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Abstract

Ourgoalis to beableto answerquestionabout
text thatgo beyondfactsexplicitly statedn the
text, a taskwhich inherentlyrequiresextract-
ing a “deep” level of meaningfrom that text.
Our approachtreatsmeaningprocessingfun-
damentallyas a modelingactuity, in which a
knowledgebaseof common-sensexpectations
guidesinterpretationof text, andtext suggests
which parts of the knowledge basemight be
relevant. In this paper we describeour ongo-
ing investigationdo developthis approactinto
ausablemethodfor meaningprocessing.

1 Overview

Our goalis to beableto answemuestionsabouttext that

go beyondfactsexplicitly statedn thetext, ataskwhich,

we believe, requiresextracting a “deep” level of mean-
ing from the text. We treat the processof identifying

the meaningof text to be oneof constructinga situation-
specificrepresentatiorof the scenariahatthetext is de-

scribing. Elementsof the representatiomwill denoteob-

jects and relationshipsin that scenario,someof which

may not have beenexplicitly mentionedn thetext itself.

Thedeggreeto which a computethas“acquiredthe mean-
ing” of sometext will bereflectedby its ability to answer
guestionaboutthe scenariadhatthetext describes.

A significantchallengefor meaningprocessings that
muchof the contentof the targetrepresentatiomay not
be explicitly mentionedin the text itself. For example,
the sentence:

(1) “China launcheda meteorologicakatellite
into orbit Wednesday

suggestdo a humanreaderthat (amongother things)
therewasarocketlaunch;Chinaprobablyownsthesatel-
lite; the satelliteis for monitoring weather;the orbit is
aroundEarth;etc. A systemthathasadequatelyunder
stood”the meaningof this sentenceshouldinclude such

plausibleimplicationsin its representatiorandthus (for
example)be ableto identify this sentencasrelevantto a
queryfor “rocketlaunchevents”. However, noneof these
factsare explicitly mentionedin thetext. Rather much
of thescenariaepresentationeedso comefrom strong,
prior expectationsbouttheway theworld mightbe,and
meaningprocessingnvolves matching,combining,and
instantiatingheseprior expectationavith knowledgeex-
plicitly statedin text. Viewedthis way, understandings
fundamentallyamodelingprocessin which prior knowl-
edgeand knowledge from text interact: Text suggests
whichscenario$n theknowledgebasemightberelevant;
andscenariofrom the knowledgebasesuggesivays of
interpretatinganddisambiguatingdext.

This style of approachto meaningprocessingisedto
be popularin the 1970 and 198075, e.g., (Cullingford,
1977;DeJong,1979;SchankandAbelson,1977),but has
largely beenabandonedor a numberof reasonsboth
theoreticaland pragmatic. Challengesnclude: the cost
of building the knowledge baseof expectationsin the
first place; controlling the matchingprocessn a robust
way; basicissuesof knowledgerepresentatiorfdefining
whatthe target shouldbe in the first place);andthe re-
centsuccessesf knowledge-poorstatisticalapproaches
on certainclassesof information retrieval tasks. How-
ever, despitethesechallengesmary question-answering
taskswill remainout of reachof currentsystemsun-
til deeperepresentationsf meaningareemployed, and
thuswe considerthat thesechallengesare importantto
addresstatherthanavoid.

In an earlierproject(Clark et al., 2002),we explored
methodsfor interpreting sentencesabout aircraft, ex-
pressedin a simplified version of English, using this
knowledge-driren style of processing. Interpretation
wasperformedby matchingthe sentencesNL-produced
“logical forms” againstpre-huilt representationsf air-
craft componentsand systems. Although effective for
certain texts, the generality of this method was con-
strainedin two ways. First, for successfumatching,the
approachrequiresthelogical form of theinputtext to be



(launch_a_satellite_vl has

(supercl asses (launch_v1 transport_v1)))

