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Abstract

We present an implemented model of story
understanding and apply it to the understand-
ing of a children’s story. We argue that un-
derstanding a story consists of building multi-
representation models of the story and that
story models are efficiently constructed using
a satisfiability solver. We present a computer
program that contains multiple representations
of commonsense knowledge, takes a narrative
as input, transforms the narrative and represen-
tations of commonsense knowledge into a sat-
isfiability problem, runs a satisfiability solver,
and produces models of the story as output.
The narrative, models, and representations are
expressed in the language of Shanahan’s event
calculus.

1 Introduction

Story understanding is a fundamental unsolved problem
in artificial intelligence and computational linguistics. In
order for a computer program to understand a story text,
it must be able to make inferences about states and events
not explicitly described in the text. To do this it must
have knowledge about the world and an ability to reason
using this knowledge—in short it must be able to perform
commonsense reasoning, itself a fundamental unsolved
problem.

Story understanding has largely been ignored of late.
We seek to remedy this situation by applying current re-
search on commonsense reasoning to the story under-
standing problem. In this paper1 we present an imple-
mented model of commonsense reasoning for story un-
derstanding that has been applied to the understanding of
a children’s story.

1This is a condensed version of a paper that is under prepa-
ration.

1.1 Model-based multi-representation story
understanding

We propose that understanding a story consists of build-
ing multi-representation models of the states and events
described in the story. The representations are concerned
with multiple realms such as space, time, needs, and feel-
ings. There may be several representations for a single
realm. Space, for example, may be represented at dif-
ferent levels of the spatial semantic hierarchy (Kuipers,
2000) such as topological space and metric space as well
as at different levels of granularity such as room-scale and
object-scale space. We further propose that models are
efficiently constructed using a powerful engine, in par-
ticular a satisfiability solver, that operates in conjunction
with multiple, rich representations of the commonsense
world.

1.2 Scope and methodology

We are concerned with in-depth understanding in contrast
to information extraction. Since research on common-
sense reasoning to date has focused on small benchmark
problems, it would be difficult to launch into the prob-
lem of in-depth understanding of adult-level stories right
away. Instead, we and others have proposed to start by
handling children’s stories (Hirschman et al., 1999; Mc-
Carthy et al., 2002). We have formed a corpus of 15 early
reader stories for pre-school and kindergarten students,
drawn from the Random House Step into Reading® se-
ries. In this paper, we treat one of the stories in this cor-
pus. The representations we develop for this story will,
we hope, be applicable to the understanding of the re-
maining 14 stories as well as other early reader stories—
though the representations will certainly require elabora-
tion.

Since our primary research focus is on in-depth under-
standing, we make the simplifying assumption that the
narrative text has already been parsed into event calcu-
lus formulas (Shanahan, 1997). We manually annotate



the narrative text with event calculus formulas, which
are similar to the predicate-argument structures produced
by semantic parsers (Alshawi, 1992; Beale et al., 1995;
Gildea and Jurafsky, 2002). In a complete story un-
derstanding program, a semantic parser would feed its
surface-level understanding of a story to our program,
which would in turn produce a more detailed understand-
ing.

1.3 Brief history of story understanding

Starting in the 1960s, a number of programs have been
written that are able to read and understand a handful of
stories.2 Several programs built in the 1970s were based
on the knowledge structures of scripts, plans, and goals
(Schank and Abelson, 1977). The BORIS in-depth story
understanding program (Dyer, 1983) integrated scripts,
plans, and goals with other knowledge structures in-
cluding emotions, interpersonal relations, spatiotemporal
maps, and story themes.

Starting in the late 1980’s, many story understanding
researchers, frustrated by the lack of robustness of story
understanding programs, shifted their focus from narrow
coverage deep understanding to broad coverage shallow
understanding or information extraction. It is currently
unknown how to produce a deep understanding program
with broad coverage. Two routes are apparent: (1) start
with a broad coverage shallow understanding program
and make it progressively deeper (Riloff (Riloff, 1999)
argues for this approach), or (2) start with a narrow cov-
erage deep understanding program and make its coverage
progressively broader. In this paper we take the second
route.

