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Abstract

Ourgoalis to beableto answerquestionsabout
text thatgobeyondfactsexplicitly statedin the
text, a task which inherentlyrequiresextract-
ing a “deep” level of meaningfrom that text.
Our approachtreatsmeaningprocessingfun-
damentallyasa modelingactivity, in which a
knowledgebaseof common-senseexpectations
guidesinterpretationof text, andtext suggests
which partsof the knowledgebasemight be
relevant. In this paper, we describeour ongo-
ing investigationsto developthisapproachinto
a usablemethodfor meaningprocessing.

1 Overview

Our goalis to beableto answerquestionsabouttext that
gobeyondfactsexplicitly statedin thetext, a taskwhich,
we believe, requiresextractinga “deep” level of mean-
ing from the text. We treat the processof identifying
themeaningof text to beoneof constructinga situation-
specificrepresentationof thescenariothat thetext is de-
scribing. Elementsof the representationwill denoteob-
jects and relationshipsin that scenario,someof which
maynot havebeenexplicitly mentionedin thetext itself.
Thedegreeto whichacomputerhas“acquiredthemean-
ing” of sometext will bereflectedby its ability to answer
questionsaboutthescenariothatthetext describes.

A significantchallengefor meaningprocessingis that
muchof thecontentof thetargetrepresentationmaynot
be explicitly mentionedin the text itself. For example,
thesentence:

(1) “China launcheda meteorologicalsatellite
into orbit Wednesday.”

suggeststo a humanreaderthat (amongother things)
therewasarocketlaunch;Chinaprobablyownsthesatel-
lite; the satelliteis for monitoringweather;the orbit is
aroundEarth;etc. A systemthathasadequately“under-
stood” themeaningof this sentenceshouldincludesuch

plausibleimplicationsin its representation,andthus(for
example)beableto identify thissentenceasrelevantto a
queryfor “rocket launchevents”.However, noneof these
factsareexplicitly mentionedin the text. Rather, much
of thescenariorepresentationneedsto comefrom strong,
prior expectationsabouttheway theworld mightbe,and
meaningprocessinginvolvesmatching,combining,and
instantiatingtheseprior expectationswith knowledgeex-
plicitly statedin text. Viewedthis way, understandingis
fundamentallyamodelingprocess,in whichprior knowl-
edgeand knowledgefrom text interact: Text suggests
whichscenariosin theknowledgebasemightberelevant;
andscenariosfrom the knowledgebasesuggestwaysof
interpretatinganddisambiguatingtext.

This style of approachto meaningprocessingusedto
be popularin the 1970’s and1980’s, e.g., (Cullingford,
1977;DeJong,1979;SchankandAbelson,1977),but has
largely beenabandonedfor a numberof reasons,both
theoreticalandpragmatic.Challengesinclude: the cost
of building the knowledgebaseof expectationsin the
first place;controlling the matchingprocessin a robust
way; basicissuesof knowledgerepresentation(defining
what the target shouldbe in the first place);andthe re-
centsuccessesof knowledge-poorstatisticalapproaches
on certainclassesof information retrieval tasks. How-
ever, despitethesechallenges,many question-answering
taskswill remain out of reachof current systemsun-
til deeperrepresentationsof meaningareemployed,and
thuswe considerthat thesechallengesare importantto
address,ratherthanavoid.