(every launch_a_satellite_vl has
(step_nl ((a countdown_nl with

hyper nyns

(location_nl ((the location_nl of Self

)))
(event _nl ((the fly_ vl step_nl of Self)))
(before_r1 ((the fly_vl step_nl of Self))

(a fly vl with

)

(vehicle_nl ((the vehicle_nl of Self)))))))

(vehicle_nl ((a rocket_nl)))
(agent_nl ((a causal _agent_nl)))
(cargo_nl ((a satellite_nl)))
(location_nl ((a launchpad_nl))))

Figurel: Therepresentatiofsimplified) of thescenarid'launchingasatellite”in theknowledge-basegncodedn the
languageKM. (Seethebody of this paperfor asummaryof the semantics).

bothfairly simpleandfairly close,structurally to thetar
get matchingstructurein the knowledgebase. Second,
the costof producingthe knowledgebaseby handis ex-
pensve, andthe approachis limited to just thoseareas
thattheknowledgebasecovers.

To addresshesechallengeswe arecurrentlyexploring
amodifiedapproachinspiredby Schubert recentwork
on extractingcommon-sensknowledgefrom text (Schu-
bert,2002).Beforebuilding thefull “logical forms” from
text, which canbe large and comple, and may require
certaindisambiguatiorcommitmentgo be madeprema-
turely, we arefirst extractingshorterfragmentsof infor-
mationfrom text, and usingthesefor matchingagainst
the knowledge base. In the simplestform, thesefrag-
mentsare simple subject-erb-objectrelationshipsge.g.,
from

(2) “Yesterday Russialauncheda spaceship
carryingequipmenfor the InternationalSpace
Station’

the systemwould extractthe fragments:

("Russia" "launch" "spaceship")
("spaceshi p" "carry" "equipnent")

In amoresophisticatedorm, thefragmentsalsoinclude
prepositionaphrasese.g.,from

(3) “Alan appliedfor ajob.”

the systemwould extractthefragment:

("Al an" "apply" ("for"™ "job"))

Thesestructuresare essentiallysnippetsof the full logi-
calform, exceptthat(i) they aresimplified (somedetails
removed), and (i) mary semanticdecisions,e.g., word
sensalisambiguationthesemanticelationshipdbetween
the objects, have beendeferreduntil knowledge-based

matchingtime. The taskthen, given several suchfrag-
mentsextractedfrom text, is to find the scenarioin the
knowledge-basehat bestmatcheshesefragments,i.e.,
that can accountfor as mary as possible. Throughthe
matchingprocessmary of the deferreddisambiguation
decisionsaaremade.

Althoughthe fragmentrepresentatioirs impoverished
comparedwith the full logical form, our conjectureis
thatit still containsenoughinformationto identify the
coremeaningof thetext, in termsof identifying andin-
stantiatingthe relevant scenarioin the knowledgebase,
while simplifying the meaningprocessingask. We are
thusseekinga “middle ground”betweersuperficialanal-
ysis of the text andfull-blown naturallanguageprocess-
ing. In somecasesjncluding thosewe have examined,
the scenariafrom the knowledgebase,instantiatedwith
fragments,is sufficient to answerquestionsabout the
text, with no further processingeingneeded.However
in other caseswe may needto adda “secondpass”in
which a more computationallyintensive matchingpro-
cesss thenusedto matchthetext’sfull logical form with
the fragment-selectelinowledgebasescenario. This is
still anareaof investigation.

In addition, thesefragmentsmay form the basisfor
helping constructthe knowledge basein the first place
(Schubert,2002). By processinga large corpusof text,
we can automaticallygeneratea large numberof frag-
mentsthatcanthenprovide the “raw material”for a per
sonto constructthe scenariomodelsfrom. Our conjec-
ture is that knowledge acquisitionwill be substantially
fasterwhentreatedasa processof filtering and assem-
bling fragments,ratherthan one of authoringfactsby
handfrom scratch. We describeour initial explorations
in this directionshortly.



