
Log-Linear Models for Wide-Coverage CCG Parsing

Stephen Clark and James R. Curran
School of Informatics

University of Edinburgh
2 Buccleuch Place, Edinburgh. EH8 9LW

fstephenc,jamesc g@cogsci.ed.ac.uk

Abstract

This paper describes log-linear pars-
ing models for Combinatory Categorial
Grammar (CCG). Log-linear models can
easily encode the long-range dependen-
cies inherent in coordination and extrac-
tion phenomena, whichCCGwas designed
to handle. Log-linear models have pre-
viously been applied to statistical pars-
ing, under the assumption that all possible
parses for a sentence can be enumerated.
Enumerating all parses is infeasible for
large grammars; however, dynamic pro-
gramming over a packed chart can be used
to efficiently estimate the model parame-
ters. We describe a parellelised implemen-
tation which runs on a Beowulf cluster and
allows the completeWSJ Penn Treebank
to be used for estimation.

1 Introduction

Statistical parsing models have recently been de-
veloped for Combinatory Categorial Grammar
(CCG, Steedman (2000)) and used in wide-coverage
parsers applied to theWSJ Penn Treebank (Clark et
al., 2002; Hockenmaier and Steedman, 2002). An
attraction ofCCG is its elegant treatment of coor-
dination and extraction, allowing recovery of the
long-range dependencies inherent in these construc-
tions. We would like the parsing model to include
long-range dependencies, but this introduces prob-
lems for generative parsing models similar to those

described by Abney (1997) for attribute-value gram-
mars; hence Hockenmaier and Steedman do not in-
clude such dependencies in their model, and Clark
et al. include the dependencies but use an incon-
sistent model. Following Abney, we propose a log-
linear framework which incorporates long-range de-
pendencies as features without loss of consistency.

Log-linear models have previously been ap-
plied to statistical parsing (Johnson et al., 1999;
Toutanova et al., 2002; Riezler et al., 2002; Os-
borne, 2000). Typically, these approaches have enu-
merated all possible parses for model estimation
and finding the most probable parse. For gram-
mars extracted from the Penn Treebank (in our case
CCGbank (Hockenmaier, 2003)), enumerating all
parses is infeasible. One approach to this prob-
lem is to sample the parse space for estimation, e.g.
Osborne (2000). In this paper we use a dynamic pro-
gramming technique applied to a packed chart, simi-
lar to those proposed by Geman and Johnson (2002)
and Miyao and Tsujii (2002), which efficiently esti-
mates the model parameters over the complete space
without enumerating parses. The estimation method
is similar to the inside-outside algorithm used for es-
timating aPCFG(Lari and Young, 1990).

Miyao and Tsujii (2002) apply their estimation
technique to an automatically extracted Tree Adjoin-
ing Grammar using Improved Iterative Scaling (IIS,
Della Pietra et al. (1997)). However, their model
has significant memory requirements which limits
them to using 868 sentences as training data. We use
a parallelised version of Generalised Iterative Scal-
ing (GIS, Darroch and Ratcliff (1972)) on a Beowulf
cluster which allows the completeWSJ Penn Tree-



bank to be used as training data.
This paper assumes a basic knowledge ofCCG;

see Steedman (2000) and Clark et al. (2002) for an
introduction.

2 The Grammar

Following Clark et al. (2002), we augmentCCG lex-
ical categories with head and dependency informa-
tion. For example, the extended category forper-
suadeis as follows:

persuade :=((S[dcl]persuade\NP1)/(S[to]2\NPX))/NPX,3 (1)

The feature [dcl] indicates a declarative sentence; the
resultingS[dcl] is headed bypersuade; and the num-
bers indicate dependency relations. The variableX
denotes a head, identifying the head of the infiniti-
val complement’s subject with the head of the ob-
ject, thus capturing the object control relation. For
example, inMicrosoft persuades IBM to buy Lotus,
IBM fills the subject slot ofbuy.

