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Abstract

We present an implemented model of story
understanding and apply it to the understand-
ing of a children’s story. We argue that un-
derstanding a story consists of building multi-
representation models of the story and that
story models are efficiently constructed using
a satisfiability solver. We present a computer
program that contains multiple representations
of commonsense knowledge, takes a narrative
as input, transforms the narrative and represen-
tations of commonsense knowledge into a sat-
isfiability problem, runs a satisfiability solver,
and produces models of the story as output.
The narrative, models, and representations are
expressed in the language of Shanahan’s event
calculus.

Introduction

1.1 Model-based multi-representation story
understanding

We propose that understanding a story consists of build-
ing multi-representation models of the states and events
described in the story. The representations are concerned
with multiple realms such as space, time, needs, and feel-
ings. There may be several representations for a single
realm. Space, for example, may be represented at dif-
ferent levels of the spatial semantic hierarchy (Kuipers,
2000) such as topological space and metric space as well
as at different levels of granularity such as room-scale and
object-scale space. We further propose that models are
efficiently constructed using a powerful engine, in par-
ticular a satisfiability solver, that operates in conjunction
with multiple, rich representations of the commonsense
world.

1.2 Scope and methodology

We are concerned with in-depth understanding in contrast
to information extraction. Since research on common-

Story understanding is a fundamental unsolved problegense reasoning to date has focused on small benchmark
in artificial intelligence and computational linguistics. Inproblems, it would be difficult to launch into the prob-
order for a computer program to understand a story texem of in-depth understanding of adult-level stories right

it must be able to make inferences about states and eveaigay. Instead, we and others have proposed to start by
not explicitly described in the text. To do this it musthandling children’s stories (Hirschman et al., 1999; Mc-
have knowledge about the world and an ability to reasoQarthy et al., 2002). We have formed a corpus of 15 early
using this knowledge—in short it must be able to performeader stories for pre-school and kindergarten students,
commonsense reasoning, itself a fundamental unsolveidawn from the Random House Step into Rea8lisg-
problem.

ries. In this paper, we treat one of the stories in this cor-

Story understanding has largely been ignored of latgus. The representations we develop for this story will,

We seek to remedy this situation by applying current rewe hope, be applicable to the understanding of the re-
search on commonsense reasoning to the story undefsaining 14 stories as well as other early reader stories—
standing problem. In this papgewe present an imple- though the representations will certainly require elabora-
mented model of commonsense reasoning for story ufion.

derstanding that has been applied to the understanding ofsince our primary research focus is on in-depth under-
a children’s story.

ration.

standing, we make the simplifying assumption that the

IThis is a condensed version of a paper that is under prepBarrative text has already been parsed into event calcu-

lus formulas (Shanahan, 1997). We manually annotate



the narrative text with event calculus formulas, which A debate over model-based versus proof-based reason-
are similar to the predicate-argument structures producéu rages in the fields of artificial intelligence (Levesque,
by semantic parsers (Alshawi, 1992; Beale et al., 1998;986; Davis, 1991) and psychology (Johnson-Laird,
Gildea and Jurafsky, 2002). In a complete story uni993; Rips, 1994). The degree to which readers gener-
derstanding program, a semantic parser would feed itge inferences and construct mental models during read-
surface-level understanding of a story to our prograning is also debated (McKoon and Ratcliff, 1992; Graesser
which would in turn produce a more detailed understancdet al., 1994). For the purposes of building and debug-

ing. ging a working story understanding program, the model-
o ] based approach has several advantages. First, with a
1.3 Brief history of story understanding model-based program the consequences of a set of for-

Starting in the 1960s, a number of programs have beenulas are immediately apparent by inspecting the mod-
written that are able to read and understand a handful efs. This makes debugging faster than with a proof-based
stories? Several programs built in the 1970s were basedrogram in which facts are individually considered and
on the knowledge structures of scripts, plans, and goafgoved. Second, model construction may be performed
(Schank and Abelson, 1977). The BORIS in-depth storgutomatically, whereas proof construction often requires
understanding program (Dyer, 1983) integrated scriptfuman guidance. Third, the process of answering a ques-
plans, and goals with other knowledge structures irtion about a story is simplified since the program may
cluding emotions, interpersonal relations, spatiotemporadad the answer directly off the model without having to

