
SDL—A Description Language for Building NLP Systems

Hans-Ulrich Krieger
Language Technology Lab

German Research Center for Arti£cial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

krieger@dfki.de

Abstract

We present the system description language
SDL that offers a declarative way of specify-
ing new complex NLP systems from already
existing modules with the help of three oper-
ators: sequence, parallelism, and unrestricted
iteration. Given a system description and mod-
ules that implement a minimal interface, the
SDL compiler returns a running Java program
which realizes exactly the desired behavior of
the original speci£cation. The execution se-
mantics of SDL is complemented by a precise
formal semantics, de£ned in terms of concepts
of function theory. The SDL compiler is part
of the SProUT shallow language platform, a
system for the development and processing of
multilingual resources.

1 Introduction

In this paper, we focus on a general system description
language, called SDL, which allows the declarative spec-
i£cation of NLP systems from a set of already existing
base modules. Assuming that each initial module imple-
ments a minimal interface of methods, a new complex
system is composed with the help of three operators, re-
alizing a sequence of two modules, a (quasi-)parallel ex-
ecution of several modules, and a potentially unrestricted
self-application of a single module. Communication be-
tween independent modules is decoupled by a mediator
which is sensitive to the operators connecting the mod-
ules and to the modules themselves. To put it in an-
other way: new systems can be de£ned by simply putting
together existing independent modules, sharing a com-
mon interface. The interface assumes functionality which
modules usually already provide, such as set input, clear
internal state, start computation, etc. It is clear that such
an approach permits ¤exible experimentation with dif-
ferent software architectures during the set up of a new

(NLP) system. The use of mediators furthermore guar-
antees that an independently developed module will stay
independent when integrated into a new system. In the
worst case, only the mediator needs to be modi£ed or up-
graded, resp. In many cases, not even a modi£cation of
the mediator is necessary. The execution semantics of
SDL is complemented by an abstract semantics, de£ned
in terms of concepts of function theory, such as Cartesian
product, functional composition & application, Lambda
abstraction, and unbounded minimization. Contrary to
an interpreted approach to system speci£cation, our ap-
proach compiles a syntactically well-formed SDL expres-
sion into a Java program. This code might then be incor-
porated into a larger system or might be directly compiled
by the Java compiler, resulting in an executable £le. This
strategy has two advantages: £rstly, the compiled Java
code is faster than an interpretation of the corresponding
SDL expression, and secondly, the generated Java code
can be modi£ed or even extended by additional software.

The structure of this paper is as follows. In the next
section, we motivate the development of SDL and give
a ¤avor of how base expressions can be compiled. We
then come up with an EBNF speci£cation of the concrete
syntax for SDL in section 3 and explain SDL with the
help of an example. Since modules can be seen as func-
tions in the mathematical sense, we argue in section 4
that a system speci£cation can be given a precise formal
semantics. We also clarify the formal status of the me-
diators and show how they are incorporated in the de£-
nition of the abstract semantics. Section 5 then de£nes
the programming interfaces and their default implemen-
tation, both for modules and for mediators. In the £nal
section, we present some details of the compilation pro-
cess.

2 Motivation & Idea

The shallow text processing system SProUT (Becker
et al., 2002) developed at DFKI is a complex plat-
form for the development and processing of multilin-

gual resources. SProUT arranges processing components
(e.g., tokenizer, gazetteer, named entity recognition) in
a strictly sequential fashion, as is known from standard
cascaded £nite-state devices (Abney, 1996).

In order to connect such (independently developed) NL
components, one must look at the application program-
mer interface (API) of each module, hoping that there are
API methods which allow, e.g., to call a module with a
speci£c input, to obtain the result value, etc. In the best
case, API methods from different modules can be used di-
rectly without much programming overhead. In the worst
case, however, there is no API available, meaning that we
have to inspect the programming code of a module and
have to write additional code to realize interfaces between
modules (e.g., data transformation). Even more demand-
ing, recent hybrid NLP systems such as WHITEBOARD

(Crysmann et al., 2002) implement more complex inter-
actions and loops, instead of using a simple pipeline of
modules.

We have overcome this in¤exible behavior by imple-
menting the following idea. Since we use typed feature
structures (Carpenter, 1992) in SProUT as the sole data
interchange format between processing modules, the con-
struction of a new system can be reduced to the interpre-
tation of a regular expression of modules. Because the ◦
sign for concatenation can not be found on a keyboard,
we have given the three characters +, |, and ∗ the follow-
ing meaning:

• sequence or concatenation
m1+m2 expresses the fact that (1) the input tom1+
m2 is the input given tom1, (2) the output of module
m1 serves as the input to m2, and (3) that the £nal
output of m1 + m2 is equal to the output of m2.
This is the usual ¤ow of information in a sequential
cascaded shallow NL architecture.