Formally, a dependency is defined as a 5-tuple:
〈hf , f , s, ha, l〉, where hf is the head word of the
functor, f is the functor category (extended with
head and dependency information),s is the argu-
ment slot, andha is the head word of the argument.
The l is an additional field used to encode whether
the dependency is long-range. For example, the de-
pendency encodingLotusas the object ofbought(as
in IBM bought Lotus) is represented as follows:

〈bought, (S[dcl]bought\NP1)/NP2, 2, Lotus, null〉 (2)

If the object has been extracted using a relative pro-
noun with the category (NP\NP)/(S[dcl]/NP) (as in
the company that IBM bought), the dependency is as
follows:

〈bought, (S[dcl]bought\NP1)/NP2, 2, company, ∗〉 (3)

where ∗ is the category (NP\NP)/(S[dcl]/NP) as-
signed to the relative pronoun. A dependency struc-
ture is simply a set of these dependencies.

Every argument in every lexical category is en-
coded as a dependency. Unlike Clark et al., we do
not require dependencies to be always marked on
atomic categories. For example, the marked up cat-
egory forabout(as inabout 5,000 pounds) is:

(NX/NX)Y/(N/N)Y,1 (4)

If 5,000 has the category (NX/NX)5,000, the depen-
dency relation marked on the (N/N)Y,1 argument in
(4) allows the dependency betweenaboutand5,000
to be captured.

Clark et al. (2002) give examples showing how
heads can fill dependency slots during a derivation,
and how long-range dependencies can be recovered
through unification of co-indexed head variables.

3 Log-Linear Models for CCG

Previous parsing models forCCG include a genera-
tive model overnormal-formderivations (Hocken-
maier and Steedman, 2002) and a conditional model
over dependency structures (Clark et al., 2002).
We follow Clark et al. in modelling dependency
structures, but, unlike Clark et al., do so in terms
of derivations. An advantage of our approach is
that the model can potentially include derivation-
specific features in addition to dependency informa-
tion. Also, modelling derivations provides a close
link between the model and the parsing algorithm,
which makes it easier to define dynamic program-
ming techniques for efficient model estimation and
decoding1, and also apply beam search to reduce the
search space.

The probability of a dependency structure,π ∈ Π,
given a sentence,S, is defined as follows:

P(π|S) =
∑

d∈∆(π,S)

P(d, π|S) (5)

where∆(π,S) is the set of derivations forS which
lead toπ andΠ is the set of dependency structures.
Note that∆(π,S) includesthe non-standard deriva-
tions allowed byCCG. This model allows the pos-
sibility of including features from the non-standard
derivations, such as features encoding the use of
type-raising or function composition.

A log-linear model of a parse,ω ∈ Ω, given a
sentenceS, is defined as follows:

P(ω|S) =
1

ZS

∏
i

µ
fi (ω)
i (6)

This model can be applied to any kind of parse, but
for this paper a parse,ω, is a 〈d, π〉 pair (as given
in (5)). The function fi is a feature of the parse

1We use the termdecodingto refer to the process of finding
the most probable dependency structure from a packed chart.



which can be any real-valued function over the space
of parsesΩ. In this paperfi(ω) is a count of the num-
ber of times some dependency occurs inω. Each
feature fi has an associatedweightµi which is a pa-
rameter of the model to be estimated.ZS is a normal-
ising constant which ensures thatP(ω|S) is a proba-
bility distribution:

ZS =
∑

ω′∈ρ(S)

∏
i

µ
fi (ω′)
i (7)

whereρ(S) ⊆ Ω is the set of possible parses forS.
The advantage of a log-linear model is that the

features can be arbitrary functions over parses. This
means that any dependencies – including overlap-
ping and long-range dependencies – can be included
in the model, irrespective of whether those depen-
dencies are independent.

The theory underlying log-linear models
is described in Della Pietra et al. (1997) and
Berger et al. (1996). Briefly, the log-linear form in
(6) is derived by choosing the model with maximum
entropy from a set of models that satisfy a certain
set of constraints (Rosenfeld, 1996). The constraints
are that, for each featurefi:∑

ω,S

P̃(S)P(ω|S) fi(ω) =
∑
ω,S

P̃(ω,S) fi(ω) (8)

where the sums are over all possible parse-sentence
pairs andP̃(S) is the relative frequency of sentence
S in the data. The value on the left of (8) is the
expected value offi according to the model,Ep fi,
and the value on the right is the empirical expected
value of fi, Ep̃ fi .