In an earlierproject(Clark et al., 2002),we explored
methodsfor interpreting sentencesabout aircraft, ex-
pressedin a simplified version of English, using this
knowledge-driven style of processing. Interpretation
wasperformedby matchingthesentences’NL-produced
“logical forms” againstpre-built representationsof air-
craft componentsand systems. Although effective for
certain texts, the generality of this method was con-
strainedin two ways. First, for successfulmatching,the
approachrequiresthelogical form of theinput text to be



(launch_a_satellite_v1 has
(superclasses (launch_v1 transport_v1))) ; hypernyms

(every launch_a_satellite_v1 has
(step_n1 ((a countdown_n1 with

(location_n1 ((the location_n1 of Self)))
(event_n1 ((the fly_v1 step_n1 of Self)))
(before_r1 ((the fly_v1 step_n1 of Self)))

(a fly_v1 with
(vehicle_n1 ((the vehicle_n1 of Self)))))))

(vehicle_n1 ((a rocket_n1)))
(agent_n1 ((a causal_agent_n1)))
(cargo_n1 ((a satellite_n1)))
(location_n1 ((a launchpad_n1))))

Figure1: Therepresentation(simplified)of thescenario“launchingasatellite”in theknowledge-base,encodedin the
languageKM. (Seethebodyof this paperfor a summaryof thesemantics).

bothfairly simpleandfairly close,structurally, to thetar-
get matchingstructurein the knowledgebase. Second,
thecostof producingtheknowledgebaseby handis ex-
pensive, and the approachis limited to just thoseareas
thattheknowledgebasecovers.

To addressthesechallenges,wearecurrentlyexploring
a modifiedapproach,inspiredby Schubert’s recentwork
onextractingcommon-senseknowledgefrom text (Schu-
bert,2002).Beforebuilding thefull “logical forms” from
text, which canbe large andcomplex, andmay require
certaindisambiguationcommitmentsto bemadeprema-
turely, we arefirst extractingshorterfragmentsof infor-
mation from text, andusing thesefor matchingagainst
the knowledgebase. In the simplestform, thesefrag-
mentsaresimplesubject-verb-objectrelationships,e.g.,
from

(2) “Yesterday, Russialauncheda spaceship
carryingequipmentfor theInternationalSpace
Station.”

thesystemwouldextractthefragments:

("Russia" "launch" "spaceship")
("spaceship" "carry" "equipment")

In a moresophisticatedform, thefragmentsalsoinclude
prepositionalphrases,e.g.,from

(3) “Alan appliedfor a job.”

thesystemwouldextractthefragment:

("Alan" "apply" "" ("for" "job"))

Thesestructuresareessentiallysnippetsof the full logi-
cal form, exceptthat(i) they aresimplified(somedetails
removed), and (ii) many semanticdecisions,e.g.,word
sensedisambiguation,thesemanticrelationshipsbetween
the objects,have beendeferreduntil knowledge-based

matchingtime. The task then,given several suchfrag-
mentsextractedfrom text, is to find the scenarioin the
knowledge-basethat bestmatchesthesefragments,i.e.,
that canaccountfor asmany aspossible. Throughthe
matchingprocess,many of the deferreddisambiguation
decisionsaremade.

Althoughthefragmentrepresentationis impoverished
comparedwith the full logical form, our conjectureis
that it still containsenoughinformation to identify the
coremeaningof the text, in termsof identifying andin-
stantiatingthe relevant scenarioin the knowledgebase,
while simplifying the meaningprocessingtask. We are
thusseekinga“middle ground”betweensuperficialanal-
ysisof the text andfull-blown naturallanguageprocess-
ing. In somecases,including thosewe have examined,
the scenariofrom the knowledgebase,instantiatedwith
fragments,is sufficient to answerquestionsabout the
text, with no furtherprocessingbeingneeded.However
in other cases,we may needto adda “secondpass”in
which a more computationallyintensive matchingpro-
cessis thenusedto matchthetext’s full logical form with
the fragment-selectedknowledgebasescenario.This is
still anareaof investigation.

In addition, thesefragmentsmay form the basisfor
helping constructthe knowledgebasein the first place
(Schubert,2002). By processinga large corpusof text,
we can automaticallygeneratea large numberof frag-
mentsthatcanthenprovide the“raw material” for a per-
sonto constructthe scenariomodelsfrom. Our conjec-
ture is that knowledgeacquisitionwill be substantially
fasterwhen treatedasa processof filtering andassem-
bling fragments,rather than one of authoringfacts by
handfrom scratch.We describeour initial explorations
in this directionshortly.



