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Abstract

We define, implement and evaluate a novel model for
statistical machine translation, which is based on shal-
low syntactic analysis (part-of-speech tagging and phrase
chunking) in both the source and target languages. It
is able to model long-distance constituent motion and
other syntactic phenomena without requiring a full parse
in either language. We also examine aspects of lexical
transfer, suggesting and exploring a concept of transla-
tion coercion across parts of speech, as well as a transfer
model based on lemma-to-lemma translation probabili-
ties, which holds promise for improving machine trans-
lation of low-density languages. Experiments are per-
formed in both Arabic-to-English and French-to-English
translation demonstrating the efficacy of the proposed
techniques. Performance is automatically evaluated via
the Bleu score metric.

1 Introduction

In this work we define, implement and evaluate a novel
model for statistical machine translation (SMT).

Our goal was to produce a SMT system for translat-
ing foreign languages into English which utilizes some
syntactic information in both the foreign language and
English without, however, requiring a full parse in either
language. Some advantages of not relying on full parses
include that (1) there is a lack of availability of parsers
for many languages of interest; (2) parsing time com-
plexity represents a potential bottleneck for both model
training and testing.

Intuitively, the explicit modeling of syntactic phenom-
ena should be of benefit in the machine translation task;
the ability to handle long-distance motion in an intelli-
gently constrained way is a salient example of such a
benefit. Allowing unconstrained translation reorderings
at the word level generates a very large set of permu-
tations that pose a difficult search problem at decoding
time. We propose a model that makes use of shallow
parses (text chunking) to support long-distance motion
of phrases without requiring deeper analysis of syntax.
The resources required to train this system on a new lan-
guage are minimal, and we gain the ability to model
long-distance movement and some interesting proper-
ties of lexical translation across parts of speech. One of

the source languages we examine in this paper, Arabic,
has a canonical sentence-level order of \erb-Subject-
Object, which means that translation into English (with
a standard ordering of Subject-Verb-Object) commonly
requires motion of entire phrasal constituents, which is
not true of French-to-English translation, to cite one lan-
guage pair whose characteristics have wielded great in-
fluence in the history of work on statistical machine
translation. A key motivation for and objective of this
work was to build a translation model and feature space
to handle the above-described phenomenon effectively.

2 Prior Work

Statistical machine translation, as pioneered by IBM
(e.g. Brown et al., 1993), is grounded in the noisy chan-
nel model. And similar to the related channel problems
of speech and handwriting recognition, the original SMT
language pair French-English exhibits a relatively close
linear correlation in source and target sequence. Much
common local motion that is observed for French, such
as adjective-noun swapping, is adequately modeled by
the relative-position-based distortion models of the clas-
sic IBM approach. Unfortunately, these distortion mod-
els are less effective for languages such as Japanese or
Arabic, which have substantially different top-level sen-
tential word orders from English, and hence longer dis-
tance constituent motion.

Wu (1997) and Jones and Havrilla (1998) have sought
to more closely tie the allowed motion of constituents
between languages to those syntactic transductions sup-
ported by the independent rotation of parse tree con-
stituents. Yamada and Knight (2000, 2001) and Alshawi
et al. (2000) have effectively extended such syntactic
transduction models to fully functional SMT systems,
based on channel model tree transducers and finite state
head transducers respectively. While these models are
well suited for the effective handling of highly divergent
sentential word orders, the above frameworks have a lim-
itation shared with probabilistic context free grammars
that the preferred ordering of subtrees is insufficiently
constrained by their embedding context, which is espe-
cially problematic for very deep syntactic parses.

In contrast, Och et al. (1999) have avoided the con-
straints of tree-based syntactic models and allow the rel-



atively flat motion of empirically derived phrasal chunks,
which need not adhere to traditional constituent bound-
aries.

Our current paper takes a middle path, by grounding
motion in syntactic transduction, but in a much flatter 2-
level model of syntactic analysis, based on flat embed-
ded noun-phrases in a flat sentential constituent-based
chunk sequence that can be driven by syntactic brack-
eters and POS tag models rather than a full parser, facili-
tating its transfer to lower density languages. The flatter
2-level structures also better support transductions condi-
tioned to full sentential context than do deeply embedded
tree models, while retaining the empirically observed ad-
vantages of translation ordering independence of noun-
phrases.

Another improvement over Och et al. and Yamada and
Knight is the use of the finite state machine (FSM) mod-
elling framework (e.g. Bangalore and Riccardi, 2000),
which offers the considerable advantage of a flexible
framework for decoding, as well as a representation
which is suitable for the fixed two-level phrasal mod-
elling employed here.