• concurrency or parallelism
| denotes a quasi-parallel computation of indepen-
dent modules, where the £nal output of each mod-
ule serves as the input to a subsequent module (per-
haps grouped in a structured object, as we do by de-
fault). This operator has far reaching potential. We
envisage, e.g., the parallel computation of several
morphological analyzers with different coverage or
the parallel execution of a shallow topological parser
and a deep HPSG parser (as in WHITEBOARD). In
a programming language such as Java, the execution
of modules can even be realized by independently
running threads.

• unrestricted iteration or £xpoint computation
m∗ has the following interpretation. Module m

feeds its output back into itself, until no more
changes occur, thus implementing a kind of a £x-

point computation (Davey and Priestley, 1990). It is
clear that such a £xpoint might not be reached in £-
nite time, i.e., the computation must not stop. A pos-
sible application was envisaged in (Braun, 1999),
where an iterative application of a base clause mod-
ule was necessary to model recursive embedding
of subordinate clauses in a system for parsing Ger-
man clause sentential structures. Notice that unre-
stricted iteration would even allow us to simulate an
all-paths context-free parsing behavior, since such
a feedback loop can in principle simulate an un-
bounded number of cascade stages in a £nite-state
device (each level of a CF parse tree has been con-
structed by a single cascade stage).

We have de£ned a Java interface of methods which
each module must ful£ll that will be incorporated in the
construction of a new system. Implementing such an in-
terface means that a module must provide an implementa-
tion for all methods speci£ed in the interface with exactly
the same method name and method signature, e.g., set-
Input(), clear(), or run(). To ease this implementa-
tion, we have also implemented an abstract Java class that
provides a default implementation for all these methods
with the exception of run(), the method which starts the
computation of the module and which delivers the £nal
result.

The interesting point now is that a new system, declar-
atively speci£ed by means of the above apparatus, can be
automatically compiled into a single Java class. Even the
newly generated Java class implements the above inter-
face of methods. This Java code can then be compiled by
the Java compiler into a running program, realizing ex-
actly the intended behavior of the original system speci-
£cation. The execution semantics for an arbitrary mod-
ule m is de£ned to be always the execution of the run()
method of m, written in Java as m.run()

Due to space limitations, we can only outline the basic
idea and present a simpli£ed version of the compiled code
for a sequence of two module instances m1 +m2, for the
independent concurrent computation m1 | m2, and for
the unbounded iteration of a single module instance m∗.
Note that we use the typewriter font when referring to
the concrete syntax or the implementation, but use italics
to denote the abstract syntax.

(m1 + m2)(input) ≡

m1.clear();
m1.setInput(input);
m1.setOutput(m1.run(m1.getInput()));
m2.clear();
m2.setInput(seq(m1, m2));
m2.setOutput(m2.run(m2.getInput()));
return m2.getOutput();

(m1 | m2)(input) ≡

m1.clear();
m1.setInput(input);
m1.setOutput(m1.run(m1.getInput()));
m2.clear();
m2.setInput(input);
m2.setOutput(m2.run(m2.getInput()));
return par(m1, m2);

(m∗)(input) ≡

m.clear();
m.setInput(input);
m.setOutput(fix(m));
return m.getOutput();

The pseudo code above contains three methods,
seq(), par(), and fix(), methods which mediate be-
tween the output of one module and the input of a suc-
ceeding module. Clearly, such functionality should not
be squeezed into independently developed modules, since
otherwise a module m must have a notion of a £xpoint
during the execution of m∗ or must be sensitive to the
output of every other module, e.g., during the processing
of (m1 | m2) + m. Note that the mediators take mod-
ules as input, and so having access to their internal in-
formation via the public methods speci£ed in the module
interface (the API).

The default implementation for seq is of course the
identity function (speaking in terms of functional compo-
sition). par wraps the two results in a structured object
(default implementation: a Java array). fix() imple-
ments a £xpoint computation (see section 5.3 for the Java
code). These mediators can be made speci£c to special
module-module combinations and are an implementation
of the mediator design pattern, which loosely couples in-
dependent modules by encapsulating their interaction in
a new object (Gamma et al., 1995, pp. 273). I.e., the
mediators do not modify the original modules and only
have read access to input and output via getInput()

and getOutput().
In the following, we present a graphical representation

for displaying module combination. Given such pictures,
it is easy to see where the mediators come into play. De-
picting a sequence of two modules is, at £rst sight, not
hard.

m1 m2

Now, if the input format of m2 is not compatible with
the output of m1, must we change the programming code
for m2? Even more serious, if we would have another
expression m3 + m2, must m2 also be sensitive to the
output format of m3? In order to avoid these and other
cases, we decouple module interaction and introduce a
special mediator method for the sequence operator (seq
in the above code), depicted by ⊕.

m1 + m2

⊕ connects two modules. This fact is re¤ected by mak-
ing seq a binary method which takes m1 and m2 as input
parameters (see example code).

