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Abstract

Successful application of multi-view co-
training algorithms relies on the ability to
factor theavailablefeaturesintoviewsthat
are compatible and uncorrelated. Thiscan
potentially preclude their use on problems
such as coreference resol ution that lack an
obvious feature split. To bootstrap coref-
erence classifiers, we propose and eval-
uate a single-view weakly supervised al-
gorithm that relies on two different learn-
ing algorithmsin lieu of the two different
viewsrequired by co-training. In addition,
we investigate a method for ranking un-
labeled instances to be fed back into the
bootstrappingloop aslabeled data, aiming
to alleviate the problem of performance
deterioration that is commonly observed
in the course of bootstrapping.

1 Introduction

Co-training (Blum and Mitchell, 1998) is a weskly
supervised paradigm that learns a task from a small
set of labeled data and a large pool of unlabeled
data using separate, but redundant views of the data
(i.e. using digoint feature subsets to represent the
data). To ensure provable performance guaran-
tees, the co-training agorithm assumes as input a
set of views that satisfies two fairly strict condi-
tions. First, each view must be sufficient for learn-
ing the target concept. Second, the views must be
conditionally independent of each other given the

class. Empirical results on artificial data sets by
Musleaet al. (2002) and Nigam and Ghani (2000)
confirm that co-trainingis sensitiveto these assump-
tions. Indeed, athough the algorithm has been ap-
plied successfully to natural language processing
(NLP) tasks that have a natura view factorization
(e.g. web page classification (Blum and Mitchell,
1998) and named entity classification (Collins and
Singer, 1999)), there has been little success, and a
number of reported problems, when applying co-
training to NLP data sets for which no natural fea-
ture split has been found (e.g. anaphora resolution
(Mueller et a., 2002)).

As aresult, researchers have begun to investigate
co-training procedures that do not require explicit
view factorization. Goldman and Zhou (2000) and
Steedman et a. (2003b) use two different learning
algorithmsin lieu of the multiple views required by
standard co-training.> The intuition is that the two
learning algorithms can potentially substitutefor the
two views: different learners have different rep-
resentation and search biases and can complement
each other by inducing different hypothesesfrom the
data. Despite their similarities, the principlesunder-
lying the Goldman and Zhou and Steedman et al.
co-training algorithms are fundamentally different.
In particular, Goldman and Zhou rely on hypothesis
testing to select new instances to add to the labeled
data On the other hand, Steedman et al. use two
learning algorithms that correspond to coarsely dif-
ferent features, thusretainingin spirit the advantages

!Steedman et al. (2003b) bootstrap two parsers that use dif-
ferent statistical models via co-training. Hence, the two parsers
can effectively be viewed astwo different learning algorithms.



provided by conditionally independent feature splits
in the Blum and Mitchell algorithm.

The goal of this paper is two-fold. First, we
propose a single-view algorithm for bootstrapping
coreference classifiers. Like anaphora resolution,
noun phrase coreference resolution is a problem for
which a natural feature split is not readily available.
In related work (Ng and Cardie, 2003), we com-
pare the performance of the Blum and Mitchell co-
training algorithm with that of two existing single-
view bootstrapping algorithms — self-training with
bagging (Banko and Brill, 2001) and EM (Nigam et
al., 2000) — on coreference resolution, and show
that single-view weakly supervised learnersare a vi-
able alternative to co-training for the task. This pa
per instead focuses on developing a single-view al-
gorithm that combines aspects of each of the Gold-
man and Zhou and Steedman et al. algorithms.

Second, we investigate a new method that, in-
spired by Steedman et al. (2003a), ranks unlabeled
instances to be added to the labeled data in an at-
tempt to aleviate a problem commonly observed in
bootstrapping experiments — performance deterio-
ration due to the degradation in the quality of the
labeled data as bootstrapping progresses (Pierce and
Cardie, 2001; Riloff and Jones, 1999).

In a set of baseline experiments, we first demon-
strate that multi-view co-training fails to boost the
performance of the coreference system under var-
ious parameter settings. We then show that our
single-view weakly supervised algorithm success-
fully bootstraps the coreference classifiers, boost-
ing the F-measure score by 9-12% on two standard
coreference data sets. Finally, we present experi-
mental resultsthat suggest that our method for rank-
ing instances is more resistant to performance dete-
rioration in the bootstrapping process than Blum and
Mitchell’s* rank-by-confidence” method.