Estimating the parameters of a log-linear model
requires the values in (8) to be calculated for each
feature. Calculating the empirical expected val-
ues requires a treebank ofCCG derivations plus
dependency structures. For this we use CCG-
bank (Hockenmaier, 2003), a corpus of normal-
form CCG derivations derived semi-automatically
from the Penn Treebank. Following Clark et al.,
gold standard dependency structures are obtained for
each derivation by running a dependency-producing
parser over the derivations. The empirical expected
value of a featurefi is calculated as follows:

Ep̃ fi =
1
N

N∑
j=1

fi(ω j) (9)

whereω1 . . . ωN are the parses in the training data
(consisting of a normal-form derivation plus depen-
dency structure) andfi(ω j) is the number of timesfi
appears in parseω j .2

Parameter estimation also requires calculation of
expected values of the features according to the
model,Ep fi. This requires summing over all parses
(derivation plus dependency structure) for the sen-
tences in the data, a difficult task since the total num-
ber of parses can grow exponentially with sentence
length. For some sentences in CCGbank, the parser
described in Section 6 produces trillions of parses.
The next section shows how a packed chart can ef-
ficiently represent the parse space, and howGIS ap-
plied to the packed chart can be used to estimate the
parameters.

4 Packed Charts

Geman and Johnson (2002) have proposed a
dynamic programming estimation method for
packed representations of unification-based parses.
Miyao and Tsujii (2002) have proposed a similar
method for feature forestswhich they apply to
the derivations of an automatically extracted Tree-
Adjoining Grammar. We apply Miyao and Tsujii’s
method to the derivations and dependency structures
produced by ourCCG parser.

The dynamic programming method relies on a
packed chart, in which chart entries of the same
typein the same cell are grouped together, and back
pointers to the daughters keep track of how an indi-
vidual entry was created. The intuition behind the
dynamic programming is that, for the purposes of
building a dependency structure, chart entries of the
same type are equivalent. Consider the following
composition ofwill with buyusing the forward com-
position rule:

((S[dcl]will\NP)/NP)

((S[dcl]will\NP)/(S[b]\NP)) ((S[b]buy\NP)/NP)

The type of the resulting chart entry is deter-
mined by theCCG category plus heads, in this case
((S[dcl]will \NP)/NP), plus the dependencies yet to
be filled. The dependencies are not shown, but there

2An alternative is to use feature counts fromall derivations
leading to the gold standard dependency structure, including the
non-standard derivations, to calculateEp̃ fi .



are two subject dependencies on the firstNP, one
encoding the subject ofwill and one encoding the
subject ofbuy3, and there is an object dependency
on the secondNP encoding the object ofbuy. En-
tries of the same type are identical for the purposes
of creating new dependencies for the remainder of
the parsing.

Any rule instantiation4 used by the parser creates
both a set of dependencies and a set of features. For
the previous example, one dependency is created:

〈will , (S[dcl]will\NPX,1)/(S[b]2\NPX), 2, buy〉
This dependency will be a feature created by the rule
instantiation. We also use less specific features, such
as the dependency with the words replaced byPOS

tags. Section 7 describes the features used.
The feature forests of Miyao and Tsujii are de-

fined in terms ofconjunctiveanddisjunctivenodes.
For our purposes, a conjunctive node is an individual
entry in a cell, including the features created when
the entry was derived, plus pointers to the entry’s
daughters. A disjunctive node represents an equiva-
lence class of nodes in a cell, using the type equiva-
lence relation described above. A conjunctive node
results from either the combination of two disjunc-
tive nodes using a binary rule, e.g. forward composi-
tion; or results from a single disjunctive node using
a unary rule, e.g. type-raising; or is a leaf node (a
word plus lexical category).

Features in the model can only result from a sin-
gle rule instantiation. It is possible to define features
covering a larger part of the dependency structure;
for example we might encode all three elements of
the triple in aPP-attachment as a single feature. The
disadvantage of using such features is that this re-
duces the efficiency of the dynamic programming.
Note, however, that the equivalence relation defin-
ing disjunctive nodes takes into account unfilled de-
pendencies, which may be long-range dependencies
being “passed up” the derivation tree. This means
that long-range dependencies can be features in our
model, even though the lexical items involved may
be far apart in the sentence.