maps, and story themes. perform complex reasoning.
Starting in the late 1980’s, many story understandin ) ) _
researchers, frustrated by the lack of robustness of sto Multi-representation story understanding

understanding programs, shifted their focus from narrowhe view that understanding stories involves multiple
coverage deep understanding to broad coverage shallpgpresentations has been argued by Minsky (Minsky,
understanding or information extraction. It is currently1986), who points out that understanding requires knowl-
unknown how to produce a deep understanding progragtige and skills from many realms such as the physical,
with broad coverage. Two routes are apparent: (1) stagbcial, conversational, procedural, sensory, motor, tactile,
with a broad coverage shallow understanding programmporal, economic, and reflective realms. Several pre-
and make it progressively deeper (Riloff (Riloff, 1999)vious story understanding programs have used multiple
argues for this approach), or (2) start with a narrow covrepresentations. BORIS used 17 types of representation
erage deep understanding program and make its coveragal ThoughtTreasure used five.

progressively broader. In this paper we take the second

route. 1.6 Reasoning through satisfiability

Satisfiability solvers take as input a set of boolean vari-
ables and a propositional formula over those variables
Cognitive psychologists have argued that the reader ofghd produce as output zero or more models of the
narrative creates a situation or mental model of the naformula—truth assignments for the variables such that
rative including the goals and personalities of the charaghe formula is satisfied. Satisfiability solvers may be used
ters and the physical setting (Bower, 1989). Our earliegy perform a variety of forms of reasoning useful in un-
story understanding program, ThoughtTreasure (Muellegerstanding and answering questions about a story.
1998), built models of a story consisting of a sequence peduction may be performed in the satisfiability
of time slices, where each time slice is a snapshot of (@Jamework by checking that one formula is true in every
the physical world and (b) the mental world of each story,qdel of another formula.
character. The physical world was represented using SPa-Story understanding has been viewed as an abduc-
tia! occupancy arrays and mental states were representgfg task (Charniak and McDermott, 1985; Hobbs et al.,
using finite automata. 1993). A satisfiability solver may be used to perform ab-
In this paper we use the term model in the sense fyction for story understanding by providing the stated
Tarskian semantics. A model or interpretation of a lanmformation as input to the solver and allowing the solver

guage maps constant symbols of the language to elemegdSind models that include the stated information as well
of a domainD, n-ary function symbols to functions from 45 the unstated information.

D™ to D, andn-ary predicate symbols to a subset/of. Story understanding tasks such as predicting next
We confine our gttentlon to finite domam;. T|mg IS réPevents (McKoon and Ratcliff, 1986) require projection.
resented by the integers 0 through a maximum time. A saisfiability solver may be used to perform projection

2Mueller (Mueller, 2002) provides a more detailed historyPy asserting the initial states and events and allowing the
of story understanding programs. solver to find models of the ensuing states and events.

1.4 Model-based story understanding



Planning consists of taking an initial state and a godDeduction and projection are performed by takifg,
state, and producing a sequence of events such that thg, X, ®, ¥, II, and2 as input, and producing as
goal state results from those events. Kautz and Selmawntput. Abduction and planning are performed by taking
(Kautz and Selman, 1996) have demonstrated the effk,, 3, &, ¥, I1, 2, andI" as input, and producing., as
ciency of planning using satisfiability. output.

1.7 Satisfiability versus multi-agent systems for 1.9 The story understanding program

model construction Our story understanding program operates as follows:

Several previous story understanding programs have us€be main program takes the event calculus narrative and
multi-agent systems to build representations. Charniak&xiomatization as input, formulates deductive or abduc-
early story understanding program (Charniak, 1972) usaile reasoning problems, and sends them to the satisfia-
agents called demons to generate inferences. BORMity encoder. The satisfiability encoder sends encoded
used demons to build representations as it parsed a stgmnoblems back to the main program. The main program
from left to right. sends encoded problems to the satisfiability solver. The

