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Abstract

We present a general framework for
distributional similarity based on the
concepts of precision and recall. Dif-
ferent parameter settings within this
framework approximate different ex-
isting similarity measures as well as
many more which have, until now,
been unexplored. We show that op-
timal parameter settings outperform
two existing state-of-the-art similarity
measures on two evaluation tasks for
high and low frequency nouns.

1 Introduction

There are many potential applications of sets of
distributionally similar words. In the syntactic
domain, language models, which can be used to
evaluate alternative interpretations of text and
speech, require probabilistic information about
words and their co-occurrences which is often
not available due to the sparse data problem.
In order to overcome this problem, researchers
(e.g. Pereira et al. (1993)) have proposed es-
timating probabilities based on sets of words
which are known to be distributionally similar.
In the semantic domain, the hypothesis that
words which mean similar things behave in sim-
ilar ways (Levin, 1993), has led researchers (e.g.
Lin (1998)) to propose that distributional sim-
ilarity might be used as a predictor of seman-
tic similarity. Accordingly, we might automat-
ically build thesauruses which could be used in
tasks such as malapropism correction (Budan-
itsky and Hirst, 2001) and text summarization
(Silber and McCoy, 2002).

However, the loose definition of distributional
similarity — that two words are distributionally

similar if they appear in similar contexts — has
led to many distributional similarity measures
being proposed; for example, the I.; Norm, the
Euclidean Distance, the Cosine Metric (Salton
and McGill, 1983), Jaccard’s Coefficient (Frakes
and Baeza-Yates, 1992), the Dice Coefficient
(Frakes and Baeza-Yates, 1992), the Kullback-
Leibler Divergence (Cover and Thomas, 1991),
the Jenson-Shannon Divergence (Rao, 1983),
the a-skew Divergence (Lee, 1999), the Con-
fusion Probability (Essen and Steinbiss, 1992),
Hindle’s Mutual Information(MI)-Based Mea-
sure (Hindle, 1990) and Lin’s MI-Based Mea-
sure (Lin, 1998).

Further, there is no clear way of deciding
which is the best measure. Application-based
evaluation tasks have been proposed, yet it
is not clear (Weeds and Weir, 2003) whether
there is or should be one distributional similar-
ity measure which outperforms all other distri-
butional similarity measures on all tasks and for
all words.

We take a generic approach that does not di-
rectly reduce distributional similarity to a single
dimension. The way dimensions are combined
together will depend on parameters tuned to the
demands of a given application. Further, differ-
ent parameter settings will approximate differ-
ent existing similarity measures as well as many
more which have, until now, been unexplored.

The contributions of this paper are four-fold.
First, we propose a general framework for distri-
butional similarity based on the concepts of pre-
cision and recall (Section 2). Second, we evalu-
ate the framework at its optimal parameter set-
tings for two different applications (Section 3),
showing that it outperforms existing state-of-
the-art similarity measures for both high and
low frequency nouns. Third, we begin to inves-
tigate to what extent existing similarity mea-



sures might be characterised in terms of param-
eter settings within the framework (Section 4).
Fourth, we provide an understanding of why
a single existing measure cannot achieve opti-
mal results in every application of distributional
similarity measures.

2 The Framework

In this section, we introduce the relevance of
the Information Retrieval (IR) concepts of pre-
cision and recall in the context of word similar-
ity. We provide combinatorial, probabilistic and
mutual-information based models for precision
and recall and discuss combining precision and
recall to provide a single number in the context
of a particular application.

2.1 Precision and Recall

The similarity’ of two nouns can be viewed as a
measure of how appropriate it is to use one noun
(or its distribution) in place of the other. If we
are using the distribution of one noun in place of
the distribution the other noun, we can consider
the precision and recall of the prediction made.
Precision tells us how much of what has been
predicted is correct whilst recall tells us how
much of what is required has been predicted.
In order to calculate precision and recall, we
first need to consider for each noun n which verb
co-occurrences will be predicted by it and, con-
versely, required in a description of it. We will
refer to these verbs as the features of n, F(n):

F(n) ={v: D(n,v) >0}

where D(n,v), is the degree of association be-
tween noun n and verb v. Possible association
functions will be defined in the context of each
model described below.