2 The Knowledge Base

We have recentlybeenworking with text describingvar-
iouskindsof “launch” events(launchingsatellites,prod-
ucts, Web sites,ships,etc.). We describeour ongoing
implementationof the above approachin the context of
thesetexts.

2.1 Architecture

We envisagethat, ultimately, the knowledgebase(KB)
will comprisea smallnumberof abstract,corerepresen-
tations(e.g.,movement,transportation,conversion,pro-
duction,containment),alongwith a largenumberof de-
tailedscenariorepresentations.Weanticipatethatthefor-
merwill have to bebuilt by hand,while thelattercanbe
acquiredsemi-automaticallyusinga combinationof text
analysisandhumanfiltering/assemblingof fragmentsre-
sulting from that analysis. At present,however, we are
building both the core and detailedrepresentationsby
hand,asafirst steptowardsthisgoal.

Eachscenariorepresentationcontainsa setof axioms
describingtheobjectsinvolvedin thescenario,theevents
and subeventsinvolved, and their relationshipsto each
other. Beforedescribingthesein moredetail, however,
we first describetheKB’s ontology(conceptualvocabu-
lary).

2.2 The Ontology: Concepts

We areusingWordNet(Miller et al., 1993)asthe start-
ing point for theKB’s ontology. AlthoughWordNethas
limitations, it provides both an extensive taxonomyof
concepts(synsets)anda rich mappingfrom thosecon-
ceptsto words/phrasesthatmaybeusedto referto them
in text. This providesusefulknowledgeboth for identi-
fying coreferencesbetweendifferentrepresentationsthat
are known to relate (e.g., betweena representationof
“launching” and a representationof “moving”, where
launchingis definedasa type of moving), andalso for
matching scenariorepresentationswith text fragments
when interpretingnew text (Section3.2). The use of
WordNetmayalsomakesemi-automatedconstructionof
thescenariorepresentationsthemselveseasier, if theraw
materialfor theserepresentationsis derivedfromtext cor-
pora.We arealsoaddingnew conceptswhereneeded,in
particularconceptsthat we wish to reify which are de-
scribedby phrasesratherthana singleword (thusnot in
WordNet),e.g.,“launchasatellite”,andcorrectingappar-
enterrorsor omissionsthatwefind.

As a namingconvention,ratherthanidentify a synset
by its numberwe nameit by concatenatingthe synset
word most commonly usedto refer to it (as specified
by WordNet’s tag statistics),its part of speech,and the
WordNetsenseof that word correspondsto that synset.
For example,bank n1 is our friendly namefor synset
106948080(bank, the financial institution), as “bank”

is the synsetword mostcommonlyusedto refer to this
synset,this synsetis labeledwith a nounpartof speech,
and“bank” sense1 is synset106948080.This renaming
is a simpleone-to-onemapping,andis purelycosmetic.

In WordNet, verbsand their nominalizationsare al-
waystreatedas(membersof) separateconcepts,although
from an ontologicalstandpoint,theseoften (we believe)
referto thesameentity (of typeevent). Martin hasmade
a similar observation (Martin, 2003). An exampleis a
runningevent,which may be referredto in both “I ran”
and“the run”. To remove this apparentduplication,we
usejust the verb-basedconcept(synset)for thesecases.
Note that this phenomenondoesnot hold for all verbs;
for someverbs,the nominalizationmay refer to the in-
strument(e.g., “hammer”) usedin the event, the object
(e.g.,“drink”), theresult(e.g.,“plot”), etc.

2.3 The Ontology: Relations

For constructingscenariorepresentations,we distinguish
betweenactive (action-like)verbsandstative (state-like)
verbs(e.g.,“enter” vs. “contain”), the formerbeingrei-
fied asindividualsin their own right (Davidsonianstyle)
with semanticrolesattached,while the latteraretreated
asrelations1.