Our previous story understanding program Thoughtsatisfiability solver sends solutions to problems back to
Treasure used a multi-agent system in which different unhe main program, which produces models as output. The
derstanding agents were responsible for maintaining difnain program consists of 6332 lines of Python and Java
ferent components of the model while processing a storgode. The satisfiability encoder consists of 3658 lines
The understanding agents interacted with each other @f C code. The program uses off-the-shelf satisfiability
order to decide on a suitable update to the model. B&olvers.
cause of the many potential interactions, the understand-More specifically, the event calculus narrative provided
ing agents proved difficult for the programmer to write,as input consists of:
maintain, and extend. e annotation of the story sentencesHeppensandHoldsAt

In the present work, instead of attempting to hand cod@rmulas,
a collection of agents to build models, we use a powerful the structure of room-scale topological space, and
solution engine to build models automatically given rep® (optionally, to reduce the number of models) initial and
resentations of commonsense knowledge. m?crjr;]:ggartrﬁﬁ\é?ts and fluents, representedlapensand
1.8 The event calculus Coreference annotation must be performed on the story
We have chosen to express our representations for stgi§ntences, so that unique story entities such as actors and
understanding in the version of Shanahan’s circumscrigphysical objects are represented by unique constants in
tive event calculus that uses forced separation (Shanah#g above formulas.
1997). Thls_ languageisan e.xtenS|o.n .of many-sorted flrsi—. 10 The Snowman
order predicate calculus with explicit time and can be
used to express diverse representations. The event chhe story handled by our program is an adaptation for
culus predicates important for this paper are as follows:€arly readers of the children’s story “The Snowman” by

e Happenge, t) represents that an evenhappens at time. Raymond Briggs.

o HoldsA( f, t) represents that a fluerfitholds at timer. It is not yet possible to process the entire Snowman
o Initiates(e, f, ¢) represents that if eveatoccurs at then story as a single satisfiability problem—the problem does
fluent f starts holding afte. not fit in memory. We therefore break the story into sev-

e Terminatege, f, ¢) represents that if eveatoccurs at then

/ ral ments, wher h men ntains one or more
fluent f stops holding aftet. eral segments, where each segment contains one o

) ) ] _ time points and each segment follows the previous seg-
Reasoning using the event calculus is carried out gent in story time. The following shows how we have
follows: If A; and A, are conjunctions offappensand  gjyided the Snowman story into segmentscBYMAN 1

temporal ordering formulas; is a conjunction ofniti- through $I0WMANS, along with the manual event cal-
ates TerminatesandReleaseaxioms,® is the conjunc-  -jus annotation of the sentences:

tion of the event calculus axioms ECF1 to ECF5 (Shanas- _
i ' i f state constrainid,is NOWMAN L ; P
han, 1997)'\11 IS a C_onjunctlor? of Ste - . This segment models the falling of individual snowflakes.
a conjunction of trajectory axioms), is a conjunction of syowman2:
uniqueness-of-names axioms, dnds a conjunction of Hooray!
HoldsAtformulas, then we are interested in the follow-HappengCryForJoyJame$, 3)

ing: It is snowing!
) HoldsA{SnowingJamesOutside 3)
CIRCA; A Ag; HappensA James gets dressed.
CIRCZ; Initiates, TerminatesReleasesA HappengGetDresseflames, 5)

PAUAIIAQET He runs outside.



HappengWalkThroughDoor2@ames, JamesFrontDoor 1)
10)

He makes a pile of snow.
HappengHoldSoméJames, Snowballl, Snoyy12)
He makes it bigger and bigger.
HappengRollAlongJames, Snowballl, Snojy13)

He puts a big snowball on top.
HappengPlaceOr{James, Snowball2, Snowb3gll17)
SNOWMAN 3:

This segment models James going into the house to get a
scarf, hat, and orange.

SNOWMAN4:

He adds a scarf and a hat.
HappengPlaceOrfJames, JamesScarf, Snowbgall®)
HappengPlaceOr{James, JamesHat, SnowbaJI2)
He adds an orange for a nose.
HappengPutinsidéJames, JamesOrange, Snowbjl2)
He adds coal for eyes and buttons.
HappengPutinsidéJames, JamesCoal, SnowbJ12)
There!

What a fine snowman!

SNOWMANDS:

It is nighttime.

Nighttime0)

James sneaks downstairs.
HappengWalkDownStaircagdames, JamesStaircase1)aD)
He looks out the door.

HappenglLookA{James, Showmy)

What does he see?

The snowman is moving!

HappengMovg Snowmaj 5)

James invites him in.