Let us now move to the parallel execution of several
modules (not necessarily two, as in the above example).

mk

m1

...

There is one problem here. What happens to the output
of each module when the lines come together, meeting in
the outgoing arrow? The next section has a few words
on this and presents a solution. We only note here that
there exists a mediator method par, which, by default,
groups the output in a structured object. Since par does
not know the number of modules in advance, it takes as
its parameter an array of modules. Note further that the
input arrows are £ne—every module gets the same data.
Hence, we have the following modi£ed picture.

mk

m1

... |

Now comes the ∗ operator. As we already said, the
module feeds itself with its own output, until a £xpoint
has been reached, i.e., until input equals output. Instead
of writing

m

we make the mediator method for ∗ explicit, since it em-
bodies the knowledge about £xpoints (and not the mod-
ule):

m ∗

3 Syntax

A new system is built from an initial set of already ex-
isting modules M with the help of the three operators +,
|, and ∗. The set of all syntactically well-formed module
descriptions D in SDL is inductively de£ned as follows:

• m ∈M ⇒ m ∈ D

• m1,m2 ∈ D ⇒ m1 +m2 ∈ D

• m1, . . . ,mk ∈ D ⇒ (| m1 . . .mk) ∈ D

• m ∈ D ⇒ m∗ ∈ D

Examples in the concrete syntax are written using the
typewriter font, e.g., module. All operators have the
same priority. Succeeding modules are written from left
to right, using in£x notation, e.g., m1 + m2.

Parallel executed modules must be put in parentheses
with the | operator £rst, for instance (| m1 m2). Note
that we use the pre£x notation for the concurrency op-
erator | to allow for an arbitrary number of arguments,
e.g., (| m1 m2 m3). This technique furthermore cir-
cumvents notorious grouping ambiguities which might
lead to different results when executing the modules. No-
tice that since | must neither be commutative nor must it
be associative, the result of (| m1 m2 m3) might be dif-
ferent to (| m1 (| m2 m3)), to (| (| m1 m2) m3),
or even to (| m2 (| m1 m3)), etc. Whether | is com-
mutative or associative is determined by the implemen-
tation of concurrency mediator par. Let us give an ex-
ample. Assume, for instance, that m1, m2, and m3 would
return typed feature structures and that par() would join
the results by using uni£cation. In this case, | is clearly
commutative and associative, since uni£cation is commu-
tative and associative (and idempotent).

Finally, the unrestricted self-application of a module
should be expressed in the concrete syntax by using the
module name, pre£xed by the asterisk sign, and grouped
using parentheses, e.g., (* module). module here
might represent a single module or a complex expression
(which itself must be put in parentheses).

Making | and ∗ pre£x operators (in contrast to +) ease
the work of the syntactical analysis of an SDL expression.
The EBNF for a complete system description system is
given by £gure 1. A concrete running example is shown
in £gure 2.

The example system from £gure 2 should be read
as de£ne a new module de.dfki.lt.test.System

as (| rnd1 rnd2 rnd3) + inc1 + ..., varia-
bles rnd1, rnd2, and rnd3 refer to instances
of module de.dfki.lt.sdl.test.Randomize,
module Randomize belongs to package
de.dfki.lt.sdl.test, the value of rnd1 should
be initialized with ("foo", "bar", "baz"), etc.
Every single line must be separated by the newline
character.

The use of variables (instead of using directly module
names, i.e., Java classes) has one important advantage:
variables can be reused (viz., rnd2 and rnd3 in the ex-
ample), meaning that the same instances are used at sev-
eral places throughout the system description, instead of
using several instances of the same module (which, of
course, can also be achieved; cf. rnd1, rnd2, and rnd3

which are instances of module Randomize). Notice that

the value of a variable can not be rede£ned during the
course of a system description.

4 Modules as Functions

Before we start the description of the implementation in
the next section, we will argue that a system description
can be given a precise formal semantics, assuming that
the initial modules, which we call base modules are well
de£ned. First of all, we only need some basic mathemat-
ical knowledge from secondary school, viz., the concept
of a function.