2 TheKnowledge Base

We have recentlybeenworking with text describingvar-
iouskinds of “launch” events(launchingsatellites prod-
ucts, Web sites, ships, etc.). We describeour ongoing
implementationof the above approachn the context of
thesetexts.

2.1 Architecture

We ervisagethat, ultimately, the knowledgebase(KB)
will comprisea smallnumberof abstractcorerepresen-
tations(e.g.,movement transportationgorversion,pro-
duction,containment) alongwith a large numberof de-
tailedscenariaepresentationdle anticipatethatthefor-
merwill haveto bebuilt by hand,while the latter canbe
acquiredsemi-automaticallyisinga combinationof text
analysisandhumanfiltering/assemblin@f fragmentse-
sulting from that analysis. At presenthowever, we are
building both the core and detailedrepresentationby
hand,asafirst steptowardsthis goal.
Eachscenariorepresentatiorontainsa setof axioms
describingheobjectsinvolvedin thescenariotheevents
and suberentsinvolved, and their relationshipsto each
other Beforedescribingthesein more detail, however,
we first describethe KB's ontology (conceptualocahu-

lary).

2.2 TheOntology: Concepts

We areusingWordNet (Miller etal., 1993)asthe start-
ing point for the KB’s ontology Although WordNethas
limitations, it provides both an extensive taxonomy of
concepts(synsetsland a rich mappingfrom thosecon-
ceptsto words/phrasethatmay be usedto referto them
in text. This providesusefulknowledgeboth for identi-
fying coreferencebetweerdifferentrepresentationthat
are known to relate (e.g., betweena representatiorof
“launching” and a representatiorof “moving”, where
launchingis definedasa type of moving), and also for
matching scenariorepresentationsvith text fragments
when interpretingnew text (Section3.2). The use of
WordNetmay alsomake semi-automatedonstructiorof
the scenariaepresentationtemseleseasierif theraw
materialfor theserepresentationis derivedfrom text cor-
pora.We arealsoaddingnew conceptsavhereneededin
particularconceptsthat we wish to reify which are de-
scribedby phrasesatherthana singleword (thusnotin
WordNet),e.g.,“launchasatellite”,andcorrectingappar
enterrorsor omissionghatwe find.

As a namingcorvention,ratherthanidentify a synset
by its numberwe nameit by concatenatinghe synset
word most commonly usedto refer to it (as specified
by WordNet’s tag statistics),its part of speechandthe
WordNet senseof that word correspondgo that synset.
For example,bank _n1 is our friendly namefor synset
106948080(bank, the financial institution), as “bank”

is the synsetword mostcommonlyusedto referto this
synsetthis synsetis labeledwith a nounpartof speech,
and“bank” sensel is synsetl06948080.This renaming
is a simpleone-to-onemapping,andis purely cosmetic.
In WordNet, verbs and their nominalizationsare al-
waystreatedas(member®f) separateonceptsalthough
from an ontologicalstandpointtheseoften (we believe)
referto the sameentity (of type event). Martin hasmade
a similar obsenation (Martin, 2003). An exampleis a
runningevent, which may be referredto in both“l ran”
and“the run”. To remove this apparenduplication,we
usejust the verb-basedoncept(synset)for thesecases.
Note that this phenomenoroesnot hold for all verbs;
for someverbs,the nominalizationmay refer to the in-
strument(e.g., “hammer”) usedin the event, the object
(e.g.,“drink”), theresult(e.g.,"plot”), etc.

2.3 TheOntology: Relations

For constructingscenariaepresentationsye distinguish
betweenractive (action-like) verbsandstative (state-like)
verbs(e.g.,“enter” vs. “contain”), the formerbeingrei-
fied asindividualsin their own right (Davidsonianstyle)
with semanticolesattachedwhile the latter aretreated
asrelationg.