For events,we relatethe(reified)eventsto theobjects
which participatein thoseevents(the“participants”)via
semanticrole-likerelations(agent,instrument,employer,
vehicle,etc.). We arefollowing a fairly liberal approach
to this: ratherthanconfiningourselvesto a small, fixed
setof primitiverelations,wearesimplyfindingtheWord-
Net conceptthat bestdescribesthe relationship.This is
partly in anticipationof therepresentationseventuallybe-
ing built semi-automaticallyfrom text, whena similarly
diverseset of relationswill be present(basedon what-
ever relation the text authorhappenedto use). In addi-
tion, it simply seemsto bethecase(we believe) that the
set of possiblerelationshipsis large, making it hard to
work with asmall,fixedsetwithouteitheroverloadingor
excessively generalizingthe meaningof relationshipsin
thatset.

This easesthe challengethat working with a con-
strainedsetof semanticroles poses,but at the expense
of morework beingrequired(by thereasoningengine)to
determinecoreferenceamongrepresentations.For exam-
ple, if we use“giver” and“donor” (ratherthan“agent”
and“agent”, say)asrolesin “give” and“donate” repre-
sentationsrespectively, and“donate” is a kind of “give”,
it is then up to the inferenceengineto recognizethat

1In practice,thisseparationof eventsandstatesis notalways
so cleanat the boundaries:whethersomethingis an event or
stateis partly subjective, dependingon theviewpoint adopted,
e.g., the level of temporalgranularity chosen. For example
“flight” canbeconsideredaneventor a state,dependingon the
time-scaleof interest.
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Figure2: A graphicaldepictionof the“launchingasatel-
lite” scenarioin theknowledge-base.

theseprobablyrefer to thesameentity, which in turn re-
quiresadditionalworld knowledge.We arecurrentlyus-
ing WordNetto providethisworld knowledge.For exam-
ple, in this caseWordNetstatesthat“donor” and“giver”
aresynonyms(in onesynset),andhencethecoreference
canberecognizedby thereasoningengine.In othercases
oneroleconceptmaybea sub/supertypeof theother.

ThisdecisionalsomeansthatweareusingsomeWord-
Net conceptsboth asclasses(types)andrelations,thus
strictly overloadingtheseconcepts.Wearecurrentlycon-
sideringextendingthe namingconventionto distinguish
these.

2.4 Scenario Representations

The scenariorepresentationsthemselvesareconstructed
– currently by hand – by identifying the key “partici-
pants”(bothobjectsandevents)in thescenario,andthen
creatinga graphof relationshipsthat normally exist be-
tweenthoseparticipants.In our exampleof “launching”
scenarios,eachtype of launching(launchinga satellite,
launchinga product,etc.) is representedas a different
scenarioin the knowledgebase. Theserepresentations
areencodedin thelanguageKM (ClarkandPorter, 1999),
a frame-basedknowledgerepresentationlanguagewith
well-definedfirst-orderlogicsemantics,similarin styleto
KRL. For example,a (simplified) KM representationof
“launchingasatellite”is shown in Figure1, andsketched
in Figure2. In thegraphicaldepiction,thedarknodede-
notesa universallyquantifiedobject,othernodesdenote
implied, existentiallyquantifiedobjects,andarcsdenote
binaryrelations.Thesemanticsof this structurearethat:
for every launchingasatelliteevent,thereexistsa rocket,
a launchsite,a countdown event, ... etc.,andtherocket
is thevehicleof the launchinga satellite,the launchsite
is the locationof the launchinga satellite,etc. The KB
currentlycontainsapproximately25 scenariorepresenta-
tionssimilar to this.

