
Identifying Semantic Roles Using Combinatory Categorial Grammar

Daniel Gildea and Julia Hockenmaier
University of Pennsylvania

{dgildea,juliahr }@cis.upenn.edu

Abstract

We present a system for automatically
identifying PropBank-style semantic roles
based on the output of a statistical parser
for Combinatory Categorial Grammar.
This system performs at least as well as
a system based on a traditional Treebank
parser, and outperforms it on core argu-
ment roles.

1 Introduction

Correctly identifying the semantic roles of sentence
constituents is a crucial part of interpreting text, and
in addition to forming an important part of the infor-
mation extraction problem, can serve as an interme-
diate step in machine translation or automatic sum-
marization. Even for a single predicate, semantic
arguments can have multiple syntactic realizations,
as shown by the following paraphrases:

(1) John will meet with Mary.

John will meet Mary.

John and Mary will meet.

(2) The door opened.

Mary opened the door.

Recently, attention has turned to creating cor-
pora annotated with argument structures. The
PropBank (Kingsbury and Palmer, 2002) and the
FrameNet (Baker et al., 1998) projects both doc-
ument the variation in syntactic realization of the
arguments of predicates in general English text.

Gildea and Palmer (2002) developed a system to
predict semantic roles (as defined in PropBank) from
sentences and their parse trees as determined by the
statistical parser of Collins (1999). In this paper, we
examine how the syntactic representations used by
different statistical parsers affect the performance
of such a system. We compare a parser based on
Combinatory Categorial Grammar (CCG) (Hocken-
maier and Steedman, 2002b) with the Collins parser.
As the CCG parser is trained and tested on a cor-
pus of CCG derivations that have been obtained by
automatic conversion from the Penn Treebank, we
are able to compare performance using both gold-
standard and automatic parses for both CCG and the
traditional Treebank representation. The Treebank-
parser returns skeletal phrase-structure trees with-
out the traces or functional tags in the original Penn
Treebank, whereas the CCG parser returns word-
word dependencies that correspond to the under-
lying predicate-argument structure, including long-
range dependencies arising through control, raising,
extraction and coordination.

2 Predicate-argument relations in
PropBank

The Proposition Bank (Kingsbury and Palmer,
2002) provides a human-annotated corpus of
semantic verb-argument relations. For each verb
appearing in the corpus, a set of semantic roles is
defined. Roles for each verb are simply numbered
Arg0, Arg1, Arg2, etc. As an example, the entry-
specific roles for the verbofferare given below:

Arg0 entity offering
Arg1 commodity
Arg2 price
Arg3 benefactive or entity offered to

These roles are then annotated for every instance
of the verb appearing in the corpus, including the
following examples:

(3) [ARG0 the company] tooffer [ARG1 a 15% stake]
to [ARG2 the public].

(4) [ARG0 Sotheby’s] ...offered[ARG2 the Dorrance
heirs] [ARG1 a money-back guarantee]

(5) [ARG1 an amendment]offeredby [ARG0 Rep.
Peter DeFazio]

(6) [ARG2 Subcontractors] will beoffered[ARG1 a
settlement]

A variety of additional roles are assumed
to apply across all verbs. These secondary
roles can be thought of as being adjuncts,
rather than arguments, although no claims are
made as to optionality or other traditional argu-
ment/adjunct tests. The secondary roles include:
Location in Tokyo, outside
Time last week, on Tuesday, never
Manner easily, dramatically
Direction south, into the wind
Cause due to pressure from Washington
Discourse however, also, on the other hand
Extent 15%, 289 points
Purpose to satisfy requirements
Negation not, n’t
Modal can, might, should, will
Adverbial (none of the above)

and are represented in PropBank as “ArgM” with an
additional function tag, for example ArgM-TMP for
temporal. We refer to PropBank’s numbered argu-
ments as “core” arguments. Core arguments repre-
sent 75% of the total labeled roles in the PropBank
data. Our system predicts all the roles, including
core arguments as well as the ArgM labels and their
function tags.

3 Predicate-argument relations in CCG

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000), is a grammatical theory which provides

a completely transparent interface between surface
syntax and underlying semantics, such that each
syntactic derivation corresponds directly to an in-
terpretable semantic representation which includes
long-range dependencies that arise through control,
raising, coordination and extraction.