Happenglnviteln(James, Snowman, JamesFoyej16)
The snowman has never been inside a house.
SNOWMANG:

Hello, cat!

HappengGree{Snowman, JamesQa0)

Hello, lamp!

HappengGree{Snowman, JamesLamp)

Hello, paper towels!

HappengGree{Snowman, JamesPaperToweR)

The snowman takes James’s hand.
HappengHold(Snowman, JamesHapd)
SNOWMANT7:

They go up, up, up into the air!

1.11 Remainder of the paper

In Section 2, we discuss our method for transforming

event calculus reasoning problems into satisfiability prob-
lems. In Section 3, we discuss our multi-representation
axiomatization of the commonsense knowledge needed
to understand the Snowman story. In Section 4, we dis-
cuss the processing of the Snowman story by our program
using the axiomatization. We conclude with future work.

2 A satisfiability encoding of the event
calculus

We have implemented a method for encoding event cal-
culus problems in propositional conjunctive normal form,
which enables them to be solved using an off-the-shelf
satisfiability solver.

Solving event calculus problems using satisfiability
solvers has several advantages over solving those prob-
lems using other methods. First, satisfiability solvers are
faster at solving event calculus planning problems than
planners based on abductive logic programming (Shana-
han, 2000; Shanahan and Witkowski, 2002). Second,
solving event calculus problems using theorem proving
requires computation of circumscription. The rules for
computing circumscription are complicated in general
(Lifschitz, 1994). One rule is given by Proposition 2
of Lifschitz, which reduces circumscription to predicate
completion:

If F(z) does not contait®, then the circumscription
CIRC[VzF(x) = P(z);P]is equivalent to
VazF(z) < P(x)

Many cases of circumscription in the event calculus
reduce directly to simple predicate completion using
Proposition 2, but some do not. Notably the circumscrip-
tion of Happens(= P) in a disjunctive event axiom or
compound event axiom (¥xF(xz) = P(z)) cannot be

HappengStartFlyingFromTéSnowman, JamesOutsideGround, achieved using Proposition 2 becausgr) does contain

JamesOutsideSk)0)

They are flying!

HoldsA(FlyingFromTdSnowman, JamesOutsideGround,
JamesOutsideSkyl)

What a wonderful night!

SNOWMAN8:

It is morning.

Morning(0)

James jumps out of bed.

HappengRiseFronfJames, JamesBgd)

He runs downstairs.

HappengWalkDownStaircagdames, JamesStaircase1)o®
He runs into the kitchen.

He runs outside.

HappengWalkThroughDoor2@ames, JamesFrontDoor 1)
7)

But the snowman has gone.

Happensn those axioms.

Our encoding method handles a larger subset of the
event calculus than the method previously proposed
(Shanahan and Witkowski, 2002). The method of Shana-
han and Witkowski separately maps into conjunctive nor-
mal form each type of event calculus axiom such as effect
axioms and precondition axioms. Our encoding method
maps arbitrary axioms to conjunctive normal form by ap-
plying syntactic transformations. The generality of our
method enables it to handle a larger subset of the event
calculus. Table 1 provides a comparison of the cover-
age of the two encodings. Both methods use explana-
tion closure frame axioms (Haas, 1987) to cope with the
frame problem instead of circumscription. In our method
the frame axioms are extended to allow fluents to be re-
leased from the commonsense law of inertia. Neither



Shanahar_l/ Our. e CTime: clock time.
Witkowski | encoding e ECTime: the event calculus model of time.

compound events e Feeling: simple positive, neutral, and negative emotions, and
concurrent events positive, neutral, and negative attitudes toward objects.
determining fluents e OMSpace: object-scale metric space, with falling and
disjunctive event axioms collisions.

effect axioms without conditions v e OTSpace: object-scale topological space.

effect axioms with conditions e PlayNeed: the need to play, with a simple model of needs
precondition axioms v and intentions.

e RTSpace: room-scale topological space.
e Sleep: sleeping and body posture.

e Snow: snow and snow falling from the sky.
e SpeechAct: some simple speech acts.

e Vision: some simple aspects of vision.

releases axioms

state constraints
three-argumertiappens
trajectory axioms
trigger axioms

SNENEN ENENENENENENEN

Due to space limitations, in this paper we present only
Table 1: Coverage of event calculus satisfiability encodsne of the eleven representations: RTSpace.
ing methods