1.4 Model-based story understanding

Cognitive psychologists have argued that the reader of a
narrative creates a situation or mental model of the nar-
rative including the goals and personalities of the charac-
ters and the physical setting (Bower, 1989). Our earlier
story understanding program, ThoughtTreasure (Mueller,
1998), built models of a story consisting of a sequence
of time slices, where each time slice is a snapshot of (a)
the physical world and (b) the mental world of each story
character. The physical world was represented using spa-
tial occupancy arrays and mental states were represented
using finite automata.

In this paper we use the term model in the sense of
Tarskian semantics. A model or interpretation of a lan-
guage maps constant symbols of the language to elements
of a domainD, n-ary function symbols to functions from
Dn toD, andn-ary predicate symbols to a subset ofDn.
We confine our attention to finite domains. Time is rep-
resented by the integers 0 through a maximum time.

2Mueller (Mueller, 2002) provides a more detailed history
of story understanding programs.

A debate over model-based versus proof-based reason-
ing rages in the fields of artificial intelligence (Levesque,
1986; Davis, 1991) and psychology (Johnson-Laird,
1993; Rips, 1994). The degree to which readers gener-
ate inferences and construct mental models during read-
ing is also debated (McKoon and Ratcliff, 1992; Graesser
et al., 1994). For the purposes of building and debug-
ging a working story understanding program, the model-
based approach has several advantages. First, with a
model-based program the consequences of a set of for-
mulas are immediately apparent by inspecting the mod-
els. This makes debugging faster than with a proof-based
program in which facts are individually considered and
proved. Second, model construction may be performed
automatically, whereas proof construction often requires
human guidance. Third, the process of answering a ques-
tion about a story is simplified since the program may
read the answer directly off the model without having to
perform complex reasoning.

1.5 Multi-representation story understanding

The view that understanding stories involves multiple
representations has been argued by Minsky (Minsky,
1986), who points out that understanding requires knowl-
edge and skills from many realms such as the physical,
social, conversational, procedural, sensory, motor, tactile,
temporal, economic, and reflective realms. Several pre-
vious story understanding programs have used multiple
representations. BORIS used 17 types of representation
and ThoughtTreasure used five.

1.6 Reasoning through satisfiability

Satisfiability solvers take as input a set of boolean vari-
ables and a propositional formula over those variables
and produce as output zero or more models of the
formula—truth assignments for the variables such that
the formula is satisfied. Satisfiability solvers may be used
to perform a variety of forms of reasoning useful in un-
derstanding and answering questions about a story.

Deduction may be performed in the satisfiability
framework by checking that one formula is true in every
model of another formula.

Story understanding has been viewed as an abduc-
tive task (Charniak and McDermott, 1985; Hobbs et al.,
1993). A satisfiability solver may be used to perform ab-
duction for story understanding by providing the stated
information as input to the solver and allowing the solver
to find models that include the stated information as well
as the unstated information.

Story understanding tasks such as predicting next
events (McKoon and Ratcliff, 1986) require projection.
A satisfiability solver may be used to perform projection
by asserting the initial states and events and allowing the
solver to find models of the ensuing states and events.



Planning consists of taking an initial state and a goal
state, and producing a sequence of events such that the
goal state results from those events. Kautz and Selman
(Kautz and Selman, 1996) have demonstrated the effi-
ciency of planning using satisfiability.

1.7 Satisfiability versus multi-agent systems for
model construction

Several previous story understanding programs have used
multi-agent systems to build representations. Charniak’s
early story understanding program (Charniak, 1972) used
agents called demons to generate inferences. BORIS
used demons to build representations as it parsed a story
from left to right.

