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Abstract

This paper describes log-linear pars-
ing models for Combinatory Categorial
Grammar €cG). Log-linear models can
easily encode the long-range dependen-
cies inherent in coordination and extrac-
tion phenomena, whichcGwas designed

to handle. Log-linear models have pre-
viously been applied to statistical pars-
ing, under the assumption that all possible

parses for a sentence can be enumerated.

Enumerating all parses is infeasible for
large grammars; however, dynamic pro-
gramming over a packed chart can be used
to efficiently estimate the model parame-
ters. We describe a parellelised implemen-
tation which runs on a Beowulf cluster and
allows the completevsJi Penn Treebank
to be used for estimation.

}@cogsci.ed.ac.uk

described by Abney (1997) for attribute-value gram-
mars; hence Hockenmaier and Steedman do not in-
clude such dependencies in their model, and Clark
et al. include the dependencies but use an incon-
sistent model. Following Abney, we propose a log-
linear framework which incorporates long-range de-
pendencies as features without loss of consistency.

Log-linear models have previously been ap-
plied to statistical parsing (Johnson et al., 1999;
Toutanova et al., 2002; Riezler et al., 2002; Os-
borne, 2000). Typically, these approaches have enu-
merated all possible parses for model estimation
and finding the most probable parse. For gram-
mars extracted from the Penn Treebank (in our case
CCGbank (Hockenmaier, 2003)), enumerating all
parses is infeasible. One approach to this prob-
lem is to sample the parse space for estimation, e.g.
Osborne (2000). In this paper we use a dynamic pro-
gramming technique applied to a packed chart, simi-
lar to those proposed by Geman and Johnson (2002)
and Miyao and Tsuijii (2002), which efficiently esti-
mates the model parameters over the complete space

1 Introduction without enumerating parses. The estimation method

Statistical parsing models have recently been dds similar to the inside-outside algorithm used for es-
veloped for Combinatory Categorial Grammafimating aPCFG(Lari and Young, 1990).

(ccg, Steedman (2000)) and used in wide-coverage Miyao and Tsujii (2002) apply their estimation
parsers applied to thersiPenn Treebank (Clark et technique to an automatically extracted Tree Adjoin-
al., 2002; Hockenmaier and Steedman, 2002). Aimg Grammar using Improved Iterative Scalings(
attraction ofcca is its elegant treatment of coor- Della Pietra et al. (1997)). However, their model
dination and extraction, allowing recovery of thehas significant memory requirements which limits
long-range dependencies inherent in these constribem to using 868 sentences as training data. We use
tions. We would like the parsing model to includea parallelised version of Generalised Iterative Scal-
long-range dependencies, but this introduces probmg (Gis, Darroch and Ratcliff (1972)) on a Beowulf
lems for generative parsing models similar to thoseluster which allows the complet®sJj Penn Tree-



bank to be used as training data. If 5,000 has the categoryNx/Ny)seo the depen-
This paper assumes a basic knowledgecofs; dency relation marked on th&l(N),, argument in
see Steedman (2000) and Clark et al. (2002) for gd) allows the dependency betweanoutand5,000

introduction. to be captured.
Clark et al. (2002) give examples showing how
2 The Grammar heads can fill dependency slots during a derivation,

Following Clark et al. (2002), we augmenta lex- and how Io_n_g-rgnge dep(_endencies can be_ recovered
ical categories with head and dependency informabrough unification of co-indexed head variables.
tion. For examplg, the extended category [ber- 3 Log-Linear Models for ccc
suadeis as follows:

Previous parsing models farcé include a genera-
persuade :{{S[dcl]persuacd NP1)/ (S[10]:\NP))/NPxs (1) e model ovemormal-formderivations (Hocken-
dnaier and Steedman, 2002) and a conditional model
over dependency structures (Clark et al., 2002).
We follow Clark et al. in modelling dependency

denotes a head, identifying the head of the infinigStructures, but, unlike Clark et al., do so in terms
val complement's subject with the head of the opof derivations. An advantage of our approach is

ject, thus capturing the object control relation. Fofhat the model can potentially include derivation-
example, inMicrosoft persuades IBM to buy Lotus specific features in addition to dependency informa-
IBM fills the subject slot obuy. tion. Also, modelling derivations provides a close

