
Using LTAG Based Features in Parse Reranking∗

Libin Shen
Dept. of Computer & Info. Sci.

University of Pennsylvania
libin@cis.upenn.edu

Anoop Sarkar
School of Computing Science

Simon Fraser University
anoop@cs.sfu.ca

Aravind K. Joshi
Dept. of Computer & Info. Sci.

University of Pennsylvania
joshi@cis.upenn.edu

Abstract

We propose the use of Lexicalized Tree
Adjoining Grammar (LTAG) as a source
of features that are useful for reranking
the output of a statistical parser. In this
paper, we extend the notion of a tree ker-
nel over arbitrary sub-trees of the parse to
the derivation trees and derived trees pro-
vided by the LTAG formalism, and in ad-
dition, we extend the original definition
of the tree kernel, making it more lexi-
calized and more compact. We use LTAG
based features for the parse reranking task
and obtain labeled recall and precision of
89.7%/90.0% on WSJ section 23 of Penn
Treebank for sentences of length ≤ 100
words. Our results show that the use
of LTAG based tree kernel gives rise to
a 17% relative difference in f -score im-
provement over the use of a linear kernel
without LTAG based features.

1 Introduction

Recent work in statistical parsing has explored al-
ternatives to the use of (smoothed) maximum likeli-
hood estimation for parameters of the model. These
alternatives are distribution-free (Collins, 2001),
providing a discriminative method for resolving
parse ambiguity. Discriminative methods provide a
ranking between multiple choices for the most plau-
sible parse tree for a sentence, without assuming that
a particular distribution or stochastic process gener-
ated the alternative parses.

∗We would like to thank Michael Collins for providing the
original n-best parsed data on which we ran our experiments
and the anonymous reviewers for their comments. The sec-
ond author is partially supported by NSERC, Canada (RGPIN:
264905).

Discriminative methods permit the use of feature
functions that can be used to condition on arbitrary
aspects of the input. This flexibility makes it possi-
ble to incorporate features of various of kinds. Fea-
tures can be defined on characters, words, part of
speech (POS) tags and context-free grammar (CFG)
rules, depending on the application to which the
model is applied.

Features defined on n-grams from the input are
the most commonly used for NLP applications.
Such n-grams can either be defined explicitly us-
ing some linguistic insight into the problem, or the
model can be used to search the entire space of n-
gram features using a kernel representation. One
example is the use of a polynomial kernel over se-
quences. However, to use all possible n-gram fea-
tures typically introduces too many noisy features,
which can result in lower accuracy. One way to
solve this problem is to use a kernel function that is
tailored for particular NLP applications, such as the
tree kernel (Collins and Duffy, 2001) for statistical
parsing.

In addition to n-gram features, more complex
high-level features are often exploited to obtain
higher accuracy, especially when discriminative
models are used for statistical parsing. For ex-
ample, all possible sub-trees can be used as fea-
tures (Collins and Duffy, 2002; Bod, 2003). How-
ever, most of the sub-trees are linguistically mean-
ingless, and are a source of noisy features thus limit-
ing efficiency and accuracy. An alternative to the use
of arbitrary sets of sub-trees is to use the set of ele-
mentary trees as defined in Lexicalized Tree Adjoin-
ing Grammar (LTAG) (Joshi and Schabes, 1997).
LTAG based features not only allow a more limited
and a linguistically more valid set of features over
sub-trees, they also provide the use of features that
use discontinuous sub-trees which are outside the



scope of previous tree kernel definitions using arbi-
trary sub-trees. In this paper, we use the LTAG based
features in the parse reranking problem (Collins,
2000; Collins and Duffy, 2002). We use the Sup-
port Vector Machine (SVM) (Vapnik, 1999) based
algorithm proposed in (Shen and Joshi, 2003) as the
reranker in this paper. We apply the tree kernel to
derivation trees of LTAG, and extract features from
derivation trees. Both the tree kernel and the linear
kernel on the richer feature set are used. Our exper-
iments show that the use of tree kernel on derivation
trees makes the notion of a tree kernel more power-
ful and more applicable.