3In this example, the co-indexing of heads in the markedup
category forwill ((S[dcl]will\NPX,1)/(S[b]2\NPX)) ensures the
subject dependency forbuy is “passed up” to the subjectNP
of the resulting category.

4By rule instantiationwe mean the local tree arising from
the application of aCCG combinatory rule.

The packed structure we have described is an ex-
ample of afeature forest(Miyao and Tsujii, 2002),
defined as follows:

A feature forestΦ is a tuple〈C,D,R, γ, δ〉 where

� C is a set of conjunctive nodes;

� D is a set of disjunctive nodes;

� R⊆ D is a set of root disjunctive nodes;5

� γ : D→ 2C is a conjunctive daughter function;

� δ : C→ 2D is a disjunctive daughter function.

For each feature functionfi : Ω → N , there is
a corresponding feature functionfi : C → N which
counts the number of timesfi appears on a particular
conjunctive node.6 The value offi for a parse is then
the sum of the values offi for each conjunctive node
in the parse.

5 Estimation usingGIS

GIS is a very simple algorithm for estimating the pa-
rameters of a log-linear model. The parameters are
initialised to some arbitrary constant and the follow-
ing update rule is applied until convergence:

µ(t+1)
i = µ(t)

i

(
Ep̃ fi

Ep(t) fi

) 1
C

(10)

where (t) is the iteration index and the constantC
is defined as maxω,S

∑
i fi(ω). In practiceC is max-

imised over the sentences in the training data. Im-
plementations ofGIS typically use a “correction fea-
ture”, but following Curran and Clark (2003) we do
not use such a feature, which simplifies the algo-
rithm.

Calculating Ep(t) fi requires summing over all
derivations which includefi for each packed chart
in the training data. The key to performing this sum
efficiently is to write the sum in terms ofinsideand
outsidescores for each conjunctive node. The inside
and outside scores can be defined recursively, as in
the inside-outside algorithm forPCFGs. If the inside
score for a conjunctive nodec is denotedφc, and the

5Miyao and Tsujii have a single root conjunctive node; the
disjunctive root nodes we define correspond to the roots ofCCG
derivations.

6The value offi(c) for c ∈ C will typically be 0 or 1, but it
is possible for the count to be greater than 1.



inside outside

c1

d2

c6c4c3 c7c5

c2

d1

d3

d6

c8 c10

d4 d5

c9

Figure 1: Example feature forest

outside score denotedψc, then the expected value of
fi can be written as follows:7

Ep fi =
∑

S

P̃(S)
1

ZS

∑
c∈Cs

fi(c) φc ψc (11)

whereCs is the set of conjunctive nodes forS.
Consider the example feature forest in Figure 1.

The figure shows the nodes used to calculate the in-
side and outside scores for conjunctive nodec5. The
inside score for a disjunctive node,φd, is the sum of
the inside scores for its conjunctive node daughters:

φd =
∑

c∈γ(d)

φc (12)

The inside score for a conjunctive node,φc, can then
be defined recursively:

φc =
∏

d∈δ(c)

φd

∏
i

µ
fi (c)
i (13)

The intuition for calculating outside scores is sim-
ilar, but a little more involved. The outside score for
a conjunctive node,ψc, is the outside score for its
disjunctive node mother:

ψc = ψd wherec ∈ γ(d) (14)

The outside score for a disjunctive node is a sum
over the mother nodes, of the product of the outside
score of the mother, the inside score of the sister, and
the feature weights on the mother.8 For example, the

7The notation is taken from Miyao and Tsujii (2002).
8Miyao and Tsujii (2002) ignore the feature weights on the

mother, but this ignores some of the probability mass for the
outside (at least for the feature forests we have defined).

outside score ofd4 in Figure 1 is the sum of the fol-
lowing two values: the product of the outside score
of c5, the inside score ofd5 and the feature weights
at c5; and the product of the outside score ofc2, the
inside score ofd3 and the feature weights atc2. The
recursive definition is as follows. The outside score
for a root disjunctive node is 1, otherwise:

ψd =
∑

{c|d∈δ(c)}

ψc

∏
{d′|d′∈δ(c),d′,d}

φd′
∏

i

µ
fi (c)
i

 (15)

The normalisation constantZS is the sum of the
inside scores for the root disjunctive nodes:

ZS =
∑
dr∈R

φdr (16)

In order to calculate inside scores, the scores for
daughter nodes need to be calculated before the
scores for mother nodes (and vice versa for the out-
side scores). This can easily be achieved by ordering
the nodes in the bottom-upCKY parsing order.

Note that the inside-outside approach can be com-
bined with any maximum entropy estimation proce-
dure, such as those evaluated by Malouf (2002).

Finally, in order to avoid overfitting, we use a
Gaussian prior on the parameters of the model (Chen
and Rosenfeld, 1999), which requires a slight modi-
fication to the update rule in (10). A Gaussian prior
also handles the problem of “pseudo-maximal” fea-
tures (Johnson et al., 1999).

6 The Parser

The parser is based on Clark et al. (2002) and takes
as input aPOS-tagged sentence with a set of possi-
ble lexical categories assigned to each word. The
supertagger of Clark (2002) provides the lexical cat-
egories, with a parameter setting which assigns
around 4 categories per word on average. The pars-
ing algorithm is theCKY bottom-up chart-parsing
algorithm described in Steedman (2000). The com-
binatory rules used by the parser are functional ap-
plication (forward and backward), generalised for-
ward composition, backward composition, gener-
alised backward-crossed composition, and type rais-
ing. There is also a coordination rule which con-
joins categories of the same type. Restrictions are
placed on some of the rules, such as that given by



Steedman (2000, p.62) for backward-crossed com-
position.

Type-raising is applied to the categoriesNP, PP
and S[adj]\NP (adjectival phrase), and is imple-
mented by adding the relevant set of type-raised
categories to the chart whenever anNP, PP or
S[adj]\NP is present. The sets of type-raised cate-
gories are based on the most commonly used type-
raising rule instantiations in sections 2-21 of CCG-
bank, and contain 8 type-raised categories forNP
and 1 each forPPandS[adj]\NP.

The parser also uses a number of lexical rules and
punctuation rules. These rules are based on those
occurring roughly more than 200 times in sections
2-21 of CCGbank. An example of a lexical rule used
by the parser is the following, which takes a passive
form of a verb and creates a nominal modifier:

S[pss]\NP ⇒ NPX\NPX,1 (17)

This rule is used to createNPs such asthe role
played by Kim Cattrall. Note that there is a de-
pendency relation on the resulting category; in the
previous examplerole would fill a nominal modifier
dependency headed byplayed.

Currently, the only punctuation marks handled by
the parser are commas, and all other punctuation is
removed after the supertagging phase. An example
of a comma rule is the following:

SX/SX , ⇒ SX/SX (18)

This rule takes a sentential modifier followed by
a comma (for exampleCurrently , in the sentence
above in the text) and returns a sentential modifier
of the same type.

The next section describes the efficient implemen-
tation of the parser and model estimator.

7 Implementation

7.1 Parser Implementation

The non-standard derivations allowed byCCG, to-
gether with the wide coverage grammar, result in
extremely large charts. This means that efficient im-
plementation of the parsing process is imperative for
performing large-scale experiments.

The packed chart prevents combinatorial explo-
sion in the number of category combinations by

grouping equivalent categories into a single entry.
The speed of the parser is heavily dependent on the
efficiency of equivalence testing, and category uni-
fication and construction. These are performed effi-
ciently by always creating categories in a canonical
form which can then be compared rapidly using hash
functions over categories.

The parser produces a packed chart from which
the most probable dependency structure can be re-
covered. Since the same dependency structure can
be generated by more than one derivation, a depen-
dency structure’s score is the sum of the log-linear
scores for each derivation. Finding the structure
with the highest score is not trivial, since filled de-
pendencies are only stored at the conjunctive nodes
where they are created. This means that a depen-
dency appearing in a structure can be created in dif-
ferent parts of the chart for different derivations. We
solve this in practice using a hash function over de-
pendencies, which can be used to quickly determine
whether two derivations lead to the same structure.
For each node in the chart, we can keep track of the
derivation leading to the set of dependencies with
the highest score for that node.