Finally, the original cross-part-of-speech lexical coer-
cion models presented in Section 4.3.3 have related work
in the primarily-syntactic coercion models utilized by
Dorr and Habash (2002) and Habash and Door (2003),
although their induction and modelling are quite differ-
ent from the approach here.

3 Resources

As in other SMT approaches, the primary training re-
source is a sentence-aligned parallel bilingual corpus.
We further require that each side of the corpus be part-
of-speech (POS) tagged and phrase chunked; our lab
has previously developed techniques for rapid training
of such tools (Cucerzan and Yarowsky, 2002). Our trans-
lation experiments were carried out on two languages:
Arabic and French. The Arabic training corpus was a
subset of the United Nations (UN) parallel corpus which
is being made available by the Linguistic Data Consor-
tium. For French-English training, we used a portion of
the Canadian Hansards. Both corpora utilized sentence-
level alignments publicly distributed by the Linguistic
Data Consortium.

POS tagging and phrase chunking in English were
done using the trained systems provided with the fnTBL
Toolkit (Ngai and Florian, 2001); both were trained
from the annotated Penn Treebank corpus (Marcus et al.,
1993). French POS tagging was done using the trained
French lexical tagger also provided with the fnTBL soft-
ware. For Arabic, we used a colleague’s POS tagger and
tokenizer (clitic separation was also performed prior to
POS tagging), which was rapidly developed in our lab-
oratory. Simple regular-expression-based phrase chun-
kers were developed by the authors for both Arabic and
French, requiring less than a person-day each using ex-
isting multilingual learning tools.

A further input to our system is a set of word alignment
links on the parallel corpus. These are used to compute
word translation probabilities and phrasal alignments.
The word alignments can in principle come from any
source: a dictionary, a specialized alignment program,
or another SMT system. We used alignments generated
by Giza++ (Och and Ney, 2000) by running it in both di-
rections (e.g., Arabic — English and English — Arabic)
on our parallel corpora. The union of these bidirectional
alignments was used to compute cross-language phrase
correspondences by simple majority voting, and for pur-
poses of estimating word translation probabilities, each
link in this union was treated as an independent instance
of word translation.

4 Translation M odél

Now we turn to a detailed description of the proposed
translation model. The exposition will give a formal
specification and also will follow a running example
throughout, using one of the actual Arabic test set sen-
tences. This example, its gloss, system translation and
reference human translation are shown in Table 1.

The translation model (TM) we describe is trained di-
rectly from counts in the data, and is a direct model, not
a noisy channel model. It consists of three nested com-
ponents: (1) a sentence-level model of phrase correspon-
dence and reordering, (2) a model of intra-phrase trans-
lation, and (3) models of lexical transfer, or word transla-
tion. We make a key assumption in our construction that
translation at each of these three levels is independent of
the others.

4.1 Sentence Trandation

As mentioned, both the foreign language and English
corpora are input with “hard” phrase bracketings and la-
beled with “hard” phrase types (e.g., NP, VP!, PPNP?,
etc.) as given by the output of the phrase chunker. These
are denoted in the top-level model presentation in Table
2(1). Given word alignment links, as described in Sec-
tion 2, we compute phrasal alignments on training data.
We contrain these to have cardinality

(foreign) N — 1(English). Next, we collect counts over
aligned phrase sequences and use the relative frequen-
cies to estimate the probability distribution in Table 2(2).
Particularly for smaller training corpora, unseen foreign-
language phrase sequences are a problem, so we imple-
mented a simple backoff method which assigns proba-
bility to translations of unseen foreign-language phrase
sequences. Table 2(3) encapsulates the remainder of the
translation model, which is described below.

As an example, Table 3 shows the most probable
aligned English phrase sequence generations given an
Arabic simple sentence having the canonical VSO or-
dering. Also, note that all probabilities in the following

1VPin our parlance is perhaps more properly called averb chunk:
it consists of averb, its auxiliaries, and contiguous adverbs.
2PPNP consists of a NP with its prepositional head attached.



