the best results are not directly compa-
rable. The middle point of the learning curve in Fig-
ure 1, which is trained with roughly 100K words, is
at the same ballpark of (Xu et al., 2002). The con-
tribution of this work is that the proposed character-
based parser does word-segmentation, POS tagging
and parsing in a unified framework. It is the first at-
tempt to our knowledge that syntactic information is
used in word-segmentation.

Chinese word segmentation is a well-known prob-
lem that has been studied extensively (Wu and
Fung, 1994; Sproat et al., 1996; Luo and Roukos,
1996) and it is known that human agreement is
relatively low. Without knowing and control-
ling testing conditions, it is nearly impossible to
compare results in a meaningful way. There-
fore, we will compare our approach with some
related work only without commenting on seg-
mentation accuracy. Wu and Tseng (1993) con-
tains a good problem statement of Chinese word-
segmentation and also outlines a few segmentation
algorithms. Our method is supervised in that the
training data is manually labeled. Palmer (1997)
uses transform-based learning (TBL) to correct an
initial segmentation. Sproat et al. (1996) employs
stochastic finite state machines to find word bound-
aries. Luo and Roukos (1996) proposes to use a
language model to select from ambiguous word-
segmentations. All these work assume that a lexi-
con or some manually segmented data or both are
available. There are numerous work exploring semi-
supervised or unsupervised algorithms to segment
Chinese text. Ando and Lee (2003) uses a heuris-
tic method that does not require segmented training
data. Peng and Schuurmans (2001) learns a lexicon
and its unigram probability distribution. The auto-
matically learned lexicon is pruned using a mutual
information criterion. Peng and Schuurmans (2001)
requires a validation set and is therefore semi-
supervised.

2See http://godel.iis.sinica.edu.tw/ROCLING.



6 Conclusions

We present a maximum entropy Chinese character-
based parser which does word-segmentation, POS
tagging and parsing in a unified framework. The
flexibility of maximum entropy model allows us
to integrate into the model knowledge from other
sources, together with features derived automat-
ically from training corpus. We have shown
that a relatively small word-list can reduce word-
segmentation error by as much as l�
 � , and a word-
segmentation F-measure 	�
 �
��� and label F-measure���������

are obtained by the character-based parser.
Our results also show that POS information is very
useful for Chinese word-segmentation, but higher-
level syntactic information benefits little to word-
segmentation.
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