If we are considering the ability of noun A
to predict noun B then it follows that the set
of True Positives is TP = F(A) N F(B) and
precision and recall can be defined as:

o ETP D(Aa U)
P4.B) = >r(a) D(4,v)
R(A, B) >rpD(B,v)

> r) D(B,v)

'We will consider, for simplicity, similarity between
nouns based on the the verbs they co-occur with in the
direct object relation but, of course, it would be possible
to consider other parts of speech and other relations.

Precision and recall both lie in the range [0,1]
and are both equal to one when each noun has
exactly the same features. It should also be
noted that R(A, B) = P(B, A).

We will now consider some different possibil-
ities for measuring the degree of association be-
tween a noun n and a verb v.

2.2 Combinatorial Model

In the combinatorial model, we simply consider
whether a verb has ever been seen to co-occur
with the noun. In other words, the degree of
association (D) between a noun n and a verb
v is 1 if they have co-occurred together and 0
otherwise.

1if P(vjn) >0
0 otherwise

D.(n,0) = {

In this case, it should be noted that the defi-
nitions of precision and recall can be simplified
as follows:

>rp De(4,0) _ 7P|
Yra) De(4,v)  |F(4)]
SrpDe(B,v) _ TP
Y r(B) De(B,v)  |F(B)

2.3 Probabilistic Model

In the probabilistic model, more probable (or
more frequent) co-occurrences are considered
more significant. The degree of association be-
tween a noun n and verb v is defined in the
probabilistic model as:

Pc(Aa B) =

R.(A, B)

Dy(n,v) = P(v]n)

The definitions for feature set membership,
TP, precision and recall all remain the same ex-
cept for the use of the new association function.

Using the probabilistic model, the precision
of A’s prediction of B is the probability that a
verb picked at random from those co-occurring
with A will also co-occur with B; and the recall
of A’s prediction of B is the probability that
a verb picked at random from those those co-
occurring with B will also co-occur with A.

Mutual Information Based Model

Mutual information (MI) allows us to capture
the idea that a co-occurrence of low probability



events is more informative than a co-occurrence
of high probability events.

In this model, as before, we retain the defi-
nitions for feature set membership, TP, preci-
sion and recall but again change the association
function. Here, the degree of association be-
tween a noun n and a verb v is their MI.

Dmi(na U) = I(nﬂ)) = log %

Accordingly, verb v will be considered to be a
feature of noun 7 if the probability of their co-
occurrence is greater than would be expected if
verbs and nouns occurred independently.

2.4 Combining Precision and Recall

Although we have defined a pair of numbers for
similarity, in applications it will still be neces-
sary to compute a single number in order to de-
termine neighbourhood or cluster membership.
There are two obvious ways to optimise a pair
of numbers such as precision and recall. The
first is to use an arithmetic mean, which opti-
mises the sum of the numbers, and the second is
to use a harmonic mean?, which optimises the
product of the numbers.

In an attempt to retain generality, we can al-
low both alternatives by computing an arith-
metic mean of the harmonic mean and the arith-
metic mean, noting that the relative importance
of each term in an arithmetic mean is controlled
by weights (which sum to 1):

2.P(4, B).R(A, B)

m(4, B) (P(A,B) + R(A,B))
me(A,B) = B.P(A,B)+ (1—p5).R(A,B)
sim(A4,B) = vy.mp(A4,B)+ (1 —7).ms(A,B)

where both 8 and + lie in the range [0,1]. The
resulting similarity sim(A,B) will also lie in the
range [0,1] where 0 represents complete lack of
similarity and 1 represents equivalence. This
formula can be used in combination with any
of the models for precision and recall outlined
above. Further, the generality allows us to in-
vestigate empirically the relative significance of
the different terms and thus whether one (or
more) might be omitted in future work.

2This is the standard IR measure known as the F-
score or F-measure

B | v | Special Case

- 1 | harmonic mean

- 0 | weighted arithmetic mean

1 0 | precision

0 0 | recall

0.5 | 0 | unweighted arithmetic mean

Table 1: Table of Special Values of 5 and

Precision and recall can be computed once for
every pair of words whereas similarity is some-
thing which will be computed for a specific task
and will depend on the values of $ and . Table
1 summarizes some special parameter settings.