3.1 Room-scale topological space
method handles continuous time—both support discreirehe predicates, functions, fluents, and events of RTSpace

time. Due to space limitations, the complete encodinf;lre shown in Table 3.

method cannot be presented here. Formula Engiish
Adjacenflocationl, location? locationlis adjacent tdocation2
i H : H H At(object, location objectis atlocation
3 A mUltl representatlon axiomatization BuildingOfroom) = building The building ofroomis building.
for the Snowman story DoorClosgactor, doo) actor closesdoor.
DoorlsOperfdoor) dooris open.
;- - . . - ADoorLockactor, doo) actor locksdoor.
We have created a multi-representation axiomatization B 0roperactor, doo) actor opensdoor
the commonsense knowledge necessary to understand [fft@orUnlockeddoon dooris unlocked.
Snowman story using Shanahan’s event calculus. Table 20crUnlockactor, dooy actor unlocksdoor._
K R . . “Floor(room) = integer The floor ofroomis integer.
ShOWS hOW our axiomatization Compares W|th Other eve ILGroundO(outsidQ = ground The ground obutsideis ground
calculus axiomatizations. LookOutOnt¢room) = outside roomlooks out ontooutside
NearPorta(object, porta) objectis at a location that hgsortal.
. . . - SideXportal) = location Side one ofortal is location
Axiomatization _ _ Axioms Implemented SideZportal) = location Side two ofportal is location
our Snowman axiomatization 181 v SkyOfoutsidd = sky The sky ofoutsideis sky.
egg cracking 79 WalkDownStaircad@ctor, staircasg | actorwalks downstaircase
(Morgenstern 2001) WalkThroughDoorl1@ctor, doo) actor walks through side one afoor.
Ki - 29 WalkThroughDoor2(&actor, doo) actor walks through side two afoor.
€gg cracking WalkUpStaircas@ctor, staircasg actor walks upstaircase
(Shanahan, 1998)
robot sensors and motors 33 v
(Shanahan, 1996) Table 3: RTSpace
beliefs, car crash reports 30
Lévy an ntz, 1 . . . .
E Og o%/ri a?l c?eﬁ etry’ 998) 55 7 This representation of space consists of locations
(Shanahan, 2000) (rooms and outside areas), which are connected by por-
chemical plant safety 7 7 tals (doors and staircases).
(Shanahan, 2000) A state constraint says that an object is at one location
shopping trip 6 v ata time:
(Shanahan, 2000)

Axiom 1.

. o . HoldsA{At(object location), time) A
Table 2: Axiomatizations using Shanahan’s event calcu4oldsA(At(object location), time) =
lus location1= location2

) o ) ) A state constraint says that an object is near a portal if
The axiomatization is broken down into the following anq only if there is a location such that the object is at the
representations: location and one of the sides of the portal is the location:

3The axiomatization does not cover all aspects of the SnowAxiom 2.
man story: It does not deal with the snowman disappearing artdoldsA{NearPorta(object portal), time) <
melting and the resulting thoughts of James. It does not deallocation (SideXportal) = location Vv
with the creation and destruction of objects such as the snow- SideZportal) = location) A
balls. These are assumed to exist over all time points. HoldsA(At(object location), time)



A precondition axiom states that for an actor to unlockxiom 10. _
adoor, the actor must be awake, the door must not alreajfleZdoor) = location=-
be unlocked, and the actor must be near the door: InitiateWalkThroughDoor1@actor, door),
Axiom 3 At(actor, location), time)
Xiom o.

HappengDoorUnlocKactor, door), time) = Axiom 11,

- SideXdoor) = location=-
HoldsA(Awakéactor), time) A o
—HoldsA{DoorUnlockeddoon), time) A InitiategWalkThroughDoor2(actor, door),

HoldsA{NearPortalactor, door), time) At(actor, locatior), time)

An effect axiom states that if an actor unlocks a doorggce’?dﬁ'r) — location =
the door will be unlocked: TerminateéWalkThroughDoorlgactor, door),
Axiom 4. At(actor, location), time)
InitiategDoorUnlocKactor, door), Axiom 13.
DoorUnlockeddoor), time) SideZdoor) = location=-

i . : TerminateéWalkThroughDoor2(&actor, door),
We have similar precondition and effect axioms forAt(actor, locatior), time)
locking a door.