Arabic Example Sentence From Test Set

(ARABIC)
(PHR.-BRACKETED AR.)
(AN ENG. GLOSS)
(ENG. MT OUTPUT)
(REFERENCE TRANS.)

twSy Al- Ijnp Al- sAdsp Al- jmEyp Al- EAmp b- AEtmAd m$&wE Al- mgrr Al- tAly :
[twSy] [Al- ljnp Al- sAdsp] [Al- jmEyp Al- EAmp] [b- AEtmAd m&wE Al- marr Al- tAly] [:]
[recommends] [the committee the sixth] [the assembly the general] [to adoption draft the decision the following] [:]
[the sixth committee] [recommends] [the general assembly] [in the adoption of the following draft resolution] [:]
the sixth committee recommends to the general assembly the adoption of the following draft decision :

Table 1: An Arabic translation from the test set. We revisit portions of this example throughout the text. All Arabic
strings in this paper are rendered in the reversible Buckwalter transliteration. In addition, all words or symbols referring

to Arabic and French in this paper are italicized.

figures and tables are from the actual Arabic and French
trained systems.

Arabic Phrase Aligned English Prob.
Sequence Phrase Sequence

VP1 NP2 NP3 | NP2 VP; NP3 0.23
VP1 NP5 NP3 VP; NPy PP3 0.10
VP; NP2 NP3 | NP3 VP o 0.06

Table 3: Top learned sentence-level reorderings for Ara-
bic, for canonical Arabic simple sentence structure VP
(verb) NP (subject) NP (object). Subscripts in English
phrase sequence are alignments to positions in the corre-
sponding Arabic phrase sequence.

4.2 Phrase Trandation

Given an Arabic test sentence, a distribution of aligned
English phrase sequences is proposed by the sentence-
level model described in the previous section and in Ta-
ble 2. Each proposed English phrase in each of the phrase
sequence possibilities, therefore, comes to the middle
level of the translation model with access to the identity
of the French phrases aligned to it. Phrase translation is
implemented as shown in Table 4. The phrase transla-
tion model is structured with several levels of backoff: if
no observations exist from training data for a particular
level, the model backs off to the next-more-general level.
In all cases, generation of an English phrase is condi-
tioned on the foreign phrase as well as the type

(NP, VP, etc.) of the English phrase.

Table 4 (1) describes the initial phrase translation
model. It comes into play if the precise sequence of
foreign words has been observed aligning to an En-
glish phrase of the appropriate type. In the example,
we are trying to generate an NP given the Arabic word
string “Al- ljnp Al- sAdsp” (literally: “the committee the
sixth”). If this has been observed in data, then that rela-
tive frequency distribution serves as the translation prob-
ability distribution. Table 11 contains examples of some
of these literal phrase translations from the French data.

The next stage of backoff from the above, literal level
is a model that generates aligned English POS tag se-
quences given foreign POS tag sequences: details and
an example can be found in Table 4(2). The sequence
alignments determine the position in English phrase and
the part-of-speech into which we translate the foreign

word. Again, translation is also conditioned on the En-
glish phrase type. Table 5 and Table 6 show the most
probable aligned English sequence generations for two
of the phrases in the example sentence.

If there were no counts for (foreign-POS-sequence,
english-phrase-type) then we back off to counts
collected over (foreign-coarse-POS-sequence, english-
phrase-type), where a coarse POS is, for example, N in-
stead of NOUN-SG. This is shown in Table 4(3).

In case further backoff is needed, as shown in Table
4(4), we begin stripping POS-tags off the “less signifi-
cant” (non-head) end of the foreign POS-sequence until
we are left with a phrase sequence that has been seen in
training, and from this a corresponding English phrase
distribution is observable. We define the “less signifi-
cant” end of a phrase to be the end if it is head-initial,
or the beginning if it is head-final, and at this point ig-
nore issues such as nested structure in French and Arabic
NP’s.

Aligned English POS-tag Sequence Translation Probabilities
(conditioned on Arabic POS-tag sequence from NP in example)

P(DTgp JJs NN2 DET; NOUN-SG2 DET3 ADJ4 , NP) =0.22

P (34 NNy DET; NOUN-SG2 DET3 ADJ4 , NP) =0.20
P(DTy NNy DET; NOUN-SG, DET3 ADJ4 , NP) =0.13
P(DTy VBN4 NNS, DET; NOUN-SG, DET3 ADJ4 , NP) =0.13
P(DT1 NN2 DET; NOUN-SG, DET3 ADJ4 , NP) =0.04