3 Empirical Evaluation

In this section, we evaluate the performance
of the framework, using the combinatorial and
MI-based models of precision and recall, at
two application based tasks against Lin’s MI-
based Measure (simp;,) and the a-skew Diver-
gence Measure (simgsq). The formulae for these
measures are given in Figure 1. For the a-
skew divergence measure we set o = 0.99 since
this most closely approximates the Kullback-
Leibler divergence measure. The two evaluation
tasks used — pseudo-disambiguation and Word-
Net (Fellbaum, 1998) prediction — are fairly
standard for distributional similarity measures.
However, in the future we wish to extend our
evaluation to other tasks such as malapropism
correction (Budanitsky and Hirst, 2001) and
PP-attachment ambiguity resolution (Resnik,
1993) and also to the probabilistic model.
Since we use the same data and methodology
as in earlier work, some detail is omitted in the
subsequent discussion but full details and ratio-
nale can be found in Weeds and Weir (2003).

3.1 Pseudo-Disambiguation Task

Pseudo-disambiguation tasks (e.g. Lee, 1999)
have become a standard evaluation technique
and, in the current context, we may use a
word’s neighbours to decide which of two co-
occurrences is the most likely.

Although pseudo-disambiguation itself is an
artificial task, it has relevance in at least two
real application areas. First, by replacing occur-
rences of a particular word in a test suite with
a pair or set of words from which a technique
must choose, we recreate a simplified version
of the word sense disambiguation task; that is,



ET(nl)ﬂT(nz) (I(nla U) + I(nQa U))

simgin (1, n2)
simggd(ng,n1) =
simgy,(¢,7) = r(v)
2.|F(n1) N F(ng)]
|F'(n1)] + [F(n2)|

3 q(o) x log &2

simpjce(n1,n2) =

Simyn(n1,n2) =

2or(ny) L(n1,0) + Xy L(n2,v)
simkr, (¢q||a.r + (1 — «).q) where ¢(v) = P(v|n1),r(v) = P(v|ng)

where T'(n) = {v: I(n,v > 0}

where F(n) = {v: P(v|n) > 0}

21og P(c) )

MAT ) e syn(ni)Acz€syn(ns) (maxcesuper(cl)ﬂsupeT(CQ) log(P(cl)) n log(P(CQ))

Figure 1: Definitions for similarity measures used throughout this paper

choosing between a fixed number of homonyms
based on local context. The second is in lan-
guage modelling where we wish to estimate the
probability of co-occurrences of events but, due
to the sparse data problem, it is often the case
that a possible co-occurrence has not been seen
in the training data.

3.1.1 Methodology

As is common in this field (e.g. Lee, 1999), we
study similarity between nouns based on their
co-occurrences with verbs in the direct object
relation. We study similarity between high and
low frequency nouns since we want to investi-
gate any associations between word frequency
and quality of neighbours found by the mea-
sures but it is impractical to evaluate a large
number of similarity measures over all nouns.

2,852,300 lemmatised (noun-verb) direct-
object pairs were extracted from the BNC us-
ing a shallow parser (Briscoe and Carroll, 1995;
Carroll and Briscoe, 1996). From those nouns
also occurring in WordNet, we selected the 1000
most frequent® nouns and a set of 1000 low fre-
quency* nouns.

For each noun, 80% of the available data
was randomly selected as training data and the
other 20% set aside as test data. Precision and
recall were computed for each pair of nouns us-
ing the combinatorial and MI models. This data
is then available to the application task which
will first have to compute the similarity for each
pair of nouns based on current parameter set-

3This corresponds to a frequency range of [576,20561].
4We used frequency ranks 3001 to 4000 which corre-
spond to a frequency range of [70,120].

tings and select nearest neighbours accordingly.

We converted each noun-verb pair (n,v;) in
the set-aside test data into a noun-verb-verb
triple (n,v1,v2) where P(vy) is approximately
equal to P(v9) over all the training data and
(n,v92) has not been seen in the test or training
data. A high frequency noun test set and a low
frequency noun test set, each containing 10,000
test instances, were then constructed by select-
ing ten test instances for each noun in a two step
process of 1) whilst more than ten triples re-
mained, discarding duplicate triples and 2) ran-
domly selecting ten triples from those remaining
after step 1. Each set of test triples was split
into five disjoint subsets, containing two triples
for each noun, so that average performance and
standard error could be computed. Addition-
ally, three of the five subsets were used as a
development set to optimise parameters (k,
and 7y) and the remaining two used as a test set
to find error rates at these optimal settings.