Formally, a dependency is defined as a 5-tup|éi.nk between the model and the parsing algorithm,
(hr. .5 ha 1), wherehs is the head word of the which makes it easier to define dynamic program-
functor, f is the functor category (extended wit

phming techniques for efficient model estimation and
head and dependency informatiors)js the argu-

decoding, and also apply beam search to reduce the
ment slot, andh, is the head word of the argument,S€rch space.
Thel is an additional field used to encode whether 1h€ Probability of a dependency structuses 11,

the dependency is long-range. For example, the gdlven & sentence, is defined as follows:
pendency encodingotusas the object dbought(as P(xIS) = P(d. 7IS 5
in IBM bought Lotu}is represented as follows: (rlS) Z (d.7IS) ®)

The featuredcl] indicates a declarative sentence; th
resultinggdcl] is headed byersuadeand the num-
bers indicate dependency relations. The variable

deA(r,S)

(bought (Jdcl]pougn\NP1) /NP2, 2, Lotus null) (2)  whereA(r, S) is the set of derivations fo® which
lead torr andIT is the set of dependency structures.
?\Iote thatA(r, S) includesthe non-standard deriva-
tions allowed byccac. This model allows the pos-
sibility of including features from the non-standard
derivations, such as features encoding the use of
(bought (S dcllsougm\NPL)/NP;, 2, companyx) (3) type-raising or function composition.
A log-linear model of a parsey € Q, given a
where « is the category NP\NP)/(Jdcl]/NP) as- sentences, is defined as follows:
signed to the relative pronoun. A dependency struc-
ture is simply a set of these dependencies. P(w|S) = 1 l_[:“ifi(w) (6)
Every argument in every lexical category is en- Zs i
coded as a dependency. Unlike Clark et al., we do

not require dependencies to be always marked eris model can be applied to any kind of parse, but

atomic categories. For example, the marked up ca{f?r this paper a parsey, is a(d, ) pair (as given

egory forabout(as inabout 5,000 poundss: in (5)). The functionf; is a feature of the parse

If the object has been extracted using a relative pr
noun with the categoryNP\NP)/(Jdcl]/NP) (as in
the company that IBM boughthe dependency is as
follows:

1We use the terndecodingto refer to the process of finding
(Nx/Ny)y/(N/N)y, (4) the most probable dependency structure from a packed chart.



which can be any real-valued function over the spacgherews ... wy are the parses in the training data
of parseX2. In this papeffi(w) is a count of the num- (consisting of a normal-form derivation plus depen-
ber of times some dependency occursuin Each dency structure) anéi(wj) is the number of times
featuref; has an associatedeighty; which is a pa- appears in parse;.2

rameter of the model to be estimat&®.is a normal- Parameter estimation also requires calculation of

ising constant which ensures tHw|S) is a proba- expected values of the features according to the
bility distribution: model,Ep fi. This requires summing over all parses

e _ Z l_[ (@) @) (derivat_ion plus depepd_ency struc_:ture) for the sen-

S = Hi tences in the data, a difficult task since the total num-

wep(S) ber of parses can grow exponentially with sentence

wherep(S) € Q is the set of possible parses 8r  length. For some sentences in CCGbank, the parser
The advantage of a log-linear model is that thelescribed in Section 6 produces trillions of parses.
features can be arbitrary functions over parses. Thihe next section shows how a packed chart can ef-
means that any dependencies — including overlaficiently represent the parse space, and lkeog/ap-
ping and long-range dependencies — can be includetled to the packed chart can be used to estimate the
in the model, irrespective of whether those deperparameters.
dencies are independent.
The theory underlying log-inear models4 Packed Charts