A state constraint says that if a door is open, it is un- e have similar precondition and effect axioms for
locked: walking up and down a staircase.
A state constraint says that if an actor is outside, the

Axiom 5. is d d:
HoldsA{DoorlsOperfdoor), time) = actor Is dressed:
HoldsA{DoorUnlockeddoor), time) Axiom 14.

A precondition axiom states that for an actor to open gg:gzﬁgtrfsczstg%;é:gsdghtge) =

door, the actor must be awake, the door must not already ] _ _ _
be open, the door must be unlocked, and the actor must WO locations are adjacent if and only if they have a
be near the door: portal in common:

Axiom 6. Axiom 15.

; Adjacenglocation], location? <
HoldeAtakgacion. ima 1 3 portal (Sdedporta) ~ locationt.
—HoldsA{DoorlsOpeitdoor), time) A S!de:{porial) = loca?on? M
HoldsA(DoorUnlockeddoor), time) A (S!deZpor al) _ loca 1onLA
HoldsA{NearPortal(actor, door), time) ideportal) = location2)

An effect axiom states that if an actor opens a door, the State constraints fix the location of ground and sky:

door will be open: Axiom 16.

. GroundOftoutsidg = ground=-
Axiom 7. ] HoldsA{At(ground outsidg, time)
Initiateg DoorOpergactor, door), DoorlsOpetfdoor), time) Axiom 17

We have similar precondition and effect axioms forSkyO(oufside) = sky=
closing a door. HoldsA(At(sky outsidg, time)

Precondition axioms state that for an actor to walk .
through a side of a door, the actor must be awake arftl Processing the Snowman story

standing, the door must be open, and the actor must be-giq complete run of the Snowman story takes 45 min-

the side of the door that the actor walks through: utes on a machine with a 700 MHz Pentium Il processor
Axiom 8. and 512 megabytes of RAM. Statistics on processing the
Happeng§WalkThroughDoorl@&ctor, door), time) = segments are shown in Table 4

HoldsA(Awakéactor), time) A s )

HoldsA{Standingactor), time) A Due to space limitations, we cannot show the model of
HoldsA{DoorlsOperfdoor), time) A all the story segments. We present here the model of the
HoldsA{At(actor, SideXdoor)), time) SNOWMANZ2 segment:

Axiom 9. 0

Happeng§WalkThroughDoor2@actor, door), time) = AsleefgJame$

HoldsA{Awakéactor), time) A At(JamesBedlamesBedroom2F|

HoldsA(Standindactor), time) A At(JamesCoaldJamesOutside

HoldsA(DoorlsOperfdoor), time) A At(JamesHatJamesBedroom2J|

HoldsA(At(actor, SideZdoor)), time) At(JamesOrangelamesKitchenlFl

Effect axioms state that if an actor walks through onézgzmgﬁ;ﬁfg&%ﬁggg@ﬁmzFl

side of a door, the actor will be at the other side of the(snow] JamesOutside
door: At(Snowballl JamesOutside



Name Vars | Clauses| Encode | Solve
SNOWMAN1 5,489 | 48,952 59.45| 73.29
SNOWMAN?2 | 12,415| 227,781 768.59| 57.67
SNOWMAN3 8,503 | 152,382| 365.53| 32.60
SNOWMAN4 3,963 | 69,262 88.53 | 14.68
SNOWMANS 7,227 | 149,997| 355.71| 14.72
SNOWMANG 6,628 | 117,614 262.39| 7.40
SNOWMAN7 2,651 7,451 6.83| 0.41
SNOWMANS8 5,470 90,091| 151.11| 20.43

Table 4: Snowman story runtime statistics (times in sec:

onds)

At(Snowball2 JamesOutside
At(SnowmanJamesOutside
AwakgSnowmah

Calm(Jame$

Calm(Snowmah

Diametef{Snowballl 1)
Diametef{Snowball2 1)
DoorlsOpetiJamesDoor2Fl
DoorUnlockedJamesDoor2Fl
DoorUnlocke@JamesKitchenDoor1ffl
DressedSnowmaj