The task is then for the nearest neighbours of
noun 7 to decide which of (n,v1) and (n, v2) was
the original co-occurrence. Each of n’s neigh-
bours, m, is given a vote which is equal to the
difference in frequencies of the co-occurrences
(m,v1) and (m,vy) and which it casts to the co-
occurrence in which it appears most frequently.
The votes for each co-occurrence are summed
over all of the k nearest neighbours of n and the
co-occurrence with the most votes wins. Perfor-
mance is measured as error rate.

# of ties

1
error = ?(# of incorrect choices + 5 )

where T is the number of test instances.



Measure Noun Frequency
high low
params | error | params | error
sim, v=0.25 | 0.193 | v=0.25 | 0.200
$=0.8 B=0.75
k=150 k=100
Simyn; v=0.25 | 0.186 | v=0.5 | 0.178
B=0.8 8=0.8
k=170 k=120
simy iy k=50 0.199 | k=80 0.186
SiMysq k=30 0.233 | k=60 0.196

Table 2: Optimal Parameter Settings and Error
Rates for the Pseudo-Disambiguation Task

Performance was measured on the develop-
ment set and the three parameters (3, v and k)
optimised. Of course, it is not possible to make
an exhaustive search for the optimal parameter
settings, especially when these lie on a contin-
uous scale. In our experiments we tried every
combination of parameter settings where 8 and
~ were multiples of 0.1 or 0.25 (from 0 to 1)
and k was a multiple of 10 (from 0 to 200) or
50 (from 200 to 1000). These step-sizes gave us
smooth results from which we could interpolate
intermediate results with reasonable confidence.

3.1.2 Results

Table 2 summarizes the optimal parameter set-
tings (found using the development set) and cor-
responding mean error rates (in the test set) for
the general framework using both the combina-
torial (sim.) and the MI-based (simy,;) models.
Results for Lin’s MI-based measure (simp;,) and
the a-skew divergence measure (simg,gq) are also
given and results are divided into those for high
frequency nouns and those for low frequency
nouns.

Our first observation, based on Table 2, is
that the general framework using the MI-based
model outperforms the other similarity mea-
sures considered for both high and low fre-
quency nouns.

Figure 2 shows how the mean® optimal error
rate varies with 8 when v = 0. Results are
plotted for high and low frequency nouns for
both the combinatorial model (sim.) and the
MI-based model (sim;;;). From these results,

5The mean was taken across the five subsets of the
test data. Error bars are not shown but standard errors
were of the order of 0.01
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it appears that the pseudo-disambiguation task
requires a measure which favours high precision
neighbours. By definition, high precision neigh-
bours of noun n are ones which have not oc-
curred with many verbs that do not also occur
with n. Such neighbours are unlikely to con-
tribute to many decisions as to which was the
original co-occurrence, which is why a higher
value of k is required. Our results show that
when such neighbours do contribute to the de-
cision, it is likely to be a positive contribution.

Our last observation is that the setting of v
only ever made a difference of up to 2% in the
results obtained, suggesting that the choice be-
tween an arithmetic mean and a harmonic mean
is less significant than the setting of 3, for this
task at least. If graphs such as the one in Fig-
ure 2 are drawn for other values of v, we obtain
the same pattern but over a smaller range of er-
ror rates (since the influence of 8 decreases as -y
increases). In general, the weighted arithmetic
mean (y = 0) outperforms the unweighted har-
monic mean (v = 1) by about 1%.

3.2 WordNet Prediction Task

We now turn our attention to the evaluation
task used by Lin (1998) — the ability of a sim-
ilarity measure to predict distance as defined
by a measure based on the hyponymy relation
in WordNet (version 1.6). This task evaluates
the usefulness of a distributional similarity mea-
sure as a predictor of semantic similarity and
therefore its potential for use in automatic the-
saurus generation. An underlying assumption



is that the hyponymy relation in WordNet is a
gold standard for semantic similarity which is,
of course, not true. However, we believe that
a distributional similarity measure which more
closely predicts WordNet, is more likely to be a
good predictor of semantic similarity.