2 Lexicalized Tree Adjoining Grammar

In this section, we give a brief introduction to the
Lexicalized Tree Adjoining Grammar (more details
can be found in (Joshi and Schabes, 1997)). In
LTAG, each word is associated with a set of elemen-
tary trees. Each elementary tree represents a possi-
ble tree structure for the word. There are two kinds
of elementary trees, initial trees and auxiliary trees.
Elementary trees can be combined through two op-
erations, substitution and adjunction. Substitution is
used to attach an initial tree, and adjunction is used
to attach an auxiliary tree. In addition to adjunction,
we also use sister adjunction as defined in the LTAG
statistical parser described in (Chiang, 2000).1 The
tree resulting from the combination of elementary
trees is is called a derived tree. The tree that records
the history of how a derived tree is built from the
elementary trees is called a derivation tree.2

We illustrate the LTAG formalism using an exam-
ple.
Example 1: Pierre Vinken will join the board as a
non-executive director.

The derived tree for Example 1 is shown in Fig. 1
(we omit the POS tags associated with each word to
save space), and Fig. 2 shows the elementary trees
for each word in the sentence. Fig. 3 is the deriva-
tion tree (the history of tree combinations). One of

1Adjunction is used in the case where both the root node and
the foot node appear in the Treebank tree. Sister adjunction is
used in generating modifier sub-trees as sisters to the head, e.g
in basal NPs.

2Each node η〈n〉 in the derivation tree is an elementary tree
name η along with the location n in the parent elementary tree
where η is inserted. The location n is the Gorn tree address (see
Fig. 4).

S

NP

Pierre Vinken

VP

will VP

VP

join NP

the board

PP

as NP

a non-executive director

Figure 1: Derived tree (parse tree) for Example 1.

NP

Pierre

NP

Vinken

VP

will VP∗

S

NP↓ VP

join NP↓

NP

the

NP

board

VP

VP∗ PP

as NP↓

NP

a

NP

non-executive

NP

director

β1: α2: β2: α1:

β3: α3: β4: β6: β5: α4:

Figure 2: Elementary trees for Example 1.

the properties of LTAG is that it factors recursion in
clause structure from the statement of linguistic con-
straints, thus making these constraints strictly local.
For example, in the derivation tree of Examples 1,
α1(join) and α2(V inken) are directly connected
whether there is an auxiliary tree β2(will) or not.
We will show how this property affects our redefined
tree kernel later in this paper. In our experiments in
this paper, we only use LTAG grammars where each
elementary tree is lexicalized by exactly one word
(terminal symbol) on the frontier.

3 Parse Reranking

In recent years, reranking techniques have been suc-
cessfully used in statistical parsers to rerank the out-
put of history-based models (Black et al., 1993). In
this paper, we will use the LTAG based features to
improve the performance of reranking. Our motiva-
tions for using LTAG based features for reranking
are the following:

• Unlike the generative model, it is trivial to in-
corporate features of various kinds in a rerank-
ing setting. Furthermore the nature of rerank-
ing makes it possible to use global features,



α1(join)〈〉

α2(Vinken)〈00〉

β1(Pierre)〈0〉

β2(will)〈01〉 α3(board)〈011〉

β3(the)〈0〉

β4(as)〈01〉

α4(director)〈011〉

β5(non-executive)〈0〉

β6(a)〈0〉

Figure 3: Derivation tree: shows how the elementary
trees shown in Fig. 2 can be combined to provide an
analysis for the sentence in Example 1.

which allow us to combine features that are de-
fined on arbitrary sub-trees in the parse tree and
features defined on a derivation tree.

• Several hand-crafted and arbitrary features
have been exploited in the statistical parsing
task, especially when parsing the WSJ Penn
Treebank dataset where performance has been
finely tuned over the years. Showing a positive
contribution in this task will be a convincing
test for the use of LTAG based features.

• The parse reranking dataset is well established.
We use the dataset defined in (Collins, 2000).

In (Collins, 2000), two reranking algorithms were
proposed. One was based on Markov Random
Fields, and the other was based on the Boosting al-
gorithm. In both these models, the loss functions
were computed directly on the feature space. Fur-
thermore, a rich feature set was introduced that was
specifically selected by hand to target the limitations
of generative models in statistical parsing.

In (Collins and Duffy, 2002), the Voted Percep-
tron algorithm was used for parse reranking. The

S0

NP00

↓ VP01

join010 NP011

↓

Figure 4: Example of how each node in an elemen-
tary tree has a unique node address using the Gorn
notation. 0 is the root with daughters 00, 01, and so
on recursively, e.g. first daughter 01 is 010.