A function f (sometimes called a mapping) from S to
T , written as f : S −→ T , can be seen as a special
kind of relation, where the domain of f is S (written as
DOM(f) = S), and for each element in the domain of f ,
there is at most one element in the range (or codomain)
RNG(f). If there always exists an element in the range,
we say that f is a total function (or well de£ned) and write
f ↓. Otherwise, f is said to be a partial function, and for
an s ∈ S for which f is not de£ned, we then write f(s)↑.

Since S itself might consist of ordered n-tuples and
thus is the Cartesian product of S1, . . . , Sn, depicted as
×ni=1Si, we use the vector notation and write f(~s) instead
of f(s). The n-fold functional composition of f : S −→
T (n ≥ 0) is written as fn and has the following induc-
tive de£nition: f 0(~s) := ~s and f i+1(~s) := f(f i(~s)).
s ∈ S is said to be a £xpoint of f : S −→ S iff

f(f(s)) =S f(s) (we use =S to denote the equality rela-
tion in S).

Assuming that m is a module for which a proper run()
method has been de£ned, we will, from now on, refer to
the function m as abbreviating m.run(), the execution
of method run() from module m. Hence, we de£ne the
execution semantics of m to be equivalent to m.run().

4.1 Sequence

Let us start with the sequence m1 + m2 of two mod-
ules, regarded as two function m1 : S1 −→ T1 and
m2 : S2 −→ T2. + here is the analogue to functional
composition ◦, and so we de£ne the meaning (or abstract
semantics) [[·]] of m1 +m2 as

[[m1 +m2]](~s) := (m2 ◦m1)(~s) = m2(m1(~s))

m1 +m2 then is well-de£ned if m1 ↓, m2 ↓, and T1 ⊆
S2 is the case, due to the following biconditional:

m1 ↓,m2 ↓, T1 ⊆ S2 ⇐⇒ (m1 ◦m2 : S1 −→ T2)↓

4.2 Parallelism

We now come to the parallel execution of k modules mi :
Si −→ Ti (1 ≤ i ≤ k), operating on the same input. As
already said, the default mediator for | returns an ordered

system → de£nition {command}∗ variables
de£nition →module "=" regexpr newline
module → a fully quali£ed Java class name
regexpr → var | "(" regexpr ")" | regexpr "+" regexpr | "(" "|" {regexpr}+ ")" | "(" "*" regexpr ")"
newline → the newline character
command→mediator | threaded
mediator → "Mediator =" med newline
med → a fully quali£ed Java class name
threaded → "Threaded =" {"yes" | "no"} newline
variables →{vareq newline}+

vareq → var "=" module [initexpr]
var → a lowercase symbol
initexpr → "(" string {"," string}∗ ")"
string → a Java string

Figure 1: The EBNF for the syntax of SDL.

de.dfki.lt.test.System = (| rnd1 rnd2 rnd3) + inc1 + inc2 + (* i5ut42) + (* (rnd3 + rnd2))
Mediator = de.dfki.lt.sdl.test.MaxMediator
Threaded = Yes
rnd1 = de.dfki.lt.sdl.test.Randomize("foo", "bar", "baz")
rnd2 = Randomize("bar", "baz")
rnd3 = de.dfki.lt.sdl.test.Randomize("baz")
inc1 = de.dfki.lt.sdl.test.Increment
inc2 = de.dfki.lt.sdl.test.Increment
i5ut42 = de.dfki.lt.sdl.test.Incr5UpTo42

Figure 2: An example in the concrete syntax of SDL.

sequence of the results of m1, . . . ,mk, hence is similar
to the Cartesian product ×:

[[(| m1 . . . mk)]](~s) := 〈m1(~s), . . . ,mk(~s) 〉

(| m1 . . . mk) is well-de£ned if each module is well
de£ned and the domain of each module is a superset of
the domain of the new composite module:

m1 ↓, . . . ,mk ↓ =⇒

(m1× . . .×mk : (S1 ∩ . . . ∩ Sk)
k
−→ T1× . . .×Tk)↓

4.3 Iteration

A proper de£nition of unrestricted iteration, however, de-
serves more attention and a bit more work. Since a mod-
ule m feeds its output back into itself, it is clear that the
iteration (m∗)(~s) must not terminate. I.e., the question
whetherm∗↓ holds, is undecidable in general. Obviously,
a necessary condition for m∗↓ is that S ⊇ T , and so if
m : S −→ T and m↓ holds, we have m∗ : S −→ S.
Since m is usually not a monotonic function, it must not
be the case that m has a least and a greatest £xpoint. Of
course, m might not possess any £xpoint at all.