P(DTs Js NNy
P(DT; VBN4 NNS;
P(DTg NNy NNy

DET; NOUN-SG2 DET3 ADJ4 , NP) =0.03
DET; NOUN-SG2 DET3 ADJ4 , NP) =0.03
DET; NOUN-SG2 DET3 ADJ,4 , NP) =0.02

P( 334 NNS, DET; NOUN-SG, DET3 ADJ4 , NP) =0.02
P( DTy 334 NN2 DET; NOUN-SG, DET3 ADJ4 , NP) =0.02
P( NNz | DET1 NOUN-SG; DET3 ADJ4 , NP) =0.02
P( NN4 NN2 | DET1 NOUN-SG, DET3 ADJ,4 , NP) =0.02

Table 5: From the running Arabic example, top English
NP generations given an Arabic phrase DET NOUN-SG
DET ADJ. Note: () denotes a null alignment (generation
from null). Generation from a null alignment is allowed
for specified parts of speech, such as determiners and
prepositions.

4.3 Lexical Transfer
4.3.1 TheBasic Mod€

In the basic model of word generation, phrases may be
translated directly as single atomic entities (as in Table
4(1)), or via phrasal decomposition to individual words
translated independently, conditioned only on the source
word and target POS. Word translation in the latter case




Top-level Definition of Translation Model

Example Instantiation of Model Variables

Model Description

P( the sixth committee recommends the general assembly .. | P( english_words | foreign_words ) =

twSy Al- ljnp Al- sAdsp Al- jmEyp Al- EAmp .. ) =

P([wSy]v p, [Al-ljnp Al- sAdsp] i p, [Al-jmEyp Al- EAMpl v p, .. | | (1) | P(foreign_bracketing , foreign_phrase_sequence | foreign_words )

twSy Al- [jnp Al- sAdsp Al- jmEyp Al- EAmp .. )

*P( NP2 VP; NP3 PPNP4 PUNC:s |
VP1 NP2 NP3 PPNP4 PUNCs )

2 P( english_phrase_sequence , phrase_alignment_matrix |
foreign_phrase_sequence )

* P ( [the sixth committee] iy p, [recommends]y p, (3) | P(english-words, english_bracketing , english_phrase_sequence |

[the general assembly] x p, .. |

foreign_words, foreign_bracketing , foreign_phrase_sequence,

[wSy]v p, [Al-ljnp Al- sAdsp] v p, [Al-jmEyp Al- EAMp] N P, .. » english_phrase_sequence , phrase_alignment_matrix )

NP> VP, NP3 PPNP; PUNC; )

Table 2: Statement of the translation model at top level.

Phrase Trandation Model with Backoff Pathways

Example Instantiations

Moddl Statement

P ( thesixth committee | Al- ljnp Al- sAdsp, NP ) =
P ( thesixth committee | Al- [jnp Al- sAdsp , NP )
1
P(DTq 34 NNo | DET{ NOUN-SGo DET3 ADJ4 , NP)
* P (the| Al-,DT)
s P (_committee | ljnp, NN )
« P (sixth | sAdsp, J0)

1
P(DTy 14 NNg | Dy Ng D3 Ag ,NP)
* P (the| Al-,DT)
* PP ( committee | ljnp, NN )
* P (sixth | sAdsp, )

@

@]

()]

P(WE1 WEgy -WE, \WF1 Wry - WE, ,phrtype; )

1 (backoff ifC‘(WF1 WF2 ~Wp ,phrtypeg ) = 0)
P(Tg; Tes WTes VB | Ty Tes WTes , phr_type
( f”"eEl fmz,eE2 f”;el\f\/n 1W‘ f'wleF]T flner fmz,epyn E)
*P(Wpy \Weg 4y Tfinep, )
*P(WE(2 ‘WF‘Ei(2> Tfineg, ) )
x..x P(W w Ry
En FE,;('IL) f'wleEn

1 (backoff ifC‘(Tf,meF1 TfineF2 "Tfi"@Fm ,phrtyper; ) = 0)
P(TfineEl TfineE2 - Tfi"eEn =2 \Tcoaw‘sepl TcoaTsepz - Tcoaw‘sepyn . phrtyper; )
«P(W Wp Tes
PEWEl :WF:i(l) Tf'LneEl j
* JToes
Eq FEi(2) f'wleEz
*..% P(Wg ‘WF:'L(") 'Tfi"fEn )

1
P(?|Dy Ng D3, NP)
worLx2

1
P(?|Dy Ny ,NP)

xox %0

(O]

(O]

1 (backoff if C'( Tcoaw‘sepl TcoaTsepz - Tcoaw‘sepyn \phriypep; ) = 0)