Our previous story understanding program Thought-
Treasure used a multi-agent system in which different un-
derstanding agents were responsible for maintaining dif-
ferent components of the model while processing a story.
The understanding agents interacted with each other in
order to decide on a suitable update to the model. Be-
cause of the many potential interactions, the understand-
ing agents proved difficult for the programmer to write,
maintain, and extend.

In the present work, instead of attempting to hand code
a collection of agents to build models, we use a powerful
solution engine to build models automatically given rep-
resentations of commonsense knowledge.

1.8 The event calculus

We have chosen to express our representations for story
understanding in the version of Shanahan’s circumscrip-
tive event calculus that uses forced separation (Shanahan,
1997). This language is an extension of many-sorted first-
order predicate calculus with explicit time and can be
used to express diverse representations. The event cal-
culus predicates important for this paper are as follows:
• Happens(e, t) represents that an evente happens at timet.
• HoldsAt(f, t) represents that a fluentf holds at timet.
• Initiates(e, f, t) represents that if evente occurs att then
fluentf starts holding aftert.
• Terminates(e, f, t) represents that if evente occurs att then
fluentf stops holding aftert.

Reasoning using the event calculus is carried out as
follows: If ∆1 and∆2 are conjunctions ofHappensand
temporal ordering formulas,Σ is a conjunction ofIniti-
ates, Terminates, andReleasesaxioms,Φ is the conjunc-
tion of the event calculus axioms ECF1 to ECF5 (Shana-
han, 1997),Ψ is a conjunction of state constraints,Π is
a conjunction of trajectory axioms,Ω is a conjunction of
uniqueness-of-names axioms, andΓ is a conjunction of
HoldsAt formulas, then we are interested in the follow-
ing:

CIRC[∆1 ∧∆2; Happens] ∧
CIRC[Σ; Initiates,Terminates,Releases] ∧
Φ ∧Ψ ∧Π ∧ Ω |= Γ

Deduction and projection are performed by taking∆1,
∆2, Σ, Φ, Ψ, Π, and Ω as input, and producingΓ as
output. Abduction and planning are performed by taking
∆1, Σ, Φ, Ψ, Π, Ω, andΓ as input, and producing∆2 as
output.

1.9 The story understanding program

Our story understanding program operates as follows:
The main program takes the event calculus narrative and
axiomatization as input, formulates deductive or abduc-
tive reasoning problems, and sends them to the satisfia-
bility encoder. The satisfiability encoder sends encoded
problems back to the main program. The main program
sends encoded problems to the satisfiability solver. The
satisfiability solver sends solutions to problems back to
the main program, which produces models as output. The
main program consists of 6332 lines of Python and Java
code. The satisfiability encoder consists of 3658 lines
of C code. The program uses off-the-shelf satisfiability
solvers.

More specifically, the event calculus narrative provided
as input consists of:

• annotation of the story sentences asHappensandHoldsAt
formulas,
• the structure of room-scale topological space, and
• (optionally, to reduce the number of models) initial and
intermediate events and fluents, represented byHappensand
HoldsAtformulas.

Coreference annotation must be performed on the story
sentences, so that unique story entities such as actors and
physical objects are represented by unique constants in
the above formulas.

1.10 The Snowman

The story handled by our program is an adaptation for
early readers of the children’s story “The Snowman” by
Raymond Briggs.

It is not yet possible to process the entire Snowman
story as a single satisfiability problem—the problem does
not fit in memory. We therefore break the story into sev-
eral segments, where each segment contains one or more
time points and each segment follows the previous seg-
ment in story time. The following shows how we have
divided the Snowman story into segments SNOWMAN1
through SNOWMAN8, along with the manual event cal-
culus annotation of the sentences:

SNOWMAN1:
This segment models the falling of individual snowflakes.
SNOWMAN2:
Hooray!
Happens(CryForJoy(James), 3)
It is snowing!
HoldsAt(Snowing(JamesOutside), 3)
James gets dressed.
Happens(GetDressed(James), 5)
He runs outside.