3.2.1 Methodology

We will first explain the WordNet-based dis-
tance measure (Lin, 1997) and then explain how
we determine the similarity between neighbour
sets generated using different measures.

The similarity of two nouns in WordNet is de-
fined as the similarity of their maximally sim-
ilar senses. The commonality of two concepts
is defined as the maximally specific superclass
of those concepts. So, if syn(n) is the set of
senses of the noun n in WordNet, sup(c) is the
set of (possibly indirect) superclasses of concept
¢ in WordNet and P(c) is the probability that a
randomly selected noun refers to an instance of
¢, then the similarity between n1 and no can be
calculated using the formula for simy,, in Figure
1.

The probabilities P(c) are estimated by the
frequencies of concepts in SemCor (Miller et
al., 1994), a sense-tagged subset of the Brown
corpus, noting that the occurrence of a concept
refers to instances of all the superclasses of that
concept (i.e. P(root of tree®) = 1).

The k nearest neighbours’ of each noun, com-
puted using each distributional similarity mea-
sure at each parameter setting, are then com-
pared with the k nearest neighbours of the noun
according to the WordNet based measure. In or-
der to compute the similarity of two neighbour
sets, we transform each neighbour set so that
each neighbour is given a rank score of k—rank.
We do not use the similarity scores directly since
these require normalization if different similar-
ity measures (using different scales) are to be
compared. Having performed this transforma-
tion, the neighbour sets for the same word w
may be represented by two ordered sets of words
[w, ...,w1] and [wy, ...,w}]. The similarity be-
tween such sets is computed using the same cal-
culation as used by Lin (1998) except for sim-

5The root of the WordNet hyponymy relation is taken
to be an imagined superclass of all concepts in WordNet.

"As in previous work (Lin, 1998; Weeds and Weir,
2003), we use k = 200.

Measure Noun Frequency
high low
params | sim params | sim
sim, v=0.250.299 | y=0.5 | 0.260
B=0.5 =04
Simyy; v=0.25|0.317 | y=0.25 | 0.274
B=03 B8=03
simpin - 0.307 | - 0.210
SiMggq - 0.290 | - 0.270

Table 3: Optimal Mean Similarities and Cor-
responding Parameter Settings Between The-
saurus Entries for WordNet Prediction Task

plifications due to the use of ranks:

D=t 8 X ]
k .
21:1 i2

where ¢ and j are the rank scores of the words
within each neighbour set.

3.2.2 Results

Table 3 summarizes the optimal mean simi-
larities and parameter settings for the general
framework using both the combinatorial (sim,)
and the MI-based (sim,,;) models. Results for
Lin’s MI-based measure (simp;,) and the a-skew
divergence measure (simg,gq) are also given and
results are divided into those for high frequency
nouns and those for low frequency nouns. Stan-
dard errors in the optimal mean similarities are
not given but were of the order of 0.1.

Our first observation is that the general
framework using the MI-based model for pre-
cision and recall outperforms all of the other
distributional similarity measures.

We also observe that lower values of v pro-
duce better results, particularly for low fre-
quency nouns. For example, when v = 1, sim-
ilarity for low frequency nouns drops to 0.147
using the combinatorial model and 0.177 using
the MI-based model.

Third, from Figure 3, it appears that this
WordNet prediction task favours measures
which select high recall neighbours. Although
optimum similarity for the combinatorial model
occurs at $=0.5, similarity is always higher for
lower values of 8 than for higher values of 3.
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4 Characterisations of Existing
Measures

In this section, we present some preliminary
observations regarding existing similarity mea-
sures with reference to the general framework
offered in this paper.

4.1 The Dice Coefficient

As shown below, the harmonic mean of preci-
sion and recall (or the F-score) using the com-
binatorial model (Section 2.2) is the Dice Coef-
ficient (See Figure 1 for definition):

2.|TP|.|TP)|
[ TP||F(A)| + |TP|.|F(B)|
2.|TP|

= F@)| ) S B)

Accordingly, when v is set to 1 and the com-
binatorial model is used, our framework reduces
to the Dice Coefficient.