For events,we relatethe (reified) eventsto the objects
which participatein thoseevents(the “participants”)via
semantiaole-likerelations(agentjnstrumentemployer,
vehicle,etc.). We arefollowing a fairly liberal approach
to this: ratherthanconfiningoursehesto a small, fixed
setof primitiverelationswe aresimplyfinding theWord-
Net conceptthat bestdescribeghe relationship. This is
partlyin anticipationof therepresentationsventuallybe-
ing built semi-automaticallfrom text, whena similarly
diversesetof relationswill be present(basedon what-
ever relationthe text authorhappenedo use). In addi-
tion, it simply seemsgo bethe case(we believe) thatthe
setof possiblerelationshipsis large, makingit hardto
work with asmall, fixedsetwithout eitheroverloadingor
excessiely generalizingthe meaningof relationshipsn
thatset.

This easesthe challengethat working with a con-
strainedset of semanticroles poses,but at the expense
of morework beingrequired(by thereasoningengine)to
determinecoreferenceamongrepresentationgzor exam-
ple, if we use“giver” and“donor” (ratherthan“agent”
and“agent”, say)asrolesin “give” and“donate” repre-
sentationgespectiely, and“donate”is a kind of “give”,
it is then up to the inferenceengineto recognizethat

1In practice this separatiomf eventsandstatess notalways
so cleanat the boundaries:whethersomethingis an event or
stateis partly subjectve, dependingon the viewpoint adopted,
e.g., the level of temporalgranularity chosen. For example
“flight” canbeconsideredneventor a state dependingonthe
time-scaleof interest.
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Figure2: A graphicaldepictionof the“launchingasatel-
lite” scenarian theknowledge-base.

theseprobablyreferto the sameentity, whichin turn re-
quiresadditionalworld knowledge.We arecurrentlyus-
ing WordNetto provide thisworld knowledge.For exam-
ple,in this caseWordNetstateghat“donor” and“giver”
aresynoryms(in onesynset) andhencethe coreference
canberecognizedy thereasoningengine.ln othercases
onerole conceptmaybea sub/supertypef the other

Thisdecisionalsomeanghatwe areusingsomeWord-
Net conceptsboth as classeqtypes)andrelations,thus
strictly overloadingheseconceptsWe arecurrentlycon-
sideringextendingthe namingcorventionto distinguish
these.

2.4 Scenario Representations

The scenariorepresentationthemselesare constructed
— currently by hand — by identifying the key “partici-
pants”(bothobjectsandevents)in the scenarioandthen
creatinga graphof relationshipghat normally exist be-
tweenthoseparticipants.In our exampleof “launching”
scenariosgachtype of launching(launchinga satellite,
launchinga product, etc.) is representeds a different
scenarioin the knowledgebase. Theserepresentations
areencodedn thelanguagekKM (ClarkandPorter 1999),
a frame-baseknowledge representatiofanguagewith
well-definedfirst-orderogic semanticssimilarin styleto
KRL. For example,a (simplified) KM representatiorof
“launchingasatellite”is shovn in Figurel, andsketched
in Figure?2. In thegraphicaldepiction,the darknodede-
notesa universallyquantifiedobject,othernodesdenote
implied, existentially quantifiedobjects,andarcsdenote
binaryrelations.The semantic®f this structurearethat:
for everylaunchinga satelliteevent,thereexistsarocket,
alaunchsite, a countdavn event, ... etc.,andtherocket
is the vehicleof the launchinga satellite,the launchsite
is the location of the launchinga satellite,etc. The KB
currentlycontainsapproximately25 scenariaepresenta-
tionssimilarto this.