In CCG, words are assigned atomic cate-
gories such asNP, or functor categories like
(S[dcl]\NP)/NP (transitive declarative verb) orS/S
(sentential modifier). Adjuncts are represented
as functor categories such asS/S which expect
and return the same type. We use indices to
number the arguments of functor categories, eg.
(S[dcl]\NP1)/NP2, or S/S1, and indicate the word-
word dependencies in the predicate-argument struc-
ture as tuples〈wh, ch, i, wa〉, wherech is the lexical
category of the head wordwh, andwa is the head
word of the constituent that fills theith argument of
ch.

Long-range dependencies can be projected
through certain types of lexical categories or
through rules such as coordination of functor
categories. For example, in the lexical category of a
relative pronoun,(NP\NPi)/(S[dcl]/NPi), the head
of the NP that is missing from the relative clause
is unified with (as indicated by the indicesi) the
head of the NP that is modified by the entire relative
clause.

Figure 1 shows the derivations of an ordinary
sentence, a relative clause and a right-node-raising
construction. In all three sentences, the predicate-
argument relations betweenLondonanddeniedand
plans and deniedare the same, which in CCG is
expressed by the fact thatLondonfills the first (ie.
subject) argument slot of the lexical category ofde-
nied, (S[dcl]\NP1)/NP2, andplansfills the second
(object) slot. The relations extracted from the CCG
derivation for the sentence“London denied plans on
Monday” are shown in Table 1.

The CCG parser returns the local and long-range
word-word dependencies that express the predicate-
argument structure corresponding to the derivation.
These relations are recovered with an accuracy of
around 83% (labeled recovery) or 91% (unlabeled
recovery) (Hockenmaier, 2003). By contrast, stan-
dard Treebank parsers such as (Collins, 1999) only
return phrase-structure trees, from which non-local
dependencies are difficult to recover.

S[dcl]

NP1

N

London

S[dcl]\NP1

S[dcl]\NP1

(S[dcl]\NP1)/NP2

denied

NP2

N

plans

(S\NP)\(S\NP)

((S\NP)\(S\NP))/NP

on

NP

N

Monday

NP

NP2

N

plans

NP\NP2

(NP\NPi)/(S[dcl]/NPi)

that

S[dcl]/NP2

S/(S\NP1)

NP

N

London

(S[dcl]\NP1)/NP2

denied

S[dcl]

S[dcl]/NP2

S[dcl]/NP2

S/(S\NP1)

NP

N

London

(S[dcl]\NP1)/NP2

denied

S[dcl]/NP[conj]

conj

but

S[dcl]/NP

S/(S\NP)

NP

N

Paris

(S[dcl]\NP)/NP

admitted

NP2

N

plans

Figure 1: CCG derivation trees for three clauses containing the same predicate-argument relations.

wh ch i wa

denied (S[dcl]\NP1)/NP2 1 London
denied (S[dcl]\NP1)/NP2 2 plans
on ((S\NP1)\(S\NP)2)/NP3 2 denied
on ((S\NP1)\(S\NP)2)/NP3 3 Monday

Table 1: CCG predicate-argument relations for the
sentence“London denied plans on Monday”

The CCG parser has been trained and tested on
CCGbank (Hockenmaier and Steedman, 2002a), a
treebank of CCG derivations obtained from the Penn
Treebank, from which we also obtain our training
data.

4 Mapping between PropBank and
CCGbank

Our aim is to use CCG derivations as input to a sys-
tem for automatically producing the argument labels
of PropBank. In order to do this, we wish to cor-
relate the CCG relations above with PropBank ar-
guments. PropBank argument labels are assigned

to nodes in the syntactic trees from the Penn Tree-
bank. While the CCGbank is derived from the Penn
Treebank, in many cases the constituent structures
do not correspond. That is, there may be no con-
stituent in the CCG derivation corresponding to the
same sequence of words as a particular constituent
in the Treebank tree. For this reason, we compute
the correspondence between the CCG derivation and
the PropBank labels at the level of head words. For
each role label for a verb’s argument in PropBank,
we first find the head word for its constituent accord-
ing to the the head rules of (Collins, 1999). We then
look for the label of the CCG relation between this
head word and the verb itself.

5 The Experiments

In previous work using the PropBank corpus,
Gildea and Palmer (2002) developed a system to
predict semantic roles from sentences and their
parse trees as determined by the statistical parser of
Collins (1999). We will briefly review their proba-
bility model before adapting the system to incorpo-

rate features from the CCG derivations.