is described in Del!a Pietra et aI._ (1997) a_”cbeman and Johnson (2002) have proposed a
Berger eF al. (1996). Brlefly, the Iog-Ilr_1ear form INdynamic programming estimation method for
(6) is derived by choosing the model with maximumyacyed representations of unification-based parses.
entropy from a set of models that satisfy a certaiyjivao and Tsuijii (2002) have proposed a similar
set of constraints (Rosenfeld, 1996). The constrainifiethod for feature forestswhich they apply to

are that, for each featurk: the derivations of an automatically extracted Tree-
Z B(S)P(w|S) fi(w) = Z Bw,S)fi(w) (8) Adjoining Grammar. We apply Miyao and Tsujii's
o3 o3 method to the derivations and dependency structures

h h I bl produced by ouccCG parser.
where the sums are over all possible parse-sentencer,, dynamic programming method relies on a

pa_irs andP(S) is the relative frequency of Sen_tencepacked chartin which chart entries of the same
S in the data. The value on the left of (8) is th

d val f di h q : etypein the same cell are grouped together, and back
expected value of; according to the modeks, pointers to the daughters keep track of how an indi-

and the value on the right is the empirical eXpec'[egidual entry was created. The intuition behind the
value off;, Epfi. dynamic programming is that, for the purposes of

Es{umatmg the pa_rameters of a log-linear mOderguilding a dependency structure, chart entries of the
requires the values in (8) to be calculated for eacg'ame type are equivalent. Consider the following
feature. Calculating the empirical expected val

. o composition ofwill with buyusing the forward com-
ues requires a treebank afcG derivations plus

d ) cgoosition rule:

ependency structures. For this we use CCG-

bank (Hockenmaier, 2003), a corpus of normal- (S dclwar \NP)/NP)

form ccG derivations derived semi-automatically — ~

from the Penn Treebank. Following Clark et al., (Sdclwi\NP)/(SP\NF))  ((Sb]ouy\NF)/NP)

gold standard dependency structures are obtained fpfie type of the resulting chart entry is deter-

each derivation by running a dependency-producingiined by thecca category plus heads, in this case

parser over the derivations. The empirical expecte@gdcllyi \NP)/NP), plus the dependencies yet to

value of a featurd is calculated as follows: be filled. The dependencies are not shown, but there
2An alternative is to use feature counts frah derivations

N
1
Epfi= = E fi(wj) (9) leading to the gold standard dependency structure, including the
N =1 non-standard derivations, to calcul&gf;.



are two subject dependencies on the fM&, one The packed structure we have described is an ex-
encoding the subject okill and one encoding the ample of afeature fores{Miyao and Tsujii, 2002),
subject ofbuy?, and there is an object dependencylefined as follows:
on the secondNP encoding the object dbfuy. En- A feature forestb is a tuple(C, D, R, v, 6) where
tries of the same type are identical for the purposes
of creating new dependencies for the remainder of e Cis a set of conjunctive nodes;
the parsing. e Dis a set of disjunctive nodes;

Any rule instantiatiofi L_Jsed by the parser creates Rc Dis a set of root disjunctive nodés;
both a set of dependencies and a set of features. For
the previous example, one dependency is created: * 7"

, e §: C — 2P is a disjunctive daughter function.
(will, (S del]in \NPx 1)/ (Sb].\NPx), 2, buy)

This dependency will be a feature created by the rule FOT €ach feature functiofy : Q — N, there is
instantiation. We also use less specific features, suéfforresponding feature functidn: C — N which

as the dependency with the words replacecdbg cou_nts the number of timefsappears on a pqrticular