VP

will VP

... PP

... NP

a

Figure 5: A sub-tree which is linguistically mean-
ingless.

tree kernel was used to compute the number of com-
mon sub-trees of two parse trees. The features used
by this tree kernel contains all the hand selected fea-
tures of (Collins, 2000). It is worth mentioning that
the f -scores reported in (Collins and Duffy, 2002)
are about 1% less than the results in (Collins, 2000).

In (Shen and Joshi, 2003), a SVM based rerank-
ing algorithm was proposed. In that paper, the no-
tion of preference kernels was introduced to solve
the reranking problem. Two distinct kernels, the tree
kernel and the linear kernel were used with prefer-
ence kernels.

4 Using LTAG Based Features

4.1 Motivation
While the tree kernel is an easy way to compute sim-
ilarity between two parse trees, it takes too many lin-
guistically meaningless sub-trees into consideration.

Let us consider the example sentence in Example
1. The parse tree, or derived tree, for this sentence
is shown in Fig. 1. Fig. 5 shows one of the lin-
guistically meaningless sub-trees. The number of
meaningless sub-trees is a misleading measure for
discriminating good parse trees from bad. Further-
more, the number of meaningless sub-trees is far
greater than the number of useful sub-trees. This
limits both efficiency and accuracy on the test data.
The use of unwanted sub-trees greatly increases the
hypothesis space of a learning machine, and thus de-
creases the expected accuracy on test data. In this
work, we consider the hypothesis that linguistically
meaningful sub-trees reveal correlations of interest
and therefore are useful in stochastic models.

We notice that each sub-tree of a derivation tree
is linguistically meaningful because it represents a
valid sub-derivation. We claim that derivation trees



provide a more accurate measure of similarity be-
tween two parses. This is one of the motivations
for applying tree kernels to derivation trees. Note
that the use of features on derivation trees is differ-
ent from the use of features on dependency graphs,
derivation trees include many complex patterns of
tree names and attachment sites and can represent
word to word dependencies that are not possible in
traditional dependency graphs.

For example, the derivation tree for Example 1
with and without optional modifiers such as β4(as)
are minimally different. In contrast, in derived
(parse) trees, there is an extra VP node which
changes quite drastically the set of sub-trees with
and without the PP modifier. In addition, using only
sub-trees from the derived tree, we cannot repre-
sent a common sub-tree that contains only the words
Vinken and join since this would lead to a discontin-
uous sub-tree. However, LTAG based features can
represent such cases trivially.

The comparison between (Collins, 2000) and
(Collins and Duffy, 2002) in §3 shows that it is hard
to add new features to improve performance. Our
hypothesis is that the LTAG based features provide
a novel set of abstract features that complement the
hand selected features from (Collins, 2000) and the
LTAG based features will help improve performance
in parse reranking.

4.2 Extracting Derivation Trees

Before we can use LTAG based features we need
to obtain an LTAG derivation tree for each parse
tree under consideration by the reranker. Our solu-
tion is to extract elementary trees and the derivation
tree simultaneously from the parse trees produced
by an n-best statistical parser. Our training and
test data consists of n-best output from the Collins
parser (see (Collins, 2000) for details on the dataset).
Since the Collins parser uses a lexicalized context-
free grammar as a basis for its statistical model, we
obtain parse trees that are of the type shown in Fig.
6. From this tree we extract elementary trees and
derivation trees by recursively traversing the spine
of the parse tree. The spine is the path from a non-
terminal lexicalized by a word to the terminal sym-
bol on the frontier equal to that word. Every sub-tree
rooted at a non-terminal lexicalized by a different
word is excised from the parse tree and recorded into

S(join)

NP-A(Vinken)

Pierre Vinken

VP(join)

will VP(join)

VP(join)

join NP-A(board)

the board

PP(as)

as NP-A(director)

a non-executive director

Figure 6: Sample output parse from the Collins
parser. Each non-terminal is lexicalized by the pars-
ing model. -A marks arguments recovered by the
parser.

the derivation tree as a substitution. Repeated non-
terminals on the spine (e.g. VP(join) . . . VP(join) in
Fig. 6) are excised along with the sub-trees hang-
ing off of it and recorded into the derivation tree as
an adjunction. The only other case is those sub-
trees rooted at non-terminals that are attached to
the spine. These sub-trees are excised and recorded
into the derivation tree as cases of sister adjunction.
Each sub-tree excised is recursively analyzed with
this method, split up into elementary trees and then
recorded into the derivation tree. The output of our
algorithm for the input parse tree in Fig. 6 is shown
in Fig. 2 and Fig. 3. Our algorithm is similar to
the derivation tree extraction explained in (Chiang,
2000), except we extract our LTAG from n-best sets
of parse trees, while in (Chiang, 2000) the LTAG is
extracted from the Penn Treebank.3 For other tech-
niques for LTAG grammar extraction see (Xia, 2001;
Chen and Vijay-Shanker, 2000).