5.1 The model of Gildea and Palmer (2002)

For the Treebank-based system, we use the proba-
bility model of Gildea and Palmer (2002). Proba-
bilities of a parse constituent belonging to a given
semantic role are calculated from the following fea-
tures:

The phrase type feature indicates the syntactic
type of the phrase expressing the semantic roles: ex-
amples include noun phrase (NP), verb phrase (VP),
and clause (S).

Theparse tree pathfeature is designed to capture
the syntactic relation of a constituent to the pred-
icate. It is defined as the path from the predicate
through the parse tree to the constituent in question,
represented as a string of parse tree nonterminals
linked by symbols indicating upward or downward
movement through the tree, as shown in Figure 2.
Although the path is composed as a string of sym-
bols, our systems will treat the string as an atomic
value. The path includes, as the first element of the
string, the part of speech of the predicate, and, as the
last element, the phrase type or syntactic category of
the sentence constituent marked as an argument.

S

NP VP

NP

He ate some pancakes

PRP

DT NN

VB

Figure 2: In this example, thepath from the predi-
cateateto the argument NPHecan be represented as
VB↑VP↑S↓NP, with↑ indicating upward movement
in the parse tree and↓ downward movement.

Theposition feature simply indicates whether the
constituent to be labeled occurs before or after the
predicate. This feature is highly correlated with
grammatical function, since subjects will generally
appear before a verb, and objects after. This feature
may overcome the shortcomings of reading gram-
matical function from the parse tree, as well as errors
in the parser output.

The voice feature distinguishes between active
and passive verbs, and is important in predicting se-
mantic roles because direct objects of active verbs
correspond to subjects of passive verbs. An instance
of a verb was considered passive if it is tagged as
a past participle (e.g.taken), unless it occurs as a
descendent verb phrase headed by any form ofhave
(e.g. has taken) without an intervening verb phrase
headed by any form ofbe(e.g.has been taken).

Thehead word is a lexical feature, and provides
information about the semantic type of the role filler.
Head words of nodes in the parse tree are determined
using the same deterministic set of head word rules
used by Collins (1999).

The system attempts to predict argument roles
in new data, looking for the highest probabil-
ity assignment of rolesri to all constituentsi
in the sentence, given the set of featuresFi =
{pti, pathi, posi, vi, hi} at each constituent in the
parse tree, and the predicatep:

argmaxr1..nP (r1..n|F1..n, p)

We break the probability estimation into two
parts, the first being the probabilityP (ri|Fi, p) of
a constituent’s role given our five features for the
consituent, and the predicatep. Due to the sparsity
of the data, it is not possible to estimate this proba-
bility from the counts in the training data. Instead,
probabilities are estimated from various subsets of
the features, and interpolated as a linear combina-
tion of the resulting distributions. The interpolation
is performed over the most specific distributions for
which data are available, which can be thought of as
choosing the topmost distributions available from a
backoff lattice, shown in Figure 3.

P(r | h)

P(r | h, pt, p)

P(r | pt, p)

P(r | p)

P(r | pt, path, p)

P(r | h, p)

P(r | pt, pos, v, p)

P(r | pt, pos, v)

Figure 3: Backoff lattice with more specific distri-
butions towards the top.

The probabilitiesP (ri|Fi, p) are combined with
the probabilitiesP ({r1..n}|p) for a set of roles ap-
pearing in a sentence given a predicate, using the
following formula:

P (r1..n|F1..n, p) ≈ P ({r1..n}|p)
∏

i

P (ri|Fi, p)
P (ri|p)

This approach, described in more detail in
Gildea and Jurafsky (2002), allows interaction be-
tween the role assignments for individual con-
stituents while making certain independence as-
sumptions necessary for efficient probability estima-
tion. In particular, we assume that sets of roles ap-
pear independent of their linear order, and that the
featuresF of a constituents are independent of other
constituents’ features given the constituent’s role.

5.2 The model for CCG derivations

In the CCG version, we replace the features above
with corresponding features based on both the sen-
tence’s CCG derivation tree (shown in Figure 1)
and the CCG predicate-argument relations extracted
from it (shown in Table 1).