Thesegraphicalrepresentationare compositionalin
two importantways: First, throughinheritance,a rep-
resentationcan be combined with representationof
its generalizationge.qg., representation®f “launching
a satellite” and “placing somethingin position” canbe
combined). Second,different viewpoints/aspect®f a

conceptsuchaslaunchinga satelliteareencodedassep-
araterepresentationastructures(e.g., the sequenceof
events; the temporalinformation; the spatial informa-
tion; goal-orientedinformation). During text interpre-
tation, only thoserepresentation()f aspects/viers that
thetext itself refersto will becomposednto thestructure
matchedwith thetext.

3 Text Interpretation

3.1 Extraction of Knowledge Fragments from Text

Giventheknowledgebaseof scenariospur goalis to use
it to interpretnew text, by finding and instantiatingthe
scenarian the KB which bestmatcheghe factsexplicit

in thattext. To do this, first eachsentencen the new

text is parsedandfragmentsareextractedfrom the parse
tree.Parsingis doneby SAPIR,abottom-upchartparser
usedin Boeing (Holmbacket al., 2000). Fragmentsare
extractedby searchindor subject-erb-objecpatterndn

the parsetree, e.g.,rootedat the mainverbor in relative

clausesFor example,giventhesentence:

(4) “A RussiarProgresdvi-44 spaceshigarry-

ing equipment,food andfuel for the Interna-
tional SpaceStationwaslaunchedsuccessfully
Monday”

Thefragments:

("" "launch"
(" spaceshi p"
(" spaceshi p"
(" spaceshi p"

"spaceshi p")

"carry" "equi pnment")
"carry" "food")
“carry" "fuel")

are extracted. Note that at this stageword sensedisam-
biguationhasnot beenperformed.

3.2 Matching Scenarioswith Fragments

To match the scenariorepresentationsvith the NLP-
processedtext fragments, the system searchesfor
matches between objects in the representations
and objects mentionedin the fragments; and rela-
tionships in the representationsand relationships
mentioned in the fragments. The subject-erb-
object fragmentsare first broken up into two, e.g.,
("China" "launch" "satellite") be-
comes ("launch" "subject" "China")
and ("launch" "object" "satellite")
before matching. Then the system searchesfor a
scenario representationwhere as mary as possible
word-syntacticrelation-ard fragmentsmatch concept-
semanticrelation-conceptructuresn therepresentation.
Becausewe have used WordNet, eachconceptin the
knowledge basehas a set of associatedvords/phrases
usedto expressit in English,anda word in a fragment
“matches”a conceptif thatword is a memberof these
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Figure3: To interpretthe text, the systemfinds the sce-
nario representatiothat bestmatcheghe fragmentsex-
tractedfrom theinputtext. Word senseandsemantiaole
disambiguatioris a side-efect, ratherthanaprecursoto,
this matchingprocess.

associatedvords (i.e., the synset)for that concept(or
one of its specializationsor generalizations). This is
illustratedin Figure3. A simplescoringfunctionis used
to assesghe degreeof match,looking for the scenario
with the maximumnumberof matchingfragments,and
in the caseof a tie preferring the scenariowith the
maximumnumberof objectspotentially matchingsome
itemin thetext.

Note thatit is only at this point that word senseand
semantiaelationdisambiguatiorare performed.For ex-
ample,in this casethe fragmentsextractedfrom text best
matchthe | aunch_a_satel | i te_v1l scenario;as a
result, “launch” in the text will be taken to meanthe
| aunch_asatel |l ite_vlconcep(~ wordsense)as
opposedo launchinga product,launchinga ship, etc.

Onepieceof informationwe arenot currentlyexploit-
ing in this matchingprocessarethe statisticalprobabili-
tiesthatparticularsyntacticoles(grammaticafunctions)
suchassubjectdirectobject,etc.,will correspondo par
ticularsemantiaolessuchasagent _n1,vehi cl e_nl,
etc. Thesewould help the matcherdealwith ambiguous
caseswherethe currentapproactis not sufficient to de-
terminethe appropriatematch. Automatedmethodsfor
obtaining such statistics,such as (Gildea and Jurafsl,
2002),couldbe exploitedfor thistask.