Happens(WalkThroughDoor21(James, JamesFrontDoor1Fl),
10)
He makes a pile of snow.
Happens(HoldSome(James, Snowball1, Snow1), 12)
He makes it bigger and bigger.
Happens(RollAlong(James, Snowball1, Snow1), 13)
He puts a big snowball on top.
Happens(PlaceOn(James, Snowball2, Snowball1), 17)
SNOWMAN3:
This segment models James going into the house to get a
scarf, hat, and orange.
SNOWMAN4:
He adds a scarf and a hat.
Happens(PlaceOn(James, JamesScarf, Snowball2), 0)
Happens(PlaceOn(James, JamesHat, Snowball2), 1)
He adds an orange for a nose.
Happens(PutInside(James, JamesOrange, Snowball2), 2)
He adds coal for eyes and buttons.
Happens(PutInside(James, JamesCoal, Snowball2), 4)
There!
What a fine snowman!
SNOWMAN5:
It is nighttime.
Nighttime(0)
James sneaks downstairs.
Happens(WalkDownStaircase(James, JamesStaircase1To2), 1)
He looks out the door.
Happens(LookAt(James, Snowman), 4)
What does he see?
The snowman is moving!
Happens(Move(Snowman), 5)
James invites him in.
Happens(InviteIn(James, Snowman, JamesFoyer1Fl), 6)
The snowman has never been inside a house.
SNOWMAN6:
Hello, cat!
Happens(Greet(Snowman, JamesCat), 0)
Hello, lamp!
Happens(Greet(Snowman, JamesLamp), 1)
Hello, paper towels!
Happens(Greet(Snowman, JamesPaperTowels), 2)
The snowman takes James’s hand.
Happens(Hold(Snowman, JamesHand), 7)
SNOWMAN7:
They go up, up, up into the air!
Happens(StartFlyingFromTo(Snowman, JamesOutsideGround,
JamesOutsideSky), 0)
They are flying!
HoldsAt(FlyingFromTo(Snowman, JamesOutsideGround,
JamesOutsideSky), 1)
What a wonderful night!
SNOWMAN8:
It is morning.
Morning(0)
James jumps out of bed.
Happens(RiseFrom(James, JamesBed), 1)
He runs downstairs.
Happens(WalkDownStaircase(James, JamesStaircase1To2), 4)
He runs into the kitchen.
He runs outside.
Happens(WalkThroughDoor21(James, JamesFrontDoor1Fl),
7)
But the snowman has gone.

1.11 Remainder of the paper

In Section 2, we discuss our method for transforming
event calculus reasoning problems into satisfiability prob-
lems. In Section 3, we discuss our multi-representation
axiomatization of the commonsense knowledge needed
to understand the Snowman story. In Section 4, we dis-
cuss the processing of the Snowman story by our program
using the axiomatization. We conclude with future work.

2 A satisfiability encoding of the event
calculus

We have implemented a method for encoding event cal-
culus problems in propositional conjunctive normal form,
which enables them to be solved using an off-the-shelf
satisfiability solver.

Solving event calculus problems using satisfiability
solvers has several advantages over solving those prob-
lems using other methods. First, satisfiability solvers are
faster at solving event calculus planning problems than
planners based on abductive logic programming (Shana-
han, 2000; Shanahan and Witkowski, 2002). Second,
solving event calculus problems using theorem proving
requires computation of circumscription. The rules for
computing circumscription are complicated in general
(Lifschitz, 1994). One rule is given by Proposition 2
of Lifschitz, which reduces circumscription to predicate
completion:

If F (x) does not containP , then the circumscription
CIRC[∀xF (x)⇒ P (x);P ] is equivalent to
∀xF (x)⇔ P (x)

Many cases of circumscription in the event calculus
reduce directly to simple predicate completion using
Proposition 2, but some do not. Notably the circumscrip-
tion of Happens(= P ) in a disjunctive event axiom or
compound event axiom (=∀xF (x) ⇒ P (x)) cannot be
achieved using Proposition 2 becauseF (x) does contain
Happensin those axioms.