Theparse tree pathfeature, designed to capture
grammatical relations between constituents, is re-
placed with a feature defined as follows: If there is
a dependency in the predicate-argument structure of
the CCG derivation between two wordsw andw′,
the path feature fromw to w′ is defined as the lexical
category of the functor, the argument sloti occupied
by the argument, plus an arrow (← or→) to indicate
whetherw or w′ is the categorial functor. For exam-
ple, in our sentence“London denied plans on Mon-
day”, the relation connecting the verbdeniedwith
plans is (S[dcl]\NP)/NP.2.←, with the left arrow
indicating the lexical category included in the rela-
tion is that of the verb, while the relation connecting
deniedwith on is ((S\NP)\(S\NP))/NP.2.→, with
the right arrow indicating the the lexical category in-
cluded in the relation is that of the modifier.

If the CCG derivation does not define a predicate-
argument relation between the two words, we use
the parse tree path feature described above, defined
over the CCG derivation tree. In our training data,
77% of PropBank arguments corresponded directly
to a relation in the CCG predicate-argument repre-
sentation, and the path feature was used for the re-

maining 23%. Most of these mismatches arise be-
cause the CCG parser and PropBank differ in their
definition of head words. For instance, the CCG
parser always assumes that the head of a PP is
the preposition, whereas PropBank roles can be as-
signed to the entire PP (7), or only to the NP argu-
ment of the preposition (8), in which case the head
word comes from the NP:

(7) ... will beoffered[PPARGM-LOC in the U.S].

(8) tooffer ...[PP to [NPARG2 the public]].

In embedded clauses, CCG assumes that the head is
the complementizer, whereas in PropBank, the head
comes from the embedded sentence itself. In com-
plex verb phrases (eg.“might not have gone”), the
CCG parser assumes that the first auxiliary (might)
is head, whereas PropBank assumes it is the main
verb (gone). Therefore, CCG assumes thatnotmod-
ifies might, whereas PropBank assumes it modi-
fies gone. Although the head rules of the parser
could in principle be changed to reflect more di-
rectly the dependencies in PropBank, we have not
attempted to do so yet. Further mismatches occur
because the predicate-argument structure returned
by the CCG parser only contains syntactic depen-
dencies, whereas the PropBank data also contain
some anaphoric dependencies, eg.:

(9) [ARG0 Realist ’s] negotiations toacquire
Ammann Laser Technik AG...

(10) When properlyapplied, [ARG0 the adhesive] is
designed to...

Such dependencies also do not correspond to a rela-
tion in the predicate-argument structure of the CCG
derivation, and cause the path feature to be used.

Thephrase typefeature is replaced with the lex-
ical category of the maximal projection of the Prop-
Bank argument’s head word in the CCG derivation
tree. For example, the category ofplans is N, and
the category ofdeniedis (S[dcl]\NP)/NP.

The voice feature can be read off the CCG cate-
gories, since the CCG categories of past participles
carry different features in active and passive voice
(eg.soldcan be(S[pt]\NP)/NP or S[pss]\NP).

Thehead wordof a constituent is indicated in the
derivations returned by the CCG parser.

SARG0
NP

NNP

London

VP

VBD

denied

ARG1
NP

NNS

plans

ARGM-TMP
PP

IN

on

NP

NNP

Monday

S[dcl]ARG0
NP

N

London

S[dcl]\NP

S[dcl]\NP

(S[dcl]\NP)/NP

denied

ARG1
NP

N

plans

ARGM-TMP
(S\NP)\(S\NP)

((S\NP)\(S\NP))/NP

on

NP

N

Monday

Figure 4: A sample sentence as produced by the Treebank parser (left) and by the CCG parser (right). Nodes
are annotated with PropBank rolesARG0, ARG1andARGM-TMP.

Treebank-based CCG-based
Features extracted from ArgsPrecision Recall F-score Precision Recall F-score
Automatic parses core 75.9 69.6 72.6 76.1 73.5 74.8

all 72.6 61.2 66.4 71.0 63.1 66.8
Gold-standard parses core 85.5 81.7 83.5 82.4 78.6 80.4

all 78.8 69.9 74.1 76.3 67.8 71.8
Gold-standard w/o traces core 77.6 75.2 76.3

all 74.4 66.5 70.2

Table 2: Accuracy of semantic role prediction

5.3 Data

We use data from the November 2002 release of
PropBank. The dataset contains annotations for
72,109 predicate-argument structures with 190,815
individual arguments (of which 75% are core, or
numbered, arguments) and has includes examples
from 2462 lexical predicates (types). Annotations
from Sections 2 through 21 of the Treebank were
used for training; Section 23 was the test set. Both
parsers were trained on Sections 2 through 21.