The feature forests of Miyao and Tsuijii are delhe sum of the values df for each conjunctive node
fined in terms ofconjunctiveanddisjunctivenodes. in the parse.
For our purposes, a conjunctive node is an individual . . .
entry in a cell, including the features created wheR ~EStimation usingGis

the entry was derived, plus pointers to the entry's; s 4 very simple algorithm for estimating the pa-
daughters. A disjunctive node represents an equivgymeters of a log-linear model. The parameters are

lence class of nodes in a cell, using the type equivgsisialised to some arbitrary constant and the follow-
lence relation described above. A conjunctive nodf?]g update rule is applied until convergence:

results from either the combination of two disjunc-

tive nodes using a binary rule, e.g. forward composi- E-f \&

. - - : : w1 _ o =i

tion; or results from a single disjunctive node using M= (ﬁ) (10)
a unary rule, e.g. type-raising; or is a leaf node (a p® i

word plus lexical ry). . . .
ord plus exica category) . where {) is the iteration index and the constabt
Features in the model can only result from a sin- . . :
. o . . i is defined as maxs i fi(w). In practiceC is max-
gle rule instantiation. It is possible to define features_ . ’ . e
imised over the sentences in the training data. Im-

covering a larger part of the dependency Strucwre;Iementations o&1stypically use a “correction fea-

for e>_<amp|e we might encode all _three elements cﬁure”, but following Curran and Clark (2003) we do
the triple in aPr-attachment as a single feature. The

) . : . N haf re, which simplifies the algo-
disadvantage of using such features is that this r%-?r;[n?se such a feature, ch simpiifies the algo

duces the efficiency of the dynamic programming. Calculating Eo f; requires summing over all
P |

Note, however, that the equivalence relation defin- ~ P
. - . . . derivations which includd; for each packed chart
ing disjunctive nodes takes into account unfilled de- o . .
pendencies, which may be long-range dependenci'ep the training data. The key to performing this sum
o ' ; L . eﬁiciently is to write the sum in terms afisideand
being “passed up” the derivation tree. This means . . . o
that long-range dependencies can be features in O%L#tadescores for each conjunctive node. The inside
and outside scores can be defined recursively, as in

model, even though the lexical items involved malthe inside-outside algorithm fercrcs. If the inside

be far apart in the sentence. . . .
P score for a conjunctive nodeis denoteds., and the
%In this example, the co-indexing of heads in the markedup______

D — 2€ is a conjunctive daughter function;

category forwill ((§dcllwin\NPx 1)/(9b]2\NPx)) ensures the SMiyao and Tsuijii have a single root conjunctive node; the
subject dependency fdyuy is “passed up” to the subjetdP  disjunctive root nodes we define correspond to the rootsoad
of the resulting category. derivations.

4By rule instantiationwe mean the local tree arising from 5The value off;(c) for ¢ € C will typically be 0 or 1, but it
the application of &cG combinatory rule. is possible for the count to be greater than 1.



outside score ofl; in Figure 1 is the sum of the fol-
lowing two values: the product of the outside score
of ¢s, the inside score afis and the feature weights
atcs; and the product of the outside scorecgf the

ds inside score oflz and the feature weights e4. The

o recursive definition is as follows. The outside score

for a root disjunctive node is 1, otherwise:

va= > lwe ] o] [4'9] @9

,,,,,,,,,,,,,,,,,, {ddes(@)) \  {d'ld’es(c),d=d) i
inside outside The normalisation constals is the sum of the
inside scores for the root disjunctive nodes:
Figure 1: Example feature forest
Zs= ) ¢a (16)
outside score denoteft, then the expected value of dreR

f; can be written as follows$: .
In order to calculate inside scores, the scores for

350y L daughter nodes need to be calculated before the

Epfi = Z P(S)Z_ Z () e v D scorges for mother nodes (and vice versa for the out-
) ) ) side scores). This can easily be achieved by ordering
whereCs is the set of conjunctive nodes f8t the nodes in the bottom-upKy parsing order.