2 Noun Phrase Coreference Resolution

Noun phrase coreference resolution refers to the
problem of determining which noun phrases (NPs)
refer to each real-world entity mentioned in a doc-
ument.? In this section, we give an overview of
the coreference resol ution system to which the boot-

2Concrete examples of the coreference task can be found in
MUC-6 (1995) and MUC-7 (1998).

strapping a gorithmswill be applied.

The framework underlying the coreference sys-
tem is a standard combination of classification and
clustering (see Ng and Cardie (2002) for details).
Coreference resolution is first recast as a classifica-
tion task, in which a pair of NPs is classified as co-
referring or not based on constraintsthat are learned
from an annotated corpus. A separate clustering
mechanism then coordinates the possibly contradic-
tory pairwise classifications and constructs a parti-
tion on the set of NPs. When the system operates
within the weakly supervised setting, a weakly su-
pervised algorithm bootstrapsthe coreference classi-
fier from the given labeled and unlabeled data rather
than from amuch larger set of labeled instances. The
clustering algorithm, however, isnot manipul ated by
the bootstrapping procedure.

3 Learning Algorithms

We employ naive Bayes and decision list learners
in our single-view, multiple-learner framework for
bootstrapping coreference classifiers. This section
gives an overview of the two learners.

3.1 NaiveBayes

A naive Bayes (NB) classifier is a generative classi-
fier that assignsto a test instance ¢ with feature val-
ues<zxq, . . ., > themaximum aposteriori (MAP)
label y*, which is determined as follows:

*

y* = argmax P(y|1)
y

= argmax P(y)P(i|y)
m

= argmax P(y) I P(zily)
1=1

The first equality above follows from the definition
of MAP, the second onefrom Bayesrule, and the last
one from the conditional independence assumption
of the feature values. We determine the class priors
P(y) and the class densities P(z; | y) directly from
the training data using add-one smoothing.

3.2 Decision Lists

Our decisionlist (DL) algorithm isbased on that de-
scribedin Collins and Singer (1999). For each avail-
ablefeature f; and each possiblevaluev; of f; inthe
training data, the learner induces an element of the



Observations

Justifications

Many feature-value pairs alone can de-
termine the class value.®  For example,
two NPs cannot be coreferent if they differ
in gender or semantic class.

Decisionlistsdraw a decision boundary based on a singlefeature-value pair
and can take advantageof this observation directly. On the other hand, naive
Bayes classifiers make a decision based on a combination of features and
thus cannot take advantage of this observation directly.

The class distributions in coreference
data sets are skewed. Specificaly, the
fact that most NP pairs in a document are
not coreferent implies that the negative in-
stances grossly outnumber the positives.

Naive Bayes classifiers are fairly resistant to class skewness, which can
only exert its influence on classifier prediction via the class priors. On the
other hand, decision lists suffer from skewed class distributions. Elements
corresponding to the negative class tend to aggregate towards the beginning
of thelist, causing the classifier to perform poorly on the minority class.

Many instances contain redundant in-
formation as far as classification is con-
cerned. For example, two NPs may dif-
fer in both gender and semantic class, but
knowing one of thesetwo differencesis suf-
ficient for determining the classvalue.

Both naive Bayes classifiers and decision lists can take advantage of data
redundancy. Frequency counts of feature-value pairsin these classifiersare
updated independently, and thus a singleinstance can possibly contribute to
the discovery of more than one useful feature-value pair. On the other hand,
some classifiers such asdecision trees are not able to take advantageof this
redundancy because of their intrinsic nature of recursive data partitioning.

Table 1: The justifications (shown in the right column) for using naive Bayes and decision list learner as
the underlying learning algorithms for bootstrapping coreference classifiers are based on the corresponding
observations on the coreference task and the features used by the coreference system in the left column.

decisionlist for each classy. The elementsinthelist
are sorted in decreasing order of the strength associ-
ated with each element, which is defined as the con-
ditional probability P(y | f; = v;) and is estimated
based on the training data as follows:

N(fi =vj,y) +«
N(fi:’l)j)—l—ka

N(x) is the frequency of event z in the training
data, oo a smoothing parameter, and % the number
of classes. In this paper, &k = 2 and we set « to 0.01.
A test instance is assigned the class associated with
the first element of the list whose predicate is satis-
fied by the description of the instance.