Our encoding method handles a larger subset of the
event calculus than the method previously proposed
(Shanahan and Witkowski, 2002). The method of Shana-
han and Witkowski separately maps into conjunctive nor-
mal form each type of event calculus axiom such as effect
axioms and precondition axioms. Our encoding method
maps arbitrary axioms to conjunctive normal form by ap-
plying syntactic transformations. The generality of our
method enables it to handle a larger subset of the event
calculus. Table 1 provides a comparison of the cover-
age of the two encodings. Both methods use explana-
tion closure frame axioms (Haas, 1987) to cope with the
frame problem instead of circumscription. In our method
the frame axioms are extended to allow fluents to be re-
leased from the commonsense law of inertia. Neither



Shanahan/ Our
Witkowski encoding

compound events
concurrent events
determining fluents X
disjunctive event axioms X
effect axioms without conditions X X
effect axioms with conditions X
precondition axioms X X
releases axioms X
state constraints X
three-argumentHappens
trajectory axioms X
trigger axioms X

Table 1: Coverage of event calculus satisfiability encod-
ing methods

method handles continuous time—both support discrete
time. Due to space limitations, the complete encoding
method cannot be presented here.

3 A multi-representation axiomatization
for the Snowman story

We have created a multi-representation axiomatization of
the commonsense knowledge necessary to understand the
Snowman story using Shanahan’s event calculus. Table 2
shows how our axiomatization compares with other event
calculus axiomatizations.

Axiomatization Axioms Implemented
our Snowman axiomatization 181 X
egg cracking 79
(Morgenstern, 2001)
egg cracking 49
(Shanahan, 1998)
robot sensors and motors 33 X
(Shanahan, 1996)
beliefs, car crash reports 30
(Lévy and Quantz, 1998)
robot mail delivery 25 X
(Shanahan, 2000)
chemical plant safety 7 X
(Shanahan, 2000)
shopping trip 6 X
(Shanahan, 2000)

Table 2: Axiomatizations using Shanahan’s event calcu-
lus

The axiomatization is broken down into the following
representations:3

3The axiomatization does not cover all aspects of the Snow-
man story: It does not deal with the snowman disappearing and
melting and the resulting thoughts of James. It does not deal
with the creation and destruction of objects such as the snow-
balls. These are assumed to exist over all time points.

• CTime: clock time.
• ECTime: the event calculus model of time.
• Feeling: simple positive, neutral, and negative emotions, and
positive, neutral, and negative attitudes toward objects.
• OMSpace: object-scale metric space, with falling and
collisions.
• OTSpace: object-scale topological space.
• PlayNeed: the need to play, with a simple model of needs
and intentions.
• RTSpace: room-scale topological space.
• Sleep: sleeping and body posture.
• Snow: snow and snow falling from the sky.
• SpeechAct: some simple speech acts.
• Vision: some simple aspects of vision.

Due to space limitations, in this paper we present only
one of the eleven representations: RTSpace.

3.1 Room-scale topological space

The predicates, functions, fluents, and events of RTSpace
are shown in Table 3.

Formula English
Adjacent(location1, location2) location1is adjacent tolocation2.
At(object, location) objectis at location.
BuildingOf(room) = building The building ofroom is building.
DoorClose(actor, door) actorclosesdoor.
DoorIsOpen(door) door is open.
DoorLock(actor, door) actor locksdoor.
DoorOpen(actor, door) actoropensdoor.
DoorUnlocked(door) door is unlocked.
DoorUnlock(actor, door) actorunlocksdoor.
Floor(room) = integer The floor ofroom is integer.
GroundOf(outside) = ground The ground ofoutsideis ground.
LookOutOnto(room) = outside room looks out ontooutside.
NearPortal(object, portal) objectis at a location that hasportal.
Side1(portal) = location Side one ofportal is location.
Side2(portal) = location Side two ofportal is location.
SkyOf(outside) = sky The sky ofoutsideis sky.
WalkDownStaircase(actor, staircase) actorwalks downstaircase.
WalkThroughDoor12(actor, door) actorwalks through side one ofdoor.
WalkThroughDoor21(actor, door) actorwalks through side two ofdoor.
WalkUpStaircase(actor, staircase) actorwalks upstaircase.