P(TfineEl TfineE2 - TfineEn =% \Tcoaw‘sepl TcoaTsepz - Tcoaw‘sepm71 . phrtypep; )

A

L kol if C(Teoarse o, Teoarsep, ~Teoarsep . Pypeg) = 0)

il Tcoaw‘seFl TcoaTsepz - Tcoaw‘sepm72 ,phrtypeg; )

P(TfmeE1 TfmeE2 - TfmeEn .
vox *%

L kol if C(Teoarse o, Teoarsep, ~Teoarsep _, Phypeg) = 0)

Table 4: The phrase translation model, with backoff. Examples on the left side are from one of the Arabic test
sentences. (1) is the direct, lexical translation level. (2) - (4) constitute the backoff path to handle detailed phenomena
unseen in the training set. (2) is a model of fine POS-tag reordering and lexical generation; (3) is similar, but conditions
generation on coarse POS-tag sequences in the foreign language. (4) is a model for progressively stripping off POS-
tags from the “less significant” end of a foreign sequence. The idea is to do this until we reach a subsequence that has
been seen in training data, and which we therefore have a distribution of valid generatons for. The term Z; in (2) - (4)
is a position alignment matrix. At all times, we generate not just an English POS-tag sequence, but rather an aligned
sequence. Similarly, in the lexical transfer probabilities shown in this table, there is a function Z;() which takes an
English sequence position index and returns the (unique) foreign word position to which it is aligned®.

Aligned English POS-tag Sequence Translation Probabilities know the English POS of the word we are trying to gen-

P(MDy VB, | VERB-IMP; ,VP) = .06

(conditioned on Arabic POS-tag sequence from VP in example)
P(VBZ; | VERB-IMP; ,VP) =.28
P(VBP; | VERB-IMP, ,VP) =.17
P(VBD: | VERB-IMP; , VP) =.09

erate in addition to the foreign word that is generating it.
Consequently, we condition translation on English POS
as well as the foreign word. Table 7 describes the backoff
path for basic lexical transfer and presents a motivating

example in the French word droit. Translation probabili-

Table 6: From the Arabic example, top English VP gen-  ties for one of the words in the example Arabic sentence
erations given an Arabic phrase VERB-IMP. can be found in Table 8.

4.3.2 GenerationviaalLemma Model

is done in the context that the model has already pro-  To counter sparse data problems in estimating word
posed a sequence of POS tags for the phrase. Thus we translation probabilities, we also implemented a lemma-




Word Generation

Examples Model with Backoff Pathways
P(Wg| droit , NNS) PWg|Wr,Tfineg)
rights  0.4389 p(rights | droit , NNS)
benefits  0.0690
people  0.0533
lavs  0.0188
1 (backoff it C(Wr , Tiney) = 0)
P(Wg| droit , N) PWg|Wr, Teoarse )
right  0.4970
lav  0.1318
rights  0.0424 p(rights | droit, N)
property  0.0115
1 (backoff it C(Wr, Teoarseg) = 0)
P(Wg| droit) PWg|WFr)
right  0.2919
entitled 0.0663
law 0.0652
the  0.0249
to  0.0240

rights  0.0210 p( rights | droit )
| (backoff if C(Wg) = 0)

p( UNKNOWN_WORD |W) = 1

P( Wg |WF1TCOGTSEF1Tfi7L€E) =
P( WE | |ernmaE ,Tcoa'rseF 1Tfi7LeE)*
P( ImmaE | |ernrnaF 1Tcoa,7‘sep 1TfineE )*
P( IenYTTaF |WF ,Tcoarsep nyineE )
|} approximated by
P(Wg |lemmag , Tfiney)*
P( |en1maE | |ernrnaF choa'r‘seE )*

P( Ie'TIT\aF |WF choar'seF )

Table 7: Description of the conditioning for different lev-
els of backoff in the lexical transfer model. The exam-
ple shows translations for the French word droit (“right™)
conditioned on decreasingly specific values. The pro-
gressively lower ranking of the correct translation as we
move from fine, to coarse, to no POS, illustrates the ben-
efit of conditioning generation on the English part of
speech.