HungryToPlayJame$

LikeSnowJame$

LikeSnowSnowmah

Like(SnowmanJame$
LyingOn(JamesJamesBeqd

Lying(Jame$
NearPorta(JamesBedJamesDoor2F)|
NearPorta{JamesCoalJamesFrontDoor1Fl
NearPorta(JamesHatJamesDoor2F)
NearPorta{JamesOrangelamesKitchenDoorlyl
NearPorta(JamesScarflamesDoor2F)
NearPorta{JamesJamesDoor2F)l
NearPorta(Snow] JamesFrontDoor1Hl
NearPorta{Snowballl JamesFrontDoor1Fl
NearPorta(Snowball2 JamesFrontDoor1Hl
NearPorta{ShowmanJamesFrontDoor1Hl
SatiatedFromPlagSnowmah

Sleep@ame}

Sleep8Snowmah

StandingSnowmah
HappengStartSnowin@lamesOutside 0)

1

+SnowingJamesOutside
Happeng§WakeUgJames, 1)
2

Event occurrences are shown at the end of each time point.
Only changes in what fluents hold from one time point to
the next are shown. Thus after the WakeUp event occurs
above, James is no longer asleep and he is awake:
-AsleegJame}

-SleepQJame}

+AwakdJame$

+SleepJame}

An axiom in the Feeling representation triggers this event
in response to the snow:

HappengBecomeHappylames, 2)

An axiom in the PlayNeed representation triggers this
event in response to the snow:

HappensgintendToPlayJamesJamesOutside 2)
3

-Calm(Jame}

-HungryToPlayJame$

+HappyJame$
+IntentionToPlayJamesJamesOutside
Happeng$CryForJoyJame$, 3)

4

HappengRiseFronfJamesJamesBey 4)
5

-LyingOn(JamesJamesBed
Lying(Jame$

-SleeplJame}

+Sleep2lame}
+StandingJame}
HappengGetDressefllames, 5)
6

-Sleep2Jame}

+Dresse@Jame}

+SleepBlame}
HappengWalkThroughDoorl@amesJamesDoor2F) 6)
7

James was in his bedroom from time points O to 6 inclusive.
After he walks through the bedroom door above, he is no
longer in his bedroom:

-At(JamesJamesBedroom2)

+At(JamesJamesHallway2Fl
+NearPorta{JamesJamesStaircase1Tp2
Happeng§WalkDownStaircagdamesJamesStaircase1TpZ)

8

-At(JamesJamesHallway2hl
-NearPorta(JamesJamesDoor2Hl
+At(JamesJamesFoyerl1Hl
+NearPorta(JamesJamesFrontDoor1Hl
+NearPorta{JamesJamesKitchenDoor1[fl
HappengDoorUnlockJamesJamesFrontDoor1H| 8)
9

+DoorUnlockedJamesFrontDoor1Fl
HappengDoorOperfJamesJamesFrontDoor1H| 9)
10

+DoorlsOperfJamesFrontDoor1Hl
HappengWalkThroughDoor2@@amesJamesFrontDoor1H|
10)

11

-At(JamesJamesFoyerl1fl
-NearPorta(JamesJamesKitchenDoorl1fl
-NearPorta(JamesJamesStaircase1Tp2

Optional intermediate fluents fix the time point at which
James acts on his intention to play, thereby reducing the
number of models:
+ActOnlintentionToPlajamesJamesOutside
+At(JamesJamesOutside
HappengPlay(JamesJamesOutside 11)

12

-ActOnlIntentionToPlaidamesJamesOutside
-IntentionToPlayJamesJamesOutside
+SatiatedFromPlafdame$
HappengHoldSomélames Snowballl Snow), 12)

13

+Holding(James Snowball)
HappengRollAlongJames Snowballl Snow), 13)
14

-DiametefSnowballl 1)

+Diamete(Snowball]l 2)
HappenglLetGoO{JamesSnowball}, 14)
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5 Conclusions and future work ress
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Future work includes the following. First, the programLevy, F. and Quantz, J. J. (1998). Representing beliefs in a situated event calculus.
should be parallelized and run on a collection of net- In Prade, H., editorProceedings of the Thirteenth European Conference on

. . Artificial Intelligence pages 547-551, Chichester, UK. John Wiley.
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