4.3 Using Derivation Trees

In this paper, we have described two models to em-
ploy derivation trees. Model 1 uses tree kernels on
derivation trees. In order to make the tree kernel
more lexicalized, we extend the original definition
of the tree kernel, which we will describe below.
Model 2 abstracts features from derivation trees and
uses them with a linear kernel.

In Model 1, we combine the SVM results of the
tree kernel on derivation trees with the SVM results
given by a linear kernel based on features on the de-
rived trees.

3Also note that the path from the root node to the foot node
in auxiliary trees can be greater than one (for trees with S roots).



In Model 2, the vector space of the linear kernel
consists of both LTAG based features defined on the
derived trees and features defined on the derivation
tree. The following LTAG features have been used
in Model 2.

• Elementary tree. Each node in the derivation
tree is used as a feature.

• Bigram of parent and its child. Each pair
of parent elementary tree and child elementary
tree, as well as the type of operation (substi-
tution, adjunction or sister adjunction) and the
Gorn address on parent (see Fig. 4) is used as a
feature.

• Lexicalized elementary tree. Each elemen-
tary tree associated with its lexical item is used
as a feature.

• Lexicalized bigram. In Bigram of parent and
its child, each elementary tree is lexicalized
(we use closed class words, e.g. adj, adv, prep,
etc. but not noun or verb).

4.4 Lexicalized Tree Kernel
In (Collins and Duffy, 2001), the notion of a tree ker-
nel is introduced to compute the number of common
sub-trees of two parse trees. For two parse trees, p1

and p2, the tree kernel Tree(p1, p2) is defined as:

Tree(p1, p2) =
∑

n1 in p1

n2 in p2

T (n1, n2) (1)

The recursive function T is defined as follows: If n1

and n2 have the same bracketing tag (e.g. S, NP, VP,
. . .) and the same number of children,

T (n1, n2) = λ
∏

i

(1 + T (n1i, n2i)), (2)

where, nki is the ith child of the node nk, λ is a
weight coefficient used to control the importance of
large sub-trees and 0 < λ ≤ 1.

If n1 and n2 have the same bracketing tag but dif-
ferent number of children, T (n1, n2) = λ. If they
don’t have the same bracketing tag, T (n1, n2) = 0.

In (Collins and Duffy, 2002), lexical items are all
located at the leaf nodes of parse trees. Therefore

VP(join)

VP(join)

V(join) NP(board)

PP(as)

P(as) NP(director)

tree with root node n:

VP

VP

V NP

PP

P NP

ptn(n):

lex(n): (join, join, as)

Figure 7: A lexicalized sub-tree rooted at n and
its decomposition into a pattern, ptn(n) and corre-
sponding vector of lexical information, lex(n).

sub-trees that do not contain any leaf node are not
lexicalized. Furthermore, due to the introduction of
parameter λ, lexical information is almost ignored
for sub-trees whose root node is not close to the leaf
nodes, i.e. sub-trees rooted at S node.

In order to make the tree kernel more lexicalized,
we associate each node with a lexical item. For ex-
ample, Fig. 7 shows a lexicalized sub-tree and its
decomposition into features. As shown in Fig. 7 the
lexical information lex(t) extracted from the lexical-
ized tree consists of words from the root and its im-
mediate children. This is because we wish to ig-
nore irrelevant lexicalizations such as NP(board) in
Fig. 7.

A lexicalized sub-tree rooted on node n is split
into two parts. One is the pattern tree of n, ptn(n).
The other is the vector of lexical information of n,
lex(n), which contains the lexical items of the root
node and the children of the root.

For two tree nodes n1 and n2, the recursive func-
tion LT (n1, n2) used to compute the lexicalized tree
kernel is defined as follows.