Consider the example feature forest in Figure 1. \gte that the inside-outside approach can be com-
The figure shows the nodes used to calculate the i eq with any maximum entropy estimation proce-
side and outside scores for conjunctive nogleThe dure, such as those evaluated by Malouf (2002).
inside score for a disjunctive nodgy, is the sum of Finally, in order to avoid overfitting, we use a

the inside scores for its conjunctive node daughters; 5 \ssian prior on the parameters of the model (Chen

bq = Z e (12) and Rosenfeld, 1999), which requires a slight modi-
o) fication to the update rule in (10). A Gaussian prior

o ) ] also handles the problem of “pseudo-maximal” fea-
The inside score for a conjunctive nodg, canthen ,ac (Johnson et al., 1999),

be defined recursively:

i 6 The Parser
o= [] ¢a] [ (13)
des(c) [ The parser is based on Clark et al. (2002) and takes

The intuition for calculating outside scores is sim-2S input aPostagged sentence with a set of possi-

ilar, but a little more involved. The outside score forPle lexical categories assigned to each word. The
a conjunctive nodey, is the outside score for its SuPertagger of Clark (2002) provides the lexical cat-

S ceCsq

disjunctive node mother: egories, with a parameter setting which assigns
around 4 categories per word on average. The pars-
Y =Yg Wherec € y(d) (14) ing algorithm is thecky bottom-up chart-parsing

algorithm described in Steedman (2000). The com-

The outside score for a disjunctive node is a surBinator rules used by the parser are functional a
over the mother nodes, of the product of the outside y y P P

score of the mother, the inside score of the sister, ar%manon (forward and backward), generalised for-

the feature weights on the motHeEor example, the wgrd composition, backward composmon, gener
alised backward-crossed composition, and type rais-

'The notation is taken from Miyao and Tsujii (2002). ing. There is also a coordination rule which con-
8Miyao and Tsuijii (2002) ignore the feature weights on the ins cateqories of the same tvpe. Restrictions are
mother, but this ignores some of the probability mass for thé g ype.

outside (at least for the feature forests we have defined). placed on some of the rules, such as that given by



Steedman (2000, p.62) for backward-crossed comgrouping equivalent categories into a single entry.
position. The speed of the parser is heavily dependent on the
Type-raising is applied to the categorid®, PP efficiency of equivalence testing, and category uni-
and Yadj]\NP (adjectival phrase), and is imple-fication and construction. These are performed effi-
mented by adding the relevant set of type-raisediently by always creating categories in a canonical
categories to the chart whenever &P, PP or form which can then be compared rapidly using hash

Jadj]\NP is present. The sets of type-raised catefunctions over categories.
gories are based on the most commonly used type-The parser produces a packed chart from which
raising rule instantiations in sections 2-21 of CCGthe most probable dependency structure can be re-
bank, and contain 8 type-raised categoriesN& covered. Since the same dependency structure can
and 1 each foPP andJadj]\NP. be generated by more than one derivation, a depen-
The parser also uses a number of lexical rules artbncy structure’s score is the sum of the log-linear
punctuation rules. These rules are based on thoseores for each derivation. Finding the structure
occurring roughly more than 200 times in sectionsvith the highest score is not trivial, since filled de-
2-21 of CCGbank. An example of a lexical rule useghendencies are only stored at the conjunctive nodes
by the parser is the following, which takes a passivevhere they are created. This means that a depen-
form of a verb and creates a nominal modifier: dency appearing in a structure can be created in dif-
ferent parts of the chart for different derivations. We
Hpsd\NP = NP \NPy; (17)  solve this in practice using a hash function over de-
_ _ pendencies, which can be used to quickly determine
This rule is used to creatdlPs such asthe role \;pather two derivations lead to the same structure.
played by Kim Cattrall Note that there is a de- o oach node in the chart, we can keep track of the

pendency relation on the resulting category; in thejyation leading to the set of dependencies with
previous exampleole would fill a nominal modifier the highest score for that node.

dependency headed blayed
Currently, the only punctuation marks handled byr.2 Data Generation

the parser are commas, and all other punctuationg

d after th ta0ai h A ata for model estimation is created in two steps.
removed after _e super agg_lng phase. An examp rst, the parser is run over the normal-form deriva-
of a comma rule is the following:

tions in Sections 2-21 of CCGbank outputting the
S/S. . = S/S, (18) correspondlng_depender_m_es anq other featu_res. The
features used in our preliminary implementation are