7.2 Data Generation

Data for model estimation is created in two steps.
First, the parser is run over the normal-form deriva-
tions in Sections 2-21 of CCGbank outputting the
corresponding dependencies and other features. The
features used in our preliminary implementation are
as follows:

� dependency features;

� lexical category features;

� root category features.

Dependency features are 5-tuples as defined in
Section 2. Further dependency features are formed
by substitutingPOStags for the words, which leads
to a total of 4 features for each dependency. Lexical
category features are word category pairs on the leaf
nodes and root features are head-word category pairs
on root nodes. Extra features are formed by replac-
ing words with theirPOStags. The total number of
features is 817,658, but we reduce this to 243,603 by
only including features which appear at least twice
in the data.



The second step of data generation involves using
the parser to create a feature forest for each sentence,
using the feature set extracted from CCGbank. The
parser is interrupted if a sentence takes longer than
60 seconds to process or if more than 500,000 con-
junctive nodes are created in the chart. If this oc-
curs, the process is repeated but with a smaller num-
ber of categories assigned to each word by the su-
pertagger. Approximately 93% of the sentences in
sections 2-21 can be processed in this way, giving
36,400 training sentences. Creating the forests takes
approximately one hour using 40 nodes of our Be-
owulf cluster, and produces 19.9GB of data.

7.3 Estimation

The parse forests regularly represent trillions of pos-
sible parses for a sentence. The estimation pro-
cess involves summing feature weights over all these
parses, a total which cannot be represented using
double precision arithmetic (limited to less than
10308). Our implementation uses the sum, rather
than product, form of (6), so that logarithms can be
used to avoid numerical overflow. For converting the
sum of products in Equation 15 to log space, we use
a technique commonly used in speech recognition
(p.c. Simon King).

We have implemented a parallel version of our
GIS code using theMPICH library (Gropp et al.,
1996), an open-source implementation of the Mes-
sage Passing Interface (MPI) standard.MPI parallel
programming involves explicit synchronisation and
information transfer between the parallel processes
using messages. It is ideal for development of paral-
lel programs for cluster architectures.

GIS over parse forests is straightforward to par-
allelise. The parse forests are divided among the
machines in the cluster (in our current implemen-
tation, each machine receives 979 forests). Each
machine calculates the inside and outside scores for
each node in the parse forest and updates the es-
timated feature expectations. The feature expecta-
tions are then summed across all of the machines
using a global operation (called areduceoperation).
Every machine receives this sum which is then used
to calculate the normalGIS weight update. In our
preliminary tests, each process used approximately
750MB of RAM, giving a total usage of 30GB across
the cluster. One iteration ofGIS takes approximately

GIS - CCG IIS - TAG

number of features 243,603 5,715
number of sentences 36,400 868
avg. num. of nodes 52,000 17,412
memory usage 30 GB 1.5 GB

disk usage 19.9GB –

Table 1: Results compared with Miyao and Tsujii

1 minute. Given the large number of features, we
estimate at least 1,000 iterations will be needed for
convergence.

8 Conclusions and Further Work

Table 1 gives the overall statistics for the model
estimation process, and compares them with
Miyao and Tsujii (2002). These numbers represent
the largest-scale parsing model of which we are
aware. Parsing and model estimation on this scale
introduce a number of interesting theoretical and
computational challenges. We have demonstrated
how packed charts and feature forests can be com-
bined to meet the theoretical challenges. We have
also described anMPI implementation ofGIS which
solves the computational challenges. These tech-
niques are necessary for discriminative estimation
techniques applied to wide-coverage parsing.

We have just begun the process of evaluating
parsing performance using the same test data as
Clark et al. (2002). We are especially interested in
the effectiveness of incorporating long-range depen-
dencies as features, whichCCGwas designed to han-
dle and for which we expect a log-linear model to be
particularly effective.