Arabic Word | English POS English Wd. Prob.
ljnp NN committee 0.591
ljnp NN commission 0.233
ljnp NN subcommittee 0.035
ljnp NN acc 0.013
ljnp NN report 0.005
ljnp NN ece 0.004
ljnp NN icrc 0.004
ljnp NN adlcc 0.004
ljnp NN escap 0.004
ljnp NN escwa 0.004
ljnp NN eca 0.003
ljnp NNS members 0.088
ljnp NNS recommendations | 0.033
ljnp NNS copuos 0.033
ljnp NNS guestions 0.027
ljnp NNS representatives 0.024
ljnp N committee 0.577
ljnp N commission 0.227
ljnp N subcommittee 0.035

Table 8: From running example, translation probabilities for Arabic
noun ljnp, “committee”.

based model for word translation. Under this model,
translation distributions are estimated by counting word
alignment links between foreign and English lemmas, as-
suming a lemmatization of both sides of the parallel cor-
pus as input. The form of the model is illustrated below:

First, note that P( lemmar | Wr , Teoarsey ) IS VEry
simply a hard lemma assignment by the foreign lan-
guage lemmatizer. Second, English word generation
from English lemma and coarse POS (P( Wg | lemmag
» Tfiney)) 1S programmatic, and can be handled by
means of rules in conjunction with a lookup table for
irregular forms. The only distribution here that must be
estimated from data is P( lemmag | lemmar , Teoarse,
). This is done as described above. Furthermore, given
an electronic translation dictionary, even this distribution
can be pre-loaded: indeed, we expect this to be an
advantage of the lemma model, and an example of
a good opportunity for integrating compiled human
knowledge about language into an SMT system. Some
examples of the lemma model combating sparse data
problems inherent in the basic word-to-word models can
be found in Table 9.

4.3.3 Coercion

Lexical coercion is a phenomenon that sometimes occurs
when we condition translation of a foreign word on the
word and the English part-of-speech. We find that the
system we have described frequently learns this behav-
ior: specifically, the model learns in some cases how
to generate, for instance, a nominal form with similar
meaning from a French adjective, or an adjectival real-
ization of a French verb’s meaning; some examples of
this phenomenon are shown in Table 10. We find this
coercion effect to be of interest because it identifies in-
teresting associations of meaning. For example, in Table
10 “willing” and “ready” are both sensible ways to re-
alize the meaning of the action “to accept” in a passive,
descriptive mode. droit behaves similarly. Though the
English verb “to right” or “to be righted” does not have
the philosophical/judicial entitlement sense of the noun
“right”, we see that the model has learned to realize the
meaning in an active, verbal form: e.g., VBG ‘receiving”
and VB “qualify”.

5 Decoding

Decoding was implemented by constructing finite-state
machines (FSMs) per evaluation sentence to encode
relevant portions (for the individual sentence in ques-
tion) of the component translation distributions described
above. Operations on these FSMs are performed using
the AT&T FSM Toolkit (Mohri et al., 1997). The FSM
constructed for a test sentence is subsequently composed
with a FSM trigram language model created via the SRI
Language Modeling Toolkit (Stolcke, 2002). Thus we
use the trigram language model to implement rescoring



of the (direct) translation probabilities for the English
word sequences in the translation model lattice.

We found that using the finite-state framework and the
general-purpose AT&T toolkit greatly facilitates decoder
development by freeing the implementation from details
of machine composition and best-path searching, etc.

The structure of the translation model finite-state ma-
chines is as illustrated in Figure 1. The sentence-level
(aligned phrase sequence generation) and phrase-level
(aligned intra-phrase sequence generation) translation
probabilities are encoded on epsilon arcs in the ma-
chines. Word translation probabilities are placed onto
arcs emitting the word as an output symbol (in the fig-
ure, note the arcs emitting “committee”, “the”, etc.). The
FSM in Figure 1 corresponds to the Arabic example sen-
tence used throughout this paper. In the portion of the
machine shown, the (best) path which generated the ex-
ample sentence is drawn in bold. Finally, Figure 2 is
a rendering of the actual FSM (aggressively pruned for
display purposes) that generated the example Arabic sen-
tence; although labels and details are not visible, it may
provide a visual aid for better understanding the structure
of the FSM lattices generated here.

As a practical matter in decoding, during translation
model FSM construction we modified arc costs for out-
put words in the following way: a fixed bonus was as-
signed for generating a “content” word translating to a
“content” word. Determining what qualifies as a con-
tent word was done on the basis of a list of content POS
tags for each language. For example, all types of nouns,
verbs and adjectives were listed as content tags; deter-
miners, prepositions, and most other closed-class parts of
speech were not. This implements a reasonable penalty
on undesirable output sentence lengths. Without such a
penalty, translation outputs tend to be very short: long
sentence hypotheses are penalized de facto merely by
containing many word translation probabilities. An ad-
ditional trick in decoding is to use only the N-best trans-
lation options for sentence-level, phrase-level, and word-
level translation. We found empirically (and very consis-
tently) in dev-test experiments that restricting the syntac-
tic transductions to a 30-best list and word translations to
a 15-best list had no negative impact on Bleu score. The
benefit, of course, is that the translation lattices are dra-
matically reduced in size, speeding up composition and
search operations.