This rule takes a sentential modifier followed by2s follows:

a comma (for exampl€urrently , in the sentence dependency features:

above in the text) and returns a sentential modifier * p Y '

of the same type. ¢ lexical category features;
The next section describes the efficient implemen- e root category features.

tation of the parser and model estimator. ] )
Dependency features are 5-tuples as defined in

7 Implementation Section 2. Further dependency features are formed
by substitutingrostags for the words, which leads
to a total of 4 features for each dependency. Lexical
The non-standard derivations allowed bggG, to- category features are word category pairs on the leaf
gether with the wide coverage grammar, result imodes and root features are head-word category pairs
extremely large charts. This means that efficient iman root nodes. Extra features are formed by replac-
plementation of the parsing process is imperative fang words with theirrostags. The total number of
performing large-scale experiments. features is 817,658, but we reduce this to 243,603 by
The packed chart prevents combinatorial exploenly including features which appear at least twice
sion in the number of category combinations byn the data.

7.1 Parser Implementation



The second step of data generation involves using | GIs-ccG [ s - TAG |
the parser to create a feature forest for each sentence,number of features || 243,603 | 5,715
using the feature set extracted from CCGbank. The number of sentences 36,400 868
parser is interrupted if a sentence takes longer than avg. num. of nodes| 52,000 17,412
60 seconds to process or if more than 500,000 cont memory usage 30GB 1.5GB
junctive nodes are created in the chart. If this oc-| disk usage 19.968 | -
curs, the process is repeated but with a smaller num-
ber of categories assigned to each word by the Sugpe 1: Results compared with Miyao and Tsujii
pertagger. Approximately 93% of the sentences in
sections 2-21 can be processed in this way, giving
36,400 training sentences. Creating the forests takésminute. Given the large number of features, we
approximately one hour using 40 nodes of our Beestimate at least 1,000 iterations will be needed for
owulf cluster, and produces 19 of data. convergence.

7.3 Estimation 8 Conclusions and Further Work

The parse forests regularly represent trillions of pos-
sible parses for a sentence. The estimation prdable 1 gives the overall statistics for the model
cess involves summing feature weights over all thesgstimation process, and compares them with
parses, a total which cannot be represented usiMjyao and Tsujii (2002). These numbers represent
double precision arithmetic (limited to less tharthe largest-scale parsing model of which we are
10°%8).  Our implementation uses the sum, ratheaware. Parsing and model estimation on this scale
than product, form of (6), so that logarithms can béntroduce a number of interesting theoretical and
used to avoid numerical overflow. For converting theomputational challenges. We have demonstrated
sum of products in Equation 15 to log space, we uggow packed charts and feature forests can be com-
a techniqgue commonly used in speech recognitiopined to meet the theoretical challenges. We have
(p.c. Simon King). also described ampi implementation ofz1s which
We have implemented a parallel version of ousolves the computational challenges. These tech-
GIs code using thempicH library (Gropp et al., niques are necessary for discriminative estimation
1996), an open-source implementation of the Megechniques applied to wide-coverage parsing.
sage Passing Interfac®®i) standard.mpi parallel We have just begun the process of evaluating
programming involves explicit synchronisation ancbarsing performance using the same test data as
information transfer between the parallel processeSlark et al. (2002). We are especially interested in
using messages. It is ideal for development of paraihe effectiveness of incorporating long-range depen-
lel programs for cluster architectures. dencies as features, whicltGwas designed to han-
GIs over parse forests is straightforward to pardle and for which we expect a log-linear model to be
allelise. The parse forests are divided among thearticularly effective.
machines in the cluster (in our current implemen-
tation, each machine receives 979 forests). Eaghcknowledgements
machine calculates the inside and outside scores for
each node in the parse forest and updates the é&#e would like to thank Mark Steedman, Julia Hock-
timated feature expectations. The feature expectanmaier, Jason Baldridge, David Chiang, Yusuke
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using a global operation (callededuceoperation). Murphy and the anonymous reviewers for their help-
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