While generative classifiers estimate class densi-
ties, discriminative classifiers like decision lists fo-
cus on approximating class boundaries. Table 1 pro-
videsthe justificationsfor choosing these two learn-
ers as components in our single-view, multi-learner
bootstrapping algorithm. Based on observations of
the coreference task and the features employed by
our coreference system, the justifications suggest
that the two learners can potentially compensate for
each other’s weaknesses.

P(y| fi=v;) =

4 Multi-View Co-Training

In this section, we describe the Blum and Mitchell
(B&M) multi-view co-training algorithm and apply
it to coreference resolution.

3Thisjustifies the use of a decision list as a potential classi-
fier for bootstrapping. See Yarowsky (1995) for details.

4.1 TheMulti-View Co-Training Algorithm

Theintuitionbehind the B&M co-training algorithm
isto train two classifiersthat can help augment each
other’s labeled data by exploiting two separate but
redundant views of the data. Specifically, each clas-
sifier is trained using one view of the labeled data
and predictslabelsfor al instancesin the data pool,
which consists of a randomly chosen subset of the
unlabeled data. Each then selects its most confident
predictions, and adds the corresponding instances
with their predicted labels to the labeled data while
maintaining the classdistributionin the |abel ed data.

The number of instances to be added to the la-
beled data by each classifier at each iterationislim-
ited by a pre-specified growth size to ensure that
only theinstancesthat have a high probability of be-
ing assigned the correct label are incorporated. The
data pool is replenished with instances from the un-
labeled data and the processis repeated.

During testing, each classifier makes an indepen-
dent decision for atest instance. In this paper, the
decision associated with the higher confidence is
taken to be the final prediction for the instance.

4.2 Experimental Setup

One of the goals of the experiments is to enable a
fair comparison of the multi-view algorithm with
our single-view bootstrapping algorithm. Since the
B&M co-training algorithm is sensitive not only to
the views employed but aso to other input parame-



MUC-6 MUC-7
Naive Bayes Decision List Naive Bayes DecisionList
Experiments R P F R P F R P F R P F
Baseline 50.7 526 516 [179 720 287 [[401 402 401 [324 783 458
Multi-view Co-Training 333 90.7 487 | 195 712 306 || 329 763 460 (324 783 458
Single-view Bootstrapping | 53.6 79.0 639 | 401 831 541 [|435 732 546 [383 754 508
Self-Training 483 635 549|187 708 296 || 401 402 401 |329 781 463

Table 2: Results of multi-view co-training, single-view bootstrapping, and self-training. Recall, Precision, and
F-measure are provided. Except for the baselines, the best results (F-measure) achieved by the algorithms are shown.

ters such asthe pool size and the growth size (Pierce
and Cardie, 2001), we evaluate the algorithm under
different parameter settings, as described below.

Evaluation. WeusetheMUC-6 (1995) and MUC-
7 (1998) coreference data sets for evaluation. The
training set is composed of 30 “dry run” texts, from
which 491659 and 482125 NP pair instances are
generated for the MUC-6 and MUC-7 data sets, re-
spectively. Unlike Ng and Cardie (2003) where we
choose one of the dryrun texts (contributing ap-
proximately 3500-3700 instances) form the labeled
data set, however, here we randomly select 1000 in-
stances. The remaining instances are used as un-
labeled data. Testing is performed by applying the
bootstrapped coreference classifier and the cluster-
ing agorithm described in section 2 on the 20-30
“formal evaluation” textsfor each of the MUC-6 and
MUC-7 data sets.

Two sets of experiments are conducted, one using
naive Bayes as the underlying supervised learning
algorithm and the other the decision list learner. All
results reported are averages across five runs.

Co-training parameters. The co-training param-
eters are set asfollows.

Views. We used three methods to generate the
views from the 25 features used by the coreference
system: Mueller et a.'s (2002) greedy method, ran-
dom splitting of features into views, and splitting
of features according to the feature type (i.e. lexico-
syntactic vs. non-lexico-syntactic features).

Pool size. We tested values of 500, 1000, 5000.

Growth size. Wetested values of 10, 50, 100, 200.

4.3 Resultsand Discussion

Results are shown in Table 2, where performance is
reported in terms of recall, precision, and F-measure

4Space limitation precludes a detailed description of these
methods. See Ng and Cardie (2003) for details.
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Figure 1: Learning curve for co-training (pool size
=500, growth size = 50, viewsformed by randomly
splitting the features) for MUC-6.

using the model-theoretic MUC scoring program
(Vilain et al., 1995). The baseline coreference sys-
tem, which is trained only on the initialy labeled
datausing al of the features, achieves an F-measure
of 51.6 (NB) and 28.7 (DL) on the MUC-6 data set
and 40.1 (NB) and 45.8 (DL) on MUC-7.