Thesegraphicalrepresentationsare compositionalin
two importantways: First, through inheritance,a rep-
resentationcan be combined with representationsof
its generalizations(e.g., representationsof “launching
a satellite” and “placing somethingin position” can be
combined). Second,different viewpoints/aspectsof a

conceptsuchaslaunchinga satelliteareencodedassep-
araterepresentationalstructures(e.g., the sequenceof
events; the temporal information; the spatial informa-
tion; goal-orientedinformation). During text interpre-
tation,only thoserepresentation(s)of aspects/views that
thetext itself refersto will becomposedinto thestructure
matchedwith thetext.

3 Text Interpretation

3.1 Extraction of Knowledge Fragments from Text

Giventheknowledgebaseof scenarios,ourgoalis to use
it to interpretnew text, by finding and instantiatingthe
scenarioin theKB which bestmatchesthe factsexplicit
in that text. To do this, first eachsentencein the new
text is parsed,andfragmentsareextractedfrom theparse
tree.Parsingis doneby SAPIR,abottom-upchartparser
usedin Boeing(Holmbacket al., 2000). Fragmentsare
extractedby searchingfor subject-verb-objectpatternsin
theparsetree,e.g.,rootedat themainverbor in relative
clauses.For example,giventhesentence:

(4) “A RussianProgressM-44 spaceshipcarry-
ing equipment,food and fuel for the Interna-
tionalSpaceStationwaslaunchedsuccessfully
Monday.”

Thefragments:

("" "launch" "spaceship")
("spaceship" "carry" "equipment")
("spaceship" "carry" "food")
("spaceship" "carry" "fuel")

areextracted. Note thatat this stageword sensedisam-
biguationhasnot beenperformed.

3.2 Matching Scenarios with Fragments

To match the scenariorepresentationswith the NLP-
processedtext fragments, the system searchesfor
matches between objects in the representations
and objects mentioned in the fragments; and rela-
tionships in the representationsand relationships
mentioned in the fragments. The subject-verb-
object fragments are first broken up into two, e.g.,
("China" "launch" "satellite") be-
comes ("launch" "subject" "China")
and ("launch" "object" "satellite")
before matching. Then the system searchesfor a
scenario representationwhere as many as possible
word-syntacticrelation-word fragmentsmatch concept-
semanticrelation-conceptstructuresin therepresentation.
Becausewe have usedWordNet, eachconceptin the
knowledge basehas a set of associatedwords/phrases
usedto expressit in English,anda word in a fragment
“matches”a conceptif that word is a memberof these
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Figure3: To interpretthe text, the systemfinds the sce-
nario representationthat bestmatchesthe fragmentsex-
tractedfrom theinput text. Wordsenseandsemanticrole
disambiguationis aside-effect,ratherthanaprecursorto,
this matchingprocess.

associatedwords (i.e., the synset)for that concept(or
one of its specializationsor generalizations). This is
illustratedin Figure3. A simplescoringfunctionis used
to assessthe degreeof match, looking for the scenario
with the maximumnumberof matchingfragments,and
in the caseof a tie preferring the scenariowith the
maximumnumberof objectspotentiallymatchingsome
item in thetext.

Note that it is only at this point that word senseand
semanticrelationdisambiguationareperformed.For ex-
ample,in this casethefragmentsextractedfrom text best
match the launch a satellite v1 scenario;as a
result, “launch” in the text will be taken to meanthe
launch a satellite v1 concept( � wordsense),as
opposedto launchinga product,launchinga ship,etc.

Onepieceof informationwe arenot currentlyexploit-
ing in this matchingprocessarethestatisticalprobabili-
tiesthatparticularsyntacticroles(grammaticalfunctions)
suchassubject,directobject,etc.,will correspondto par-
ticularsemanticrolessuchasagent n1,vehicle n1,
etc. Thesewould help thematcherdealwith ambiguous
cases,wherethecurrentapproachis not sufficient to de-
terminethe appropriatematch. Automatedmethodsfor
obtainingsuchstatistics,suchas (Gildea and Jurafsky,
2002),couldbeexploitedfor this task.