Figure 1: Anillustration of the trandation model structure for an
Arabic test sentence.

Figure 2: A portion of the trandlation mode! for an Arabic test sen-
tence, compacted and aggressively pruned by path probability for dis-

play purposes.

6 Evaluation

Results Tables A and B below list evaluation results for
translation on the Arabic and French test sets respec-
tively. In each case, results for a comparison system —
the Giza++ IBM Model 4 implementation (Och and Ney;,
2000) with the ReWrite decoder (Marcu and Germann,
2002) — are included as a benchmark. Results were gen-
erated for training corpora of varying sizes. For Arabic,
we ran our system on two large subsets of the UN cor-
pus and evaluated on a 200-sentence held-out set (refer
to Results Table A below). For the 150K sentence Ara-
bic training set, Giza++ and the shallow syntax model
achieved very similar performance. We were unable to
obtain evaluation numbers for Giza++/ReWrite on the
large Arabic training set, however, since its language
model component has a vocabulary size limit which was
exceeded in the larger corpus. In French we observed the
systems to perform similarly on the small training sets
we used (Results Table B). We performed some exper-
iments in classifier combination using the two compat-
ible (150K-training-sentence) Arabic systems, wherein
a small devtest set was used to identify simple system
combination parameters based on model confidence and
sentence length. In situations where our system was con-
fident we used its output, and used Giza++ output other-
wise. We achieved a 3% boost in Bleu score over Giza++
performance on the evaluation set with these very sim-
ple classifier combination techniques, and anticipate that
research in this direction — classifier combination of di-
versely trained SMT systems — could yield significant
performance improvements.



Bleu Score
System 150K 500K
Trn. Sent. | Trn. Sent.
Giza++/ReWrite Decoder 0.17 *
2-level Syntax Model 0.17 0.18

Results Table A: Results comparison for Arabic to English
trandation on the UN corpus, with a 200-sentence evaluation
set. Note that Gizat++/ReWrite cannot be run for the 500K
sentence training set; the CMU Language Modeling Toolkit,
which ReWrite uses, has a vocabulary size limit which is
exceeded in the 500K corpus.

Bleu Score
System 5K 20K
Trn. Sent. | Trn. Sent.
Giza++/ReWrite Decoder 0.08 0.11
2-level Syntax Model 0.08 0.09

Results Table B: Results comparison for French to English
trandation on the Canadian Hansards corpus (200-sentence
evaluation set).

7 Conclusions

We have described and implemented an original syntax-
based statistical translation model that yields baseline re-
sults which compete successfully with other state-of-the-
art SMT models. This is particularly encouraging in that
the authors are not well-versed in Arabic or French and
it appears that the quality of the rule-based phrase chun-
kers we developed in a single person-day offers substan-
tial room for improvement. We expect to be able to at-
tain improved bracketings from native speakers and, in
addition, via translingual projection of existing brack-
eters. Secondly, the lemma model we have proposed for
lexical transfer provides an efficient framework for in-
tegrating electronic dictionaries into SMT models. Al-
though we have at this time no large electronic dictionar-
ies for either Arabic or French, efforts are underway to
acquire electronic or scanned paper dictionaries for this
purpose. We did evaluate the lemma models in isola-
tion for French and Arabic without dictionary inclusion,
but in each experiment the results did not differ signifi-
cantly from the word-specific lexical transfer models, de-
spite their substantially reduced dimensionality. We an-
ticipate that the relatively seamless direct incorporation
of dictionaries into the lemma-based models will be par-
ticularly effective for translating low-density languages,
which suffer from data sparseness in the face of limited
parallel text. Finally, we incorporated lexical translation
coercion models into this full SMT framework, the in-
duction of which is a phenomenon of interest in its own
right.
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Word Translation Probabilities
Word translation for mangeait conditioned on
French Word, EnglishPOS

mangeait | VBG eating 1.00
mangeait VB go 0.50
mangeait VB anticipate 0.50
mangeait | VBD were 1.00
mangeait | VBP knelt 1.00
mangeait NN bill 1.00