The results shown in row 2 of Table 2 correspond
to the best F-measure scores achieved by co-training
across al of the parameter combinations described
in the previous subsection. In comparison to the
baseline, co-training is able to improve system per-
formance in only two of the four classifier/data set
combinations: F-measure increases by 2% and 6%
for MUC-6/DL and MUC-7/NB, respectively. Nev-
ertheless, co-training produces high-precision clas-
sfiersin al four cases (at the expense of recall). In
practical applicationsin which precision is critical,
the co-training classifiers may be preferable to the
baseline classifiers despite the fact that they achieve
similar F-measure scores.

Figure 1 depicts the learning curve for the co-
training run that givesrise to the best F-measure for



the MUC-6 data set using naive Bayes. The hor-
izontal (dotted) line shows the performance of the
baseline system, as described above. As co-training
progresses, F-measure rises to 48.7 at iteration ten
and gradually dropsto and stabilizesat 42.9. We ob-
serve similar performance trends for the other clas-
sifier/data set combinations. The drop in F-measure
is potentially due to the pollution of the labeled data
by midabeled instances (Pierce and Cardie, 2001).

5 Single-View Bootstrapping

In this section, we describe and evaluate our single-
view, multi-learner bootstrapping algorithm, which
combinesideasfrom Goldman and Zhou (2000) and
Steedman et al. (2003b). We will start by giving an
overview of these two co-training algorithms.

5.1 Related Work

The Goldman and Zhou (G&Z) Algorithm.
This single-view agorithm begins by training two
classifiers on the initially labeled data using two
different learning algorithms; it requires that each
classifier partition the instance space into a set of
equivaence classes (e.g. in adecision tree, each leaf
node defines an equivalence class). Each classi-
fier then considers each equivalence class and uses
hypothesis testing to determine if adding all unla-
beled instances within the equivalence class to the
other classifier's labeled data will improve the per-
formance of its counterparts. The process is then
repeated until no more instances can be labeled.

The Steedman et al. (Ste) Algorithm. Thisalgo-
rithm is a variation of B&M applied to two diverse
statistical parsers. Initially, each parser istrained on
the labeled data. Each then parses and scores all
sentences in the data pool, and then adds the most
confidently parsed sentences to the training data of
the other parser. The parsers are retrained, and the
processisrepeated for severa iterations.

The algorithm differs from B&M in three main
respects. First, the training data of the two parsers
diverge after the first co-training iteration. Second,
the data pool is flushed and refilled entirely with in-
stances from the unlabeled data after each iteration.
This reduces the possibility of having unreliably la-
beled sentences accumulating in the pool. Finaly,
the two parsers, each of whichis assumed to hold a

unique*“view” of the data, are effectively two differ-
ent learning algorithms,

5.2 Our Single-View Bootstrapping Algorithm

As mentioned before, our algorithm uses two dif-
ferent learning algorithms to train two classifiers on
the same set of features (i.e. the full feature set).
At each bootstrapping iteration, each classifier la-
bels and scores all instances in the data pool. The
highest scored instances|abeled by one classifier are
added to the training data of the other classifier and
vice versa. Since the two classifiers are trained on
the same view, it isimportant to maintain a separate
training set for each classifier: thisreducesthe prob-
ability that the two classifiers converge to the same
hypothesisat an early stage and hence implicitly in-
creases the ability to bootstrap. Like Ste, the entire
data pool is replenished with instances drawn from
the unlabeled data after each iteration, and the pro-
cess isrepeated. So our algorithm is effectively Ste
applied to coreference resolution — instead of two
parsing algorithms that correspond to different fea-
tures, we use two learning algorithms, each of which
relies on the same set of features as in G&Z. The
similaritiesand differencesamong B&M, G& Z, Ste,
and our algorithm are summarized in Table 3.