LT (n1, n2) = (1 + Cnt(lex(n1), lex(n2)))

× T ′(ptn(n1), ptn(n2)), (3)

where T ′ is the same as the original recursive func-
tion T defined in (2), except that T is defined on
parse tree nodes, while T ′ is defined on patterns of
parse tree nodes. Cnt(x, y) counts the number of
common elements in vector x and y. For example,
Cnt((join, join, as), (join, join, in)) = 2, since



2 elements of the two vectors are the same.
It can be shown that the lexicalized tree kernel

counts the number of common sub-trees that meet
the following constraints.

• None or one node in the sub-tree is lexicalized

• The lexicalized node is the root node or a child
of the root, if applicable.

Therefore our new tree kernel is more lexicalized.
On the other hand, it immediately follows that the
lexicalized tree kernel is well-defined. It means that
we can embed the lexicalized tree kernel into a high
dimensional space. The proof is similar to the proof
for the tree kernel in (Collins and Duffy, 2001).

Another important advantage of the lexicalized
tree kernel is that it is more compressible. It is noted
in (Collins and Duffy, 2001) that training trees can
be combined by sharing sub-trees to speed up the
test. As far as the lexicalized tree kernel is con-
cerned, the pattern trees are more compressible be-
cause there is no lexical item at the leaf nodes of
pattern trees. Lexical information can be attached
to the nodes of the result pattern forest. In our ex-
periment, we select five parses from each sentence
in Collins’ training data and represent these parses
with shared structure. The number of the nodes in
the pattern forest is only 1/7 of the total number of
the nodes the selected parse trees.

4.5 Tree Kernel for Derivation Trees
In order to apply the (lexicalized) tree kernel to
derivation trees, we need to make some modifica-
tions to the original recursive definition of the tree
kernel.

For derivation trees, the recursive function is trig-
gered if the two root nodes have the same non-
lexicalized elementary tree (sometimes called su-
pertag). Note that these two nodes will have the
same number of children which are initial trees (aux-
iliary trees are not counted). In comparison, the re-
cursive function in (2), T (n1, n2) is computed if and
only if n1 and n2 have the same bracketing tag and
they have the same number of children.

For each node, its children are attached with one
of the two distinct operations, substitution or adjunc-
tion. For substituted children, the computation of the
tree kernel is almost the same as that for CFG parse

tree. However, there is a problem with the adjoined
children. Let us first have a look at a sentence in
Penn Treebank.

Example 2: COMMERCIAL PAPER placed di-
rectly by General Motors Acceptance Corp.: 8.55%
30 to 44 days; 8.25% 45 to 59 days; 8.45% 60 to 89
days; 8% 90 to 119 days; 7.90% 120 to 149 days;
7.80% 150 to 179 days; 7.55% 180 to 270 days.

In this example, seven sub-trees of the same type
are sister adjoined to the same place of an initial tree.
So the number of common sub-trees increases dra-
matically if the tree kernel is applied on two similar
parses of this sentence. Experimental evidence indi-
cates that this is harmful to accuracy. Therefore, for
derivation trees, we are only interested in sub-trees
that contain at most 2 adjunction branches for each
node. The number of constrained common sub-trees
for the derivation tree kernel can be computed by
the recursive function DT over derivation tree nodes
n1, n2:

DT (n1, n2) = (1 + A1(n1, n2) + A2(n1, n2))

× T”(sub(n1), sub(n2)) (4)

where sub(nk) is the sub-tree of nk in which chil-
dren adjoined to the root of nk are pruned. T” is
similar to the original recursive function T defined
in (2), but it is defined on derivation tree nodes re-
cursively. A1 and A2 are used to count the number
of common sub-trees whose root nodes only contain
one or two adjunction children respectively.

A1(n1, n2) =
∑

i,j

DT (a1i, a2j),

where, a1i is the ith adjunct of n1, and a2j is the jth
adjunct of n2. Similarly, we have:

A2(n1, n2) =
∑

i<k,j<l

DT (a1i, a2j) · DT (a1k, a2l)

The tree kernel for derivation trees is a well-defined
kernel function because we can easily define an em-
bedding space according to the definition of the new
tree kernel. By substituting DT for T ′ in (3), we ob-
tain the lexicalized tree kernel for LTAG derivation
trees (using LT in (1)).

5 Experiments

As described above, we use the SVM based voting
algorithm (Shen and Joshi, 2003) in our reranking



experiments. We use preference kernels and pair-
wise parse trees in our reranking models.