Table 3: RTSpace

This representation of space consists of locations
(rooms and outside areas), which are connected by por-
tals (doors and staircases).

A state constraint says that an object is at one location
at a time:

Axiom 1.
HoldsAt(At(object, location1), time) ∧
HoldsAt(At(object, location2), time)⇒
location1= location2

A state constraint says that an object is near a portal if
and only if there is a location such that the object is at the
location and one of the sides of the portal is the location:

Axiom 2.
HoldsAt(NearPortal(object, portal), time)⇔
∃ location(Side1(portal) = location∨

Side2(portal) = location) ∧
HoldsAt(At(object, location), time)



A precondition axiom states that for an actor to unlock
a door, the actor must be awake, the door must not already
be unlocked, and the actor must be near the door:

Axiom 3.
Happens(DoorUnlock(actor, door), time)⇒
HoldsAt(Awake(actor), time) ∧
¬HoldsAt(DoorUnlocked(door), time) ∧
HoldsAt(NearPortal(actor, door), time)

An effect axiom states that if an actor unlocks a door,
the door will be unlocked:

Axiom 4.
Initiates(DoorUnlock(actor, door),
DoorUnlocked(door), time)

We have similar precondition and effect axioms for
locking a door.

A state constraint says that if a door is open, it is un-
locked:

Axiom 5.
HoldsAt(DoorIsOpen(door), time)⇒
HoldsAt(DoorUnlocked(door), time)

A precondition axiom states that for an actor to open a
door, the actor must be awake, the door must not already
be open, the door must be unlocked, and the actor must
be near the door:

Axiom 6.
Happens(DoorOpen(actor, door), time)⇒
HoldsAt(Awake(actor), time) ∧
¬HoldsAt(DoorIsOpen(door), time) ∧
HoldsAt(DoorUnlocked(door), time) ∧
HoldsAt(NearPortal(actor, door), time)

An effect axiom states that if an actor opens a door, the
door will be open:

Axiom 7.
Initiates(DoorOpen(actor, door), DoorIsOpen(door), time)

We have similar precondition and effect axioms for
closing a door.

Precondition axioms state that for an actor to walk
through a side of a door, the actor must be awake and
standing, the door must be open, and the actor must be at
the side of the door that the actor walks through:

Axiom 8.
Happens(WalkThroughDoor12(actor, door), time)⇒
HoldsAt(Awake(actor), time) ∧
HoldsAt(Standing(actor), time) ∧
HoldsAt(DoorIsOpen(door), time) ∧
HoldsAt(At(actor, Side1(door)), time)

Axiom 9.
Happens(WalkThroughDoor21(actor, door), time)⇒
HoldsAt(Awake(actor), time) ∧
HoldsAt(Standing(actor), time) ∧
HoldsAt(DoorIsOpen(door), time) ∧
HoldsAt(At(actor, Side2(door)), time)

Effect axioms state that if an actor walks through one
side of a door, the actor will be at the other side of the
door:

Axiom 10.
Side2(door) = location⇒
Initiates(WalkThroughDoor12(actor, door),
At(actor, location), time)

Axiom 11.
Side1(door) = location⇒
Initiates(WalkThroughDoor21(actor, door),
At(actor, location), time)

Axiom 12.
Side1(door) = location⇒
Terminates(WalkThroughDoor12(actor, door),
At(actor, location), time)

Axiom 13.
Side2(door) = location⇒
Terminates(WalkThroughDoor21(actor, door),
At(actor, location), time)

We have similar precondition and effect axioms for
walking up and down a staircase.