5.3 Resultsand Discussion

We tested different pool sizes and growth sizes as
specified in section 4.2 to determine the best pa-
rameter setting for our algorithm. For both data
sets, the best F-measure score is achieved using a
pool size of 5000 and a growth size of 50. The re-
sults under this parameter setting are given in row
3 of Table 2. In comparison to the baseline, we see
dramatic improvement in F-measure for both clas-
sfiers and both data sets. In addition, we see si-
multaneous gainsin recall and precisionin all cases
except MUC-7/DL. Furthermore, single-view boot-
strapping besats co-training (in terms of F-measure
scores) by a large margin in al four cases. These
results provide suggestive evidence that single-view,
multi-learner bootstrapping might be a better alter-
native to its multi-view, single-learner counterparts
for coreference resolution.

The bootstrapping run that correspondsto this pa-
rameter setting for the MUC-6 data set using naive
Bayes is shownin Figure 2. Again, we see a “typi-



Blum and Mitchell

Goldman and Zhou

Steedman et al.

Ours

Bootstrapping basis

Usedifferent views

Usedifferent Tearners

Use different parsers

Usedifferent Tearners

Number of instances
added per iteration

Fixed

Variable

Fixed

Fixed

Training sets for the | Same Different Different Different
two learners/parsers
Data pool flushed af- | No Yes Yes

ter eachiteration

N/A (No data pool is
used)

Example  selection
method

Highest scored in-
stances

Instances in Al
equivalance classes
that are expected to
improve a classifier

Highest scored sen-

tences

Highest scored in-
stances

Table 3: Summary of the major similarities and differences among four bootstrapping schemes: Blum and
Mitchell, Goldman and Zhou, Steedman et al., and ours. Only the relevant dimensions are discussed here.
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Figure 2: Learning curve for our single-view boot-
strapping algorithm (pool size = 5000, growth size=
50) for MUC-6.

cal” bootstrapping curve: aninitia risein F-measure
followed by a gradual deterioration. In comparison
toFigurel, therecal level achieved by co-trainingis
much lower than that of single-view bootstrapping.
Thisappearsto indicate that each co-trainingview is
insufficient for learning the target concept: the fea
ture split limits any interaction of features that can
produce better recall.

Finally, Figure 2 shows that performance in-
creases most rapidly in the first 200 iterations. This
provides indirect evidence that the two classifiers
have acquired different hypotheses from the ini-
tial data and are exchanging information with each
other. To ensure that the classifiers are indeed bene-
fiting from each other, we conducted a self-training
experiment for each classifier separately: at each
self-training iteration, each classifier labels all 5000
instancesin the data pool using all available features
and sel ectsthe most confidently labeled 50 instances

for addition to itslabeled data.® The best F-measure
scores achieved by self-training are shownin thelast
row of Table 2. Overal, self-training only yields
marginal performance gains over the baseline.

Nevertheless, sdf-training outperforms co-
training in both cases where naive Bayes is used.
While these results seem to suggest that co-training
is inherently handicapped for coreference resolu-
tion, there are two plausible explanations against
this conclusion. First, the fact that self-training has
access to al of the available features may account
for its superior performance to co-training. Thisis
again partially supported by the fact that the recall
level achieved by co-training is lower than that of
self-training in both cases in which self-training
outperforms co-training. Second, 1000 instances
may simply not be sufficient for co-training to be
effective for this task: in related work (Ng and
Cardie, 2003), we find that starting with 3500-3700
labeled instances instead of 1000 allows co-training
to improve the baseline by 4.6% and 9.5% in
F-measure using naive Bayes classifiers for the
MUC-6 and MUC-7 data sets, respectively.

6 An Alternative Ranking Method

As we have seen before, F-measure scores ulti-
mately decrease as bootstrapping progresses. If the
drop were caused by the degradation in the quality
of the bootstrapped data, then a more “conservative”
instance selection method than that of B&M would
help alleviate this problem. Our hypothesisis that
selection methods that are based solely on the con-
fidence assigned to an instance by a single classifier

SNote that this is self-training without bagging, unlike the
self-training algorithm discussedin Ng and Cardie (2003).



i1 > 142 if any of thefollowing istrue:

[1(C1(i1)) = w(C2(i1))] A [(Ch (i2)) # 1(C2(i2))]

[1(C1(i1)) = p(C2(i1))] A [1(C1(i2)) = u(C2(i2))] A [|C1(i1) — C2(i1)] > |C1(i2) — Ca2(i2)]]

[(C1(i1)) # p(C2(i1))] A [u(Ci(i2)) # u(C2(i2))] A [max(Ci(i1),1 — Ci(i1)) > max(Ci(i2), 1 — C1(i2))]

Figure 3: The ranking method that a binary classifier C'; usesto impose a partial ordering on the instances
to be selected and added to the training set of binary classifier C5. i; and iy are arbitrary instances, and p is

afunction that rounds a number to its closest integer.

may be too liberal. In particular, these methods al-
low the addition of instances with opposing labels
to the labeled data; this can potentially result in in-
creased incompatibility between the classifiers.