6 Results

Because of the mismatch between the constituent
structures of CCG and the Treebank, we score both
systems according to how well they identify the head
words of PropBank’s arguments. Table 2 gives the
performance of the system on both PropBank’s core,
or numbered, arguments, and on all PropBank roles
including the adjunct-like ArgM roles. In order to
analyze the impact of errors in the syntactic parses,
we present results using features extracted from both
automatic parser output and the gold standard parses
in the Penn Treebank (without functional tags) and
in CCGbank. Using the gold standard parses pro-

vides an upper bound on the performance of the sys-
tem based on automatic parses. Since the Collins
parser does not provide trace information, its up-
per bound is given by the system tested on the
gold-standard Treebank representation with traces
removed. In Table 2, “core” indicates results on
PropBank’s numbered arguments (ARG0...ARG5)
only, and “all” includes numbered arguments as well
as the ArgM roles. Most of the numbered argu-
ments (in particular ARG0 and ARG1) correspond
to arguments that the CCG category of the verb di-
rectly subcategorizes for. The CCG-based system
outperforms the system based on the Collins parser
on these core arguments, and has comparable perfor-
mance when all PropBank labels are considered. We
believe that the superior performance of the CCG
system on this core arguments is due to its ability to
recover long-distance dependencies, whereas we at-
tribute its lower performance on non-core arguments
mainly to the mismatches between PropBank and
CCGbank.

The importance of long-range dependencies for
our task is indicated by the fact that the performance
on the Penn Treebank gold standard without traces

Treebank-based CCG-based
Scoring Precision Recall F-score Precision Recall F-score

Automatic parses Head word 72.6 61.2 66.4 71.0 63.1 66.8
Boundary 68.6 57.8 62.7 55.7 49.5 52.4

Gold-standard parses Head word 77.6 75.2 76.3 76.3 67.8 71.8
(Treebank: w/o traces) Boundary 74.4 66.5 70.2 67.5 60.0 63.5

Table 3: Comparison of scoring regimes, using automatic parser output and gold standard parses. The first
row in this table corresponds to the second row in Table 2.

is significantly lower than that on the Penn Treebank
with trace information. Long-range dependencies
are especially important for core arguments, shown
by the fact that removing trace information from the
Treebank parses results in a bigger drop for core
arguments (83.5 to 76.3 F-score) than for all roles
(74.1 to 70.2). The ability of the CCG parser to re-
cover these long-range dependencies accounts for its
higher performance, and in particular its higher re-
call, on core arguments.

The CCG gold standard performance is below
that of the Penn Treebank gold standard with traces.
We believe this performance gap to be caused by
the mismatches between the CCG analyses and the
PropBank annotations described in Section 5.2. For
the reasons described, the head words of the con-
stituents that have PropBank roles are not necessar-
ily the head words that stand in a predicate-argument
relation in CCGbank. If two words do not stand in a
predicate-argument relation, the CCG system takes
recourse to the path feature. This feature is much
sparser in CCG: since CCG categories encode sub-
categorization information, the number of categories
in CCGbank is much larger than that of Penn Tree-
bank labels. Analysis of our system’s output shows
that the system trained on the Penn Treebank gold
standard obtains 55.5% recall on those relations that
require the CCG path feature, whereas the system
using CCGbank only achieves 36.9% recall on these.
Also, in CCG, the complement-adjunct distinction
is represented in the categories for the complement
(eg. PP) or adjunct (eg. (S\NP)\(S\NP) and in
the categories for the head (eg.(S[dcl]\NP)/PP
or S[dcl]\NP). In generating the CCGbank, various
heuristics were used to make this distinction. In par-
ticular, for PPs, it depends on the “closely-related”
(CLR) function tag, which is known to be unreli-

able. The decisions made in deriving the CCGbank
often do not match the hand-annotated complement-
adjunct distinctions in PropBank, and this inconsis-
tency is likely to make our CCGbank-based features
less predictive. A possible solution is to regenerate
the CCGbank using the Propbank annotations.