A state constraint says that if an actor is outside, the
actor is dressed:
Axiom 14.
HoldsAt(At(actor, outside), time)⇒
HoldsAt(Dressed(actor), time)

Two locations are adjacent if and only if they have a
portal in common:
Axiom 15.
Adjacent(location1, location2)⇔
∃ portal (Side1(portal) = location1∧

Side2(portal) = location2) ∨
(Side2(portal) = location1∧
Side1(portal) = location2)

State constraints fix the location of ground and sky:
Axiom 16.
GroundOf(outside) = ground⇒
HoldsAt(At(ground, outside), time)

Axiom 17.
SkyOf(outside) = sky⇒
HoldsAt(At(sky, outside), time)

4 Processing the Snowman story

The complete run of the Snowman story takes 45 min-
utes on a machine with a 700 MHz Pentium III processor
and 512 megabytes of RAM. Statistics on processing the
segments are shown in Table 4.

Due to space limitations, we cannot show the model of
all the story segments. We present here the model of the
SNOWMAN2 segment:

0
Asleep(James)
At(JamesBed, JamesBedroom2Fl)
At(JamesCoal, JamesOutside)
At(JamesHat, JamesBedroom2Fl)
At(JamesOrange, JamesKitchen1Fl)
At(JamesScarf, JamesBedroom2Fl)
At(James, JamesBedroom2Fl)
At(Snow1, JamesOutside)
At(Snowball1, JamesOutside)



Name Vars Clauses Encode Solve
SNOWMAN1 5,489 48,952 59.45 73.29
SNOWMAN2 12,415 227,781 768.59 57.67
SNOWMAN3 8,503 152,382 365.53 32.60
SNOWMAN4 3,963 69,262 88.53 14.68
SNOWMAN5 7,227 149,997 355.71 14.72
SNOWMAN6 6,628 117,614 262.39 7.40
SNOWMAN7 2,551 7,451 6.83 0.41
SNOWMAN8 5,470 90,091 151.11 20.43

Table 4: Snowman story runtime statistics (times in sec-
onds)

At(Snowball2, JamesOutside)
At(Snowman, JamesOutside)
Awake(Snowman)
Calm(James)
Calm(Snowman)
Diameter(Snowball1, 1)
Diameter(Snowball2, 1)
DoorIsOpen(JamesDoor2Fl)
DoorUnlocked(JamesDoor2Fl)
DoorUnlocked(JamesKitchenDoor1Fl)
Dressed(Snowman)
HungryToPlay(James)
LikeSnow(James)
LikeSnow(Snowman)
Like(Snowman, James)
LyingOn(James, JamesBed)
Lying(James)
NearPortal(JamesBed, JamesDoor2Fl)
NearPortal(JamesCoal, JamesFrontDoor1Fl)
NearPortal(JamesHat, JamesDoor2Fl)
NearPortal(JamesOrange, JamesKitchenDoor1Fl)
NearPortal(JamesScarf, JamesDoor2Fl)
NearPortal(James, JamesDoor2Fl)
NearPortal(Snow1, JamesFrontDoor1Fl)
NearPortal(Snowball1, JamesFrontDoor1Fl)
NearPortal(Snowball2, JamesFrontDoor1Fl)
NearPortal(Snowman, JamesFrontDoor1Fl)
SatiatedFromPlay(Snowman)
Sleep0(James)
Sleep3(Snowman)
Standing(Snowman)
Happens(StartSnowing(JamesOutside), 0)
1
+Snowing(JamesOutside)
Happens(WakeUp(James), 1)
2
Event occurrences are shown at the end of each time point.
Only changes in what fluents hold from one time point to
the next are shown. Thus after the WakeUp event occurs
above, James is no longer asleep and he is awake:
-Asleep(James)
-Sleep0(James)
+Awake(James)
+Sleep1(James)
An axiom in the Feeling representation triggers this event
in response to the snow:
Happens(BecomeHappy(James), 2)
An axiom in the PlayNeed representation triggers this
event in response to the snow:

Happens(IntendToPlay(James, JamesOutside), 2)
3
-Calm(James)
-HungryToPlay(James)
+Happy(James)
+IntentionToPlay(James, JamesOutside)
Happens(CryForJoy(James), 3)
4
Happens(RiseFrom(James, JamesBed), 4)
5
-LyingOn(James, JamesBed)
-Lying(James)
-Sleep1(James)
+Sleep2(James)
+Standing(James)
Happens(GetDressed(James), 5)
6
-Sleep2(James)
+Dressed(James)
+Sleep3(James)
Happens(WalkThroughDoor12(James, JamesDoor2Fl), 6)
7
James was in his bedroom from time points 0 to 6 inclusive.
After he walks through the bedroom door above, he is no
longer in his bedroom:
-At(James, JamesBedroom2Fl)
+At(James, JamesHallway2Fl)
+NearPortal(James, JamesStaircase1To2)
Happens(WalkDownStaircase(James, JamesStaircase1To2), 7)
8
-At(James, JamesHallway2Fl)
-NearPortal(James, JamesDoor2Fl)
+At(James, JamesFoyer1Fl)
+NearPortal(James, JamesFrontDoor1Fl)
+NearPortal(James, JamesKitchenDoor1Fl)
Happens(DoorUnlock(James, JamesFrontDoor1Fl), 8)
9
+DoorUnlocked(JamesFrontDoor1Fl)
Happens(DoorOpen(James, JamesFrontDoor1Fl), 9)
10
+DoorIsOpen(JamesFrontDoor1Fl)
Happens(WalkThroughDoor21(James, JamesFrontDoor1Fl),
10)
11
-At(James, JamesFoyer1Fl)
-NearPortal(James, JamesKitchenDoor1Fl)
-NearPortal(James, JamesStaircase1To2)
Optional intermediate fluents fix the time point at which
James acts on his intention to play, thereby reducing the
number of models:
+ActOnIntentionToPlay(James, JamesOutside)
+At(James, JamesOutside)
Happens(Play(James, JamesOutside), 11)
12
-ActOnIntentionToPlay(James, JamesOutside)
-IntentionToPlay(James, JamesOutside)
+SatiatedFromPlay(James)
Happens(HoldSome(James, Snowball1, Snow1), 12)
13
+Holding(James, Snowball1)
Happens(RollAlong(James, Snowball1, Snow1), 13)
14
-Diameter(Snowball1, 1)
+Diameter(Snowball1, 2)
Happens(LetGoOf(James, Snowball1), 14)
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-Holding(James, Snowball1)
Happens(HoldSome(James, Snowball2, Snow1), 15)
16
+Holding(James, Snowball2)
Happens(RollAlong(James, Snowball2, Snow1), 16)
17
-Diameter(Snowball2, 1)
+Diameter(Snowball2, 2)
Happens(PlaceOn(James, Snowball2, Snowball1), 17)
18
-Holding(James, Snowball2)
+On(Snowball2, Snowball1)

5 Conclusions and future work

We have described a model-based multi-representation
approach to story understanding that can be used to pro-
duce a detailed understanding of a children’s story.

Future work includes the following. First, the program
should be parallelized and run on a collection of net-
worked machines so that it can solve much larger prob-
lems and solve them quickly to facilitate debugging. Sec-
ond, the multi-representation axiomatization should be
elaborated for a second story, and eventually for the en-
tire early reader corpus. Third, algorithms for minimiz-
ing event occurrences in abduction should be added to the
program. Fourth, a meta-level reasoning module should
be added to formulate event calculus reasoning problems,
including setting up the story and segment initial states.
Fifth, the story understanding system should be hooked
up to a semantic parser for input and natural language
generator for output. Finally, a natural language question
answering module should be added.
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