We use the same data set as described in (Collins,
2000). Section 2-21 of the Penn WSJ Treebank are
used as training data, and section 23 is used for fi-
nal test. The training data contains around 40,000
sentences, each of which has 27 distinct parses on
average. Of the 40,000 training sentences, the first
36,000 are used to train SVMs. The remaining 4,000
sentences are used as development data.

Due to the computational complexity of SVM, we
have to divide training data into slices to speed up
training. Each slice contain two pairs of parses from
every sentence. Specifically, slice i contains pos-
itive samples ((p̃k, pki),+1) and negative samples
((pki, p̃k),−1), where p̃k is the best parse for sen-
tence k, pki is the parse with the ith highest log-
likelihood in all the parses for sentence k and it is
not the best parse (Shen and Joshi, 2003). There are
about 60000 samples in each slice in average.

For the tree kernel SVMs of Model 1, we take
3 slices as a chunk, and train an SVM for each
chunk. Due to the limitation of computing resource,
we have only trained on 3 chunks. The results of
tree kernel SVMs are combined with simple com-
bination. Then the outcome is combined with the
result of the linear kernel SVMs trained on features
extracted from the derived trees which are reported
in (Shen and Joshi, 2003). For each parse, the num-
ber of the brackets in it and the log-likelihood given
by Collins’ parser Model 2 are also used in the com-
putation of the score of a parse. For each parse p, its
score Sco(p) is defined as follows:

Sco(p) = MT (p) + γ · ML(p) + β · l(p) + α · b(p),

where MT (p) is the output of the tree kernel SVMs,
ML(p) is the output of linear kernel SVMs, l(p) is
the log-likelihood of parse p, and b(p) is the num-
ber of brackets in parse p. We noticed that the SVM
systems prefers to give higher scores to the parses
with less brackets. As a result, the system has a high
precision but a low recall. Therefore, we take the
number of brackets, b(p), as a feature to make the
recall and precision balanced. The three weight pa-
rameters are tuned on the development data.

The results are shown in Table 1. With Model
1, we achieve LR/LP of 89.7%/90.0% on sentences

≤40 Words (2245 sentences)
Model LR LP CBs 0 CBs 2 CBs
CO99 88.5% 88.7% 0.92 66.7% 87.1%

CO00 90.1% 90.4% 0.73 70.7% 89.6%

CD02 89.1% 89.4% 0.85 69.3% 88.2%

SJ 03 89.9% 90.3% 0.75 71.7% 89.4%

M1 90.2% 90.5% 0.72 72.3% 90.0%

M2 89.8% 90.3% 0.76 71.6% 89.6%

≤100 Words (2416 sentences)
Model LR LP CBs 0 CBs 2 CBs
CO99 88.1% 88.3% 1.06 64.0% 85.1%

CO00 89.6% 89.9% 0.87 68.3% 87.7%

CD02 88.6% 88.9% 0.99 66.5% 86.3%

SJ 03 89.4% 89.8% 0.89 69.2% 87.6%

M1 89.7% 90.0% 0.86 70.0% 88.2%

M2 89.3% 89.8% 0.89 69.1% 87.7%

Table 1: Results on section 23 of the WSJ Tree-
bank. LR/LP = labeled recall/precision. CBs = av-
erage number of crossing brackets per sentence. 0
CBs, 2 CBs are the percentage of sentences with
0 or ≤ 2 crossing brackets respectively. CO99 =
(Collins, 1999) Model 2. CO00 = (Collins, 2000).
CD02 = (Collins and Duffy, 2002). SJ03 = linear
kernel of (Shen and Joshi, 2003). M1=Model 1.
M2=Model 2.

with ≤ 100 words. Our results show a 17% rel-
ative difference in f -score improvement over the
use of a linear kernel without LTAG based features
(Shen and Joshi, 2003). In addition, we also get
non-trivial improvement on the number of crossing
brackets. These results verify the benefit of using
LTAG based features and confirm the hypothesis that
LTAG based features provide a novel set of abstract
features that complement the hand selected features
from (Collins, 2000). Our results on Model 1 show
a 1% error reduction on the previous best reranking
result using the dataset reported in (Collins, 2000).
Also, Model 1 provides a 10% reduction in error
over (Collins and Duffy, 2002) where the features
from tree kernel were over arbitrary sub-trees.