The impact of our head-word based scoring is an-
alyzed in Table 3, which compares results when only
the head word must be correctly identified (as in Ta-
ble 2) and to results when both the beginning and
end of the argument must be correctly identified in
the sentence (as in Gildea and Palmer (2002)). Even
if the head word is given the correct label, the bound-
aries of the entire argument may be different from
those given in the PropBank annotation. Since con-
stituents in CCGbank do not always match those in
PropBank, even the CCG gold standard parses ob-
tain comparatively low scores according to this met-
ric. This is exacerbated when automatic parses are
considered.

7 Conclusion

Our CCG-based system for automatically labeling
verb arguments with PropBank-style semantic roles
outperforms a system using a traditional Treebank-
based parser for core arguments, which comprise
75% of the role labels, but scores lower on adjunct-
like roles such as temporals and locatives. The CCG
parser returns predicate-argument structures that in-
clude long-range dependencies; therefore, it seems
inherently better suited for this task. However, the
performance of our CCG system is lowered by the
fact that the syntactic analyses in its training corpus
differ from those that underlie PropBank in impor-
tant ways (in particular in the notion of heads and the
complement-adjunct distinction). We would expect
a higher performance for the CCG-based system if

the analyses in CCGbank resembled more closely
those in PropBank.

Our results also indicate the importance of recov-
ering long-range dependencies, either through the
trace information in the Penn Treebank, or directly,
as in the predicate-argument structures returned by
the CCG parser. We speculate that much of the
performance improvement we show could be ob-
tained with traditional (ie. non-CCG-based) parsers
if they were designed to recover more of the infor-
mation present in the Penn Treebank, in particular
the trace co-indexation. An interesting experiment
would be the application of our role-labeling sys-
tem to the output of the trace recovery system of
Johnson (2002). Our results also have implications
for parser evaluation, as the most frequently used
constituent-based precision and recall measures do
not evaluate how well long-range dependencies can
be recovered from the output of a parser. Measures
based on dependencies, such as those of Lin (1995)
and Carroll et al. (1998), are likely to be more rele-
vant to real-world applications of parsing.

Acknowledgments This work was supported by the In-

stitute for Research in Cognitive Science at the University of

Pennsylvania, the Propbank project (DoD Grant MDA904-00C-

2136), an EPSRC studentship and grant GR/M96889, and NSF

ITR grant 0205 456. We thank Mark Steedman, Martha Palmer

and Alexandra Kinyon for their comments on this work.

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. InProceed-
ings of COLING/ACL, pages 86–90, Montreal.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998.
Parser evaluation: a survey and a new proposal. In
Proceedings of the 1st International Conference on
Language Resources and Evaluation, pages 447–454,
Granada, Spain.

Michael John Collins. 1999.Head-driven Statistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles.Computational Linguistics,
28(3):245–288.

Daniel Gildea and Martha Palmer. 2002. The necessity
of syntactic parsing for predicate argument recogni-
tion. In Proceedings of the 40th Annual Conference of

the Association for Computational Linguistics (ACL-
02), Philadelphia, PA.

Julia Hockenmaier and Mark Steedman. 2002a. Acquir-
ing Compact Lexicalized Grammars from a Cleaner
Treebank. InProceedings of the 3rd International
Conference on Language Resources and Evaluation
(LREC-2002), pages 1974–1981, Las Palmas.

Julia Hockenmaier and Mark Steedman. 2002b. Gener-
ative models for statistical parsing with Combinatory
Categorial Grammar. InProceedings of the 40th An-
nual Conference of the Association for Computational
Linguistics (ACL-02), Philadelphia, PA.

Julia Hockenmaier. 2003.Data and models for statis-
tical parsing with Combinatory Categorial Grammar.
Ph.D. thesis, School of Informatics, University of Ed-
inburgh.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. InProceedings of the 40th Annual Confer-
ence of the Association for Computational Linguistics
(ACL-02), Philadelphia, PA.

Paul Kingsbury and Martha Palmer. 2002. From Tree-
bank to PropBank. InProceedings of the 3rd Interna-
tional Conference on Language Resources and Evalu-
ation (LREC-2002), Las Palmas.

Dekang Lin. 1995. A dependency-based method for
evaluating broad-coverage parsers. InProceedings of
the 19th International Joint Conference on Artificial
Intelligence (IJCAI-95), pages 1420–1425, Montreal.

Mark Steedman. 2000.The Syntactic Process. The MIT
Press, Cambridge Mass.