Consequently, we develop a new procedure for
ranking instances in the data pool. The bootstrap-
ping agorithm then selects the highest ranked in-
stances to add to the labeled data in each iteration.
The method favors instances whose labdl is agreed
upon by both classifiers (Preference 1). However,
incorporating instances that are confidently labeled
by both classifiers may reduce the probability of
acquiring new information from the data. There-
fore, the method imposes an additional preference
for instances that are confidently labeled by one but
not both (Preference 2). If none of the instances
receives the same label from the classifiers, the
method resorts to the “rank-by-confidence” method
used by B&M (Preference 3).

Moreformally, define abinary classifier asafunc-
tion that maps an instance to a value that indicates
the probability that it is labeled as positive. Now,
let 1 be afunction that rounds a number to its near-
est integer. Given two binary classifiers C'; and Cs
and instancesi; andis, the ranking method shownin
Figure 3 uses the three preferences described above
to impose a partial ordering on the given instances
for incorporationinto C'5’slabeled data. The method
similarly ranksinstancesto be added to C';’slabeled
data, with therolesof C; and Cy reversed.

Steedman et al. (2003a) also investigate instance
selection methods for co-training, but their goal is
primarily to use selection methods as a means to
explore the trade-off between maximizing coverage
and maximizing accuracy.® In contrast, our focus

5McCallum and Nigam (1998) tackle this idea of balancing
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Figure 4: F-measure curves for our single-view
bootstrapping agorithm with different ranking
methods (pool size = 5000, growth size = 50) for
MUC-6.

here is on examining whether a more conservative
ranking method can alleviate the problem of perfor-
mance deterioration. Nevertheless, Preference 2 is
inspired by their Sin.n selection method, which se-
lects an instance if it belongs to the intersection of
the set of the n percent highest scoring instances
of one classifier and the set of the n percent lowest
scoring instances of the other. To our knowledge, no
previous work has examined a ranking method that
combines the three preferences described above.

To compare our ranking procedure with B&M'’s
rank-by-confidence method, we repeat the boot-
strapping experiment shown in Figure 2 except that
we replace B&M’s ranking method with ours. The
learning curves generated using the two ranking
methods with naive Bayes for the MUC-6 data set
are shown in Figure 4. The results are consistent
with our intuition regarding the two ranking meth-

accuracy and coverage by combining EM and active learning.



ods. The B&M ranking method is more liberal.
In particular, each classifier aways selects the most
confidently |abeled instancesto add to the other’sla-
beled data at each iteration. If the underlying learn-
ers have indeed induced two different hypotheses
from the data, then each classifier can potentially ac-
quire informative instances from the other and yield
performance improvements very rapidly.

In contrast, our ranking method is more conserva-
tive in that it places more emphasis on maintaining
labeled data accuracy than the B&M method. As
a result, the classifier learns at a slower rate when
compared to that intheB& M case: itisnot until iter-
ation 600 that we see asharp risein F-measure. Due
tothe“liberal” nature of theB& M method, however,
its performance drops dramatically as bootstrapping
progresses, whereas ours just dips temporarily. This
can potentially be attributed to the more rapid injec-
tion of mislabeled instances into the labeled datain
the B&M case. At iteration 2800, our method starts
to outperform B&M'’s. Overall, our ranking method
does not exhibit the performance trend observed
withthe B&M method: except for the spike between
iterations 0 and 100, F-measure does not deteriorate
as bootstrapping progresses. Sinceit ishard to deter-
mine a“good” stopping point for bootstrapping due
to the paucity of labeled datain aweakly supervised
setting, our ranking method can potentially serve as
an dternative to the B&M method.

7 Conclusions

We have proposed a single-view, multi-learner boot-
strapping agorithm for coreference resolution and
shown empirically that the algorithm is a better al-
ternative to the Blum and Mitchell co-training al-
gorithm for this task for which no natural feature
split has been found. In addition, we have investi-
gated an example ranking method for bootstrapping
that, unlike Blum and Mitchell’ srank-by-confidence
method, can potentially alleviate the problem of per-
formance deterioration dueto the pollution of thela
beled datain the course of bootstrapping.
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