For Model 2, we first train 22 SVMs on 22 dis-
tinct slices. Then we combine the results of individ-
ual SVMs with simple combination. However, the
overall performance does not improve. But we no-
tice that the use of LTAG based features gives rise to



0.874

0.875

0.876

0.877

0.878

0.879

0.88

0.881

0 5 10 15 20

ID of slices

without LTAG
with LTAG

Figure 8: Comparison of performance of individual
SVMs in Model 2: with and without LTAG based
features. X-axis stands for the ID of the slices on
which the SVMs are trained.Y-axis stands for the f -
score.

improvement on most of the single SVMs, as shown
in Fig. 8.

We think there are several reasons to account for
why our Model 2 doesn’t work as well for the full
task when compared with Model 1. Firstly, the train-
ing slice is not large enough. Local optimization on
each slice does not result in global optimization (as
seen in Fig. 8). Secondly, the LTAG based features
that we have used in the linear kernel in Model 2 are
not as useful as the tree kernel in Model 1.4 The last
reason is that we do not set the importance of LTAG
based features. One shortcoming of kernel methods
is that the coefficient of each feature must be set be-
fore the training (Herbrich, 2002). In our case, we
do not tune the coefficients for the LTAG based fea-
tures in Model 2.

6 Conclusions and Future Work

In this paper, we have proposed methods for using
LTAG based features in the parse reranking task.
The experimental results show that the use of LTAG
based features gives rise to improvement over al-
ready finely tuned results. We used LTAG based fea-
tures for the parse reranking task and obtain labeled
recall and precision of 89.7%/90.0% on WSJ sec-
tion 23 of Penn Treebank for sentences of length ≤
100 words. Our results show that the use of LTAG

4In Model 1, we implicitly take every sub-tree of the deriva-
tion trees as a feature, but in Model 2, we only consider a small
set of sub-trees in a linear kernel.

based tree kernel gives rise to a 17% relative differ-
ence in f -score improvement over the use of a linear
kernel without LTAG based features. In future work,
we will use some light-weight machine learning al-
gorithms for which training is faster, such as vari-
ants of the Perceptron algorithm. This will allow us
to use larger training data chunks and take advan-
tage of global optimization in the search for relevant
features.

References
E. Black, F. Jelinek, J. Lafferty, Magerman D. M., R. Mercer,

and S. Roukos. 1993. Towards history-based grammars:
Using richer models for probabilistic parsing. In Proc. of the
ACL 1993.

R. Bod. 2003. An Efficient Implementation of a New DOP
Model. In Proc. of EACL 2003, Budapest.

J. Chen and K. Vijay-Shanker. 2000. Automated Extraction of
TAGs from the Penn Treebank. In Proc. of the 6th IWPT.

D. Chiang. 2000. Statistical Parsing with an Automatically-
Extracted Tree Adjoining Grammar. In Proc. of ACL-2000.

M. Collins and N. Duffy. 2001. Convolution kernels for natural
language. In Proc. of the 14th NIPS.

M. Collins and N. Duffy. 2002. New ranking algorithms for
parsing and tagging: Kernels over discrete structures, and
the voted perceptron. In Proc. of ACL 2002.

M. Collins. 1999. Head-Driven Statistical Models for Natural
Language Parsing. Ph.D. thesis, University of Pennsylvania.

M. Collins. 2000. Discriminative reranking for natural lan-
guage parsing. In Proc. of 7th ICML.

M. Collins. 2001. Parameter estimation for statistical parsing
models: Theory and practice of distribution-free methods.
In Proc. of IWPT 2001. Invited Talk at IWPT 2001.

R. Herbrich. 2002. Learning Kernel Classifiers: Theory and
Algorithms. MIT Press.

A. K. Joshi and Y. Schabes. 1997. Tree-adjoining grammars.
In G. Rozenberg and A. Salomaa, editors, Handbook of For-
mal Languages, volume 3, pages 69 – 124. Springer.

L. Shen and A. K. Joshi. 2003. An SVM based voting algo-
rithm with application to parse reranking. In Proc. of CoNLL
2003.

V. N. Vapnik. 1999. The Nature of Statistical Learning Theory.
Springer, 2nd edition.

F. Xia. 2001. Investigating the Relationship between Gram-
mars and Treebanks for Natural Languages. Ph.D. thesis,
University of Pennsylvania, Philadelphia, PA.