4.2 Lin’s MI-based Measure

There are parallels between Lin’s MI-Based
Measure and the Dice Coefficient in that
both measures compute a ratio between
what is shared by the descriptions of both
nouns and the sum of the descriptions of
each noun. The relationship between Lin’s
Measure and the F-Score (using the MI-
based model (Section 2.3)) is shown below:

9. ZTP 1(As0) ) ZTP 1(B.v)
D riay [A) D o gy T(B)
ZTP (4. ETP 1(Bw)

ZF(A) 1(A) EF(B) 1(Bw)

2.3 1(Aw). >, 1(Bw)

T B Y iy AT pp AR sy (B)
Now, if >y p I(A,v) = Y pp I(B,v), it follows:

F— 2'ZTP I(Aw)
ZF(A) I(A,U)-I—ZF(B) I(B,v)

— ZTP I(A,w)+I(B,v)
ZF(A) I(A,U)+ZF(B) I(B,v)

Thus, when the MI-based model is used, v =
1 and the condition Y 7p I(A,v) = > pp I(B,v)
holds, our framework reduces to Lin’s Measure.
Further, by considering the definition for MI, we
see that the necessary condition for equivalence
holds when nouns A and B are of exactly the
same frequency. As their frequencies diverge, so
will the similarity between the neighbours com-
puted using v = 1 and the neighbours computed
using Lin’s Measure.

In order to investigate how good an approx-
imation the F-Score is to Lin’s Measure when
the condition does not hold, we compared the
neighbours according to each measure using the
neighbour set comparison technique outlined in
Section 3.2.1. At v = 1, the similarity was 0.967
for high frequency nouns and 0.922 for low fre-
quency nouns. This is much higher than sim-
ilarities between other standard distributional
similarity measures. For example, the similar-
ity between Lin’s Measure and the a-skew di-
vergence measure is 0.591 for high frequency
nouns and 0.360 for low frequency nouns. Inter-
estingly, however, the optimal approximation of
Lin’s Measure was found using v = 0.75 and
B = 0.5. With these settings, the similarity was
0.987 for high frequency nouns and 0.977 for low
frequency nouns. This suggests that Lin’s Mea-
sure allows more compensation for lack of recall
by precision and vice versa than the F-Score.

= simy;, (A4, B)

4.3 The a-skew Divergence Measure

From examination of its definition and consider-
ation of its results on the two evaluation tasks,
we predicted that the a-skew divergence mea-
sure might be approximated by using a lower
value of 3 (i.e. high recall). This was supported
by comparisons of the neighbour sets found us-



ing the a-skew divergence measure and those
found using the MI-Based model. Optimal sim-
ilarity (0.760 and 0.725 respectively) was found
at v = 0.0 and S = 0.0 for high frequency nouns
and at v = 0.25 and 8 = 0.0 for low frequency
nouns. Further, similarity between the mea-
sures drops rapidly once S rises above 0.3.

5 Conclusions and Further Work

Using the MI-based model for precision and re-
call and with a parameter setting of v = 1.0,
the general framework for distributional similar-
ity proposed herein closely approximates Lin’s
(1998) Measure. However, we have shown that
using a much lower value of v so that the
combination of precision and recall is closer to
a weighted arithmetic mean than a harmonic
mean yields better results in the two applica-
tion tasks considered here. This is because the
relative importance of precision and recall can
be tuned to the task at hand.

Further, we have shown that pseudo-
disambiguation is a task which requires high
precision neighbours whereas WordNet predic-
tion is a task which requires high recall neigh-
bours. Accordingly, it is not clear how a sin-
gle (unparameterised) similarity measure could
give optimum results on both tasks.

In the future, we intend to extend the work
to the characterisation of other tasks and other
existing similarity measures. As well as their,
usually implicit, use of precision and recall, the
main difference between existing similarity mea-
sures will be the models in which precision and
recall are defined. We have explored two such
models here — a combinatorial model and a MI-
based model — and have shown that the MI-
based model achieves significantly improved re-
sults over the combinatorial model. We propose
to investigate other models such as the proba-
bilistic one given in Section 2.3.
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