3.3 Question Answering

Having identified and instantiatedthe appropriatesce-
nario representationn the knowledge base,that repre-

sentations now availablefor usein question-answering.

This allows questionsto be answeredwvhich go beyond
factsexplicitly mentionedn thetext, but which are part
of the scenariorepresentatioife.g.,a questionaboutthe
rocket),andthoserequiringinference(usingkKM’ sinfer-

enceengine appliedto the scenaricandotherknowledge
in theknowledgebase).

The inferenceengine currently requiresquestionsto
be posedin the native representatiodanguage(KM),
ratherthan having a naturallanguagefront end. Given
a query KM will not just retrieve facts containedex-
plicitly in the instantiatedscenariorepresentationput
also computeadditionalfacts using standardreasoning
mechanismsof inheritanceand rule evaluation. For
example,l aunch_a_satel I ite._vl is a subclassof
transport _v1, whoserepresentatioincludesan ax-
iom statingthatduringthe nove _v1 subeent,the cago
is inside the vehicle. Given an appropriatequery, this
axiomwill beinheritedto| aunch_a satellite.vl,
allowing the systemto concludethat during the move
subeventof thesatellitelaunch—heref | y_v1 —thesatel-
lite (caigo)will beinsidetherocket(vehicle). Theability
of the systemto reachthis kind of conclusiondemon-
strates,to a certaindegree,that it hasacquiredat least
someof the “deep” meaningof thetext, astheseconclu-
sionsgo beyondtheinformationcontainedn theoriginal
text itself.

4 Semi-Automatic Construction of the KB

For a broadcoveragesystema large numberof scenario
representationwill be necessarymorethancanbe fea-

sibly built by hand. While fully automaticacquisitionof

theserepresentationfom text seemseyondthe stateof

theart, we believe thereis a middle groundin which the

“raw material”for theserepresentationsanbe extracted
automaticallyfrom text, and which canthen be rapidly

filteredandassembledby a person.

As an initial exploration in this direction, we ap-
plied our “fragmentextractor” to partof the Reuterscor
pus (Reuters,2003) to obtaina databasef 1.1 million
subject-erb-objecfragments. Fromthis databasehigh-
frequeng patternscan then be searchedor, providing
possiblematerialfor incorporatingnto new scenariaep-
resentationsi-or example the databaseeveals(by look-
ing at the various tuple frequencies)that satellitesare
mostcommonlybuilt, launchedcarried,andused;rock-
ets mostcommonly carry satellites;Russiaand rockets
mostcommonlylaunchsatellites;andthatsatellitesmost
commonlytransmitandbroadcastSimilarly for theverb
“launch”, thingswhicharemostcommonlylaunchedac-
cordingto the databaseare campaignsservicesfunds,
investigations attacks,bonds,and satellites,suggesting
a set of scenariorepresentationsvhich could then be
built by searchingfurther from theseterms. Although
thesdragmentsarenotyetassemblehto largerscenario
representationand word senseshave not beendisam-
biguated further work in this directionmay yield meth-
odsby which a usercanrapidly find andassemblean-
didateelementsf representationsto larger structures,



perhapguidedby theexisting abstracmodelsalreadyin

theknowledgebase.Othercorpus-basetechniquesuch
as(Lin andPantel,2001)could alsobe usedto provide
additionalraw materialfor scenaricconstruction.

5 Summary

We believe thattext meaningprocessingandsubsequent
guestion-answeringboutthat text, is fundamentallya
modelingactiity, in which text suggestscenariomod-
els to use,andthosemodelssuggestways of interpret-
ing text. We have describedsomeongoinginvestigations
wereare conductingto developthis approachinto a us-
able methodfor languageprocessing.Although this ap-
proachis challengingfor anumberreasonsit offerssig-
nificant potentialfor allowing question-answeringp go
beyondfactsexplicitly statedin the varioustext sources
used.
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