Acknowledgements

We would like to thank Mark Steedman, Julia Hock-
enmaier, Jason Baldridge, David Chiang, Yusuke
Miyao, Mark Johnson, Yuval Krymolowski, Tara
Murphy and the anonymous reviewers for their help-
ful comments. This research is supported by EPSRC
grant GR/M96889, and a Commonwealth scholar-
ship and a Sydney University Travelling scholarship
to the second author.



References
Steven Abney. 1997. Stochastic attribute-value gram-

mars.Computational Linguistics, 23(4):597–618.

Adam Berger, Stephen Della Pietra, and Vincent Della
Pietra. 1996. A maximum entropy approach to nat-
ural language processing.Computational Linguistics,
22(1):39–71.

Stanley Chen and Ronald Rosenfeld. 1999. A Gaussian
prior for smoothing maximum entropy models. Tech-
nical report, Carnegie Mellon University, Pittsburgh,
PA.

Stephen Clark, Julia Hockenmaier, and Mark Steedman.
2002. Building deep dependency structures with a
wide-coverage CCG parser. InProceedings of the 40th
Meeting of the ACL, pages 327–334, Philadelphia, PA.

Stephen Clark. 2002. A supertagger for combinatory cat-
egorial grammar. InProceedings of the TAG+ Work-
shop, pages 19–24, Venice, Italy.

James R. Curran and Stephen Clark. 2003. Investigat-
ing GIS and smoothing for maximum entropy taggers.
In Proceedings of the 10th Meeting of the EACL (to
appear), Budapest, Hungary.

J. N. Darroch and D. Ratcliff. 1972. Generalized it-
erative scaling for log-linear models.The Annals of
Mathematical Statistics, 43(5):1470–1480.

Stephen Della Pietra, Vincent Della Pietra, and John
Lafferty. 1997. Inducing features of random fields.
IEEE Transactions Pattern Analysis and Machine In-
telligence, 19(4):380–393.

Stuart Geman and Mark Johnson. 2002. Dynamic
programming for parsing and estimation of stochas-
tic unification-based grammars. InProceedings of the
40th Meeting of the ACL, pages 279–286, Philadel-
phia, PA.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. 1996.
A high-performance, portable implementation of the
MPI message passing interface standard.Parallel
Computing, 22(6):789–828, September.

Julia Hockenmaier and Mark Steedman. 2002. Gener-
ative models for statistical parsing with Combinatory
Categorial Grammar. InProceedings of the 40th Meet-
ing of the ACL, pages 335–342, Philadelphia, PA.

Julia Hockenmaier. 2003.Data and Models for Statis-
tical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochastic
‘unification-based’ grammars. InProceedings of the
37th Meeting of the ACL, pages 535–541, University
of Maryland, MD.

K. Lari and S. J. Young. 1990. The estimation of stochas-
tic context-free grammars using the inside-outside al-
gorithm. Computer Speech and Language, 4(1):35–
56.

Robert Malouf. 2002. A comparison of algorithms
for maximum entropy parameter estimation. InPro-
ceedings of the Sixth Workshop on Natural Language
Learning, pages 49–55, Taipei, Taiwan.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum en-
tropy estimation for feature forests. InProceedings
of the Human Language Technology Conference, San
Diego, CA.

Miles Osborne. 2000. Estimation of stochastic
attribute-value grammars using an informative sam-
ple. In Proceedings of the 18th International Con-
ference on Computational Linguistics, pages 586–592,
Saarbr¨ucken, Germany.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell III, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
Lexical-Functional Grammar and discriminative esti-
mation techniques. InProceedings of the 40th Meet-
ing of the ACL, pages 271–278, Philadelphia, PA.

Ronald Rosenfeld. 1996. A maximum entropy approach
to adaptive statistical language modeling.Computer,
Speech and Language, 10:187–228.

Mark Steedman. 2000.The Syntactic Process. The MIT
Press, Cambridge, MA.

Kristina Toutanova, Christopher Manning, Stuart
Shieber, Dan Flickinger, and Stephan Oepen. 2002.
Parse disambiguation for a rich HPSG grammar. In
Proceedings of the First Workshop on Treebanks
and Linguistic Theories, pages 253–263, Sozopol,
Bulgaria.