Word translation for mangeait conditioned on
French Word, English Coarse POS

mangeait \ eating 0.44
mangeait \ were 0.22
mangeait \% knelt 0.11
mangeait \% go 0.11
mangeait \ anticipate 0.11
mangeait N bill 1.00
Word trandation for mangeait conditioned on
French Word only
mangeait eating 0.29
mangeait were 0.14
mangeait go 0.07
mangeait bill 0.07

Word trandlation for mangeant
conditioned on French Word, EnglishPOS

mangeant RB mostly 1.00
mangeant NV fi na 1.00
mangeant | VBN | obtained 1.00
mangeant | VBG eating 1.00
mangeant WP who 1.00
mangeant IN through 1.00
mangeant NN lard 1.00
mangeant | VBZ eats 0.50
mangeant | VBZ comes 0.50

Lemma Translation Probabilities
Generation of a verb lemma given manger

manger \ eat 0.60
manger \% feed 0.05
manger \ have 0.04
Generation of a noun lemma given manger
manger N mesal 0.06
manger N trough 0.04
manger N loaf 0.04
manger N food 0.04
Generation of an adj. lemma given manger
manger | J [ hungry | 033

Raw lemmatrandation probabilities
(ignoring English Coarse POS)

manger eat 0.28
manger to 0.03
manger feed 0.03
manger out 0.02
manger have 0.02
manger are 0.02
manger , 0.02
manger you 0.01
manger meal 0.01

Table 9: Direct generation (word-to-word translation probabilities
a the various levels of backoff) is contrasted with lemma generation.
Manger (‘“to eat”) is arelatively rare word in the Hansards. Note that
dueto low counts, the desired verb POS (target of generation) for “eat”
may not have been observed as atrandation in training data. In addi-
tion, in this situation, noisy word alignments may cause an incorrect
tranglation to have similar estimated translation probability. This prob-
lem is addressed by the lemma model; note the much sharper probabil-
ity distribution for verb lemmas given manger. Generation of English
inflections given lemma and target POS is algorithmic (and irregular
exceptions are handled via alookup table).

FrenchWd. | Eng. POS | Eng. Wd. Prob.
accepter JJ unacceptable | 0.12
accepter JJ acceptable 0.12
accepter JJ willing 0.11
accepter JJ ready 0.03
accepter NN acceptance 0.09
accepter NN amendment 0.03
droit VBN entitled 0.66
droit VBN alowed 0.09
droit VBN denied 0.03
droit VBN given 0.02
droit VBN permitted 0.02
droit VBN justifi ed 0.01
droit VBN qualifi ed 0.01
droit VBN dlotted 0.01
droit VB qualify 0.14
droit VB be 0.11
droit VB have 0.09
droit VB receive 0.08
droit VB get 0.07
droit VB expect 0.03
droit VBG receiving 0.11
droit VBG getting 0.08
droit NNS rights 0.44
droit NNS benefi ts 0.69

Table 10: Examples of word translation coercions. Co-
ercions of the French verb accepter “to accept” and the
French noun droit “right” (there is parallel polysemy be-
tween the two languages for this word, but the predom-
inant sense in our corpus is the philosophical/judicial

sense, as opposed to the direction).

Eng. Phrase | French Eng. Prob.
Type Phrase Phrase

NP dans_le_cas_présent asituation 0.25
NP dans_le_cas_présent the_subject_of_debate 0.25
NP dans_le_cas_présent the_position 0.25
NP dans_le_cas_présent it 0.25
VP dans_le_cas_présent should_apply 1.00
ADVP dans_le_cas_présent really 1.00
PPNP dans_le_cas_présent in_this_case 0.63
PPNP dans_le_cas_présent in_this_instance 0.04
PPNP dans_le_cas_présent in_this_actual _case 0.04
PPNP dans_le_cas_présent in_this_particular_case 0.04
PPNP dans_le_cas_présent in_that_case 0.04
PPNP dans_le_cas_présent in_the_present_circumstances | 0.04
VP acceptons accept 0.48
VP acceptons agree 0.14
NP acceptons this_consent 1.00
PPNP par_an per_year 0.67
PPNP par.an in_each_year 0.03
PPNP par-an for_a_year 0.03
ADVP par-an annually 1.00
NP par_-an ayear 0.79
NP par.an each_year 0.02
NP un_discours a_speech 0.83
NP un_discours an_address 0.05
VP un_discours to_speak 1.00

Table 11: Examples of direct phrase translations (see Ta-
ble 4(1)), including some coercions.