3.3 Question Answering

Having identified and instantiatedthe appropriatesce-
nario representationin the knowledgebase,that repre-
sentationis now availablefor usein question-answering.
This allows questionsto be answeredwhich go beyond
factsexplicitly mentionedin the text, but which arepart
of thescenariorepresentation(e.g.,a questionaboutthe
rocket),andthoserequiringinference(usingKM’ s infer-

enceengine,appliedto thescenarioandotherknowledge
in theknowledgebase).

The inferenceenginecurrently requiresquestionsto
be posedin the native representationlanguage(KM),
ratherthanhaving a naturallanguagefront end. Given
a query, KM will not just retrieve facts containedex-
plicitly in the instantiatedscenariorepresentation,but
also computeadditional factsusing standardreasoning
mechanismsof inheritanceand rule evaluation. For
example,launch a satellite v1 is a subclassof
transport v1, whoserepresentationincludesan ax-
iom statingthatduringthemove v1 subevent,thecargo
is inside the vehicle. Given an appropriatequery, this
axiomwill beinheritedto launch a satellite v1,
allowing the systemto concludethat during the move
subeventof thesatellitelaunch– herefly v1 – thesatel-
lite (cargo)will beinsidetherocket(vehicle).Theability
of the systemto reachthis kind of conclusiondemon-
strates,to a certaindegree,that it hasacquiredat least
someof the“deep” meaningof thetext, astheseconclu-
sionsgobeyondtheinformationcontainedin theoriginal
text itself.

4 Semi-Automatic Construction of the KB

For a broadcoveragesystem,a largenumberof scenario
representationswill be necessary, morethancanbe fea-
sibly built by hand.While fully automaticacquisitionof
theserepresentationsfrom text seemsbeyondthestateof
theart, we believe thereis a middlegroundin which the
“raw material” for theserepresentationscanbeextracted
automaticallyfrom text, andwhich canthenbe rapidly
filteredandassembledby a person.

As an initial exploration in this direction, we ap-
plied our “fragmentextractor” to partof theReuterscor-
pus (Reuters,2003) to obtain a databaseof 1.1 million
subject-verb-objectfragments.Fromthis database,high-
frequency patternscan then be searchedfor, providing
possiblematerialfor incorporatinginto new scenariorep-
resentations.For example,thedatabasereveals(by look-
ing at the various tuple frequencies)that satellitesare
mostcommonlybuilt, launched,carried,andused;rock-
ets mostcommonlycarry satellites;Russiaand rockets
mostcommonlylaunchsatellites;andthatsatellitesmost
commonlytransmitandbroadcast.Similarly for theverb
“launch”, thingswhicharemostcommonlylaunched(ac-
cordingto the database)arecampaigns,services,funds,
investigations,attacks,bonds,andsatellites,suggesting
a set of scenariorepresentationswhich could then be
built by searchingfurther from theseterms. Although
thesefragmentsarenotyetassembledinto largerscenario
representationsand word senseshave not beendisam-
biguated,further work in this directionmay yield meth-
odsby which a usercanrapidly find andassemblecan-
didateelementsof representationsinto largerstructures,



perhapsguidedby theexistingabstractmodelsalreadyin
theknowledgebase.Othercorpus-basedtechniquessuch
as(Lin andPantel,2001)could alsobe usedto provide
additionalraw materialfor scenarioconstruction.

5 Summary

We believethattext meaningprocessing,andsubsequent
question-answeringabout that text, is fundamentallya
modelingactivity, in which text suggestsscenariomod-
els to use,and thosemodelssuggestwaysof interpret-
ing text. We havedescribedsomeongoinginvestigations
wereareconductingto develop this approachinto a us-
ablemethodfor languageprocessing.Although this ap-
proachis challengingfor a numberreasons,it offerssig-
nificant potentialfor allowing question-answeringto go
beyond factsexplicitly statedin the varioustext sources
used.
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