Within our very practical context, we are interested in
£nitely-reachable £xpoints. From the above remarks, it is

clear that given ~s ∈ S, (m∗)(~s) terminates in £nite time
iff no more changes occur during the iteration process,
i.e.,

∃n ∈ N . mn(~s) =S m
n−1(~s)

We can formalize the meaning of ∗ with the help of
Kleene’s µ operator, known from recursive function the-
ory (Hermes, 1978). µ is a functional and so, given a
function f as its input, returns a new function µ(f), the
unbounded minimization of f . Originally employed to
precisely de£ne (partial) recursive functions of natural
numbers, we need a slight generalization, so that we can
apply µ to functions, not necessarily operating on natural
numbers.

Let f : N
k+1 −→ N (k ∈ N). µ(f) : N

k −→ N is
given by

µ(f)(~x) :=







n if f(~x, n) = 0 and f(~x, i) > 0,
for all 0 ≤ i ≤ n− 1

↑ otherwise

I.e., µ(f)(~x) returns the least n for which f(~x, n) = 0.
Such an n, of course, must not exist.

We now move from the natural numbers N to an arbi-
trary (structured) set S with equality relation =S . The
task of µ here is to return the number of iteration steps

n for which a self-application of module m no longer
changes the output, when applied to the original input
~s ∈ S. And so, we have the following de£nitional equa-
tion for the meaning of m∗:

[[m∗]](~s) := mµ(m)(~s)(~s)

Obviously, the number of iteration steps needed to ob-
tain a £xpoint is given by µ(m)(~s), where µ : (S −→
S) −→ N. Given m, we de£ne µ(m) as

µ(m)(~s) :=















n if mn(~s) =S m
n−1(~s) and

mi(~s) 6=S m
i−1(~s),

for all 0 ≤ i ≤ n− 1
↑ otherwise

Compare this de£nition with the original µ(f)(~x) on
natural numbers above. Testing for zero is replaced here
by testing for equality in S. This last de£nition completes
the semantics for m∗.

4.4 Incorporating Mediators

The above formalization does not include the use of
mediators. The effects the mediators have on the in-
put/output of modules are an integral part of the de£nition
for the meaning of m1 +m2, (| m1 . . . mk), and m∗. In
case we explicitly want to represent (the default imple-
mentation of) the mediators in the above de£nitions, we
must, £rst of all, clarify their status.

Let us focus, for instance, on the mediator for the se-
quence operator +. We already said that the mediator for
+ uses the output of m1 to feed m2, thus can be seen as
the identity function id, speaking in terms of functional
composition. Hence, we might rede£ne [[(m1 +m2)]](~s)
as

[[(m1 +m2)]](~s) :=

(m2 ◦ id ◦m1)(~s) = m2(id(m1(~s))) = m2(m1(~s))

If so, mediators were functions and would have the
same status as modules. Clearly, they pragmatically dif-
fer from modules in that they coordinate the interaction
between independent modules (remember the mediator
metaphor). However, we have also said that the media-
tor methods take modules as input. When adopting this
view, a mediator is different from a module: it is a func-
tional (as is µ), taking functions as arguments (the mod-
ules) and returning a function. Now, let S be the mediator
for the + operator. We then obtain a different semantics
for m1 +m2.

[[(m1 +m2)]](~s) := (m2 ◦ S(m1,m2) ◦m1)(~s)

and

S(m1,m2) := id

is the case in the default implementation for +. This view,
in fact, precisely corresponds to the implementation.

Let us quickly make the two other de£nitions re¤ect
this new view and let P and F be the functionals for |
and ∗, resp. For |, we now have

[[(| m1 . . . mk)]](~s) := (P(m1, . . . ,mk)◦(×
k
i=1mi))(~s

k)

(×ki=1mi)(~s
k) denotes the ordered sequence

〈m1(~s), . . . ,mk(~s) 〉 to which function P(m1, . . . ,mk)
is applied. At the moment,

P(m1, . . . ,mk) := ×ki=1id

i.e., the identity function is applied to the result
of each mi(~s), and so in the end, we still obtain
〈m1(~s), . . . ,mk(~s) 〉.

The adaption of m∗ is also not hard: F is exactly the
µ(m)(~x)-fold composition of m, given value ~x. Since ~x
are free variables, we use Church’s Lambda abstraction
(Barendregt, 1984), make them bound, and write

F(m) := λ~x .mµ(m)(~x)(~x)

Thus

[[m∗]](~s) := (F(m))(~s)

It is clear that the above set of de£nitions is still not
complete, since it does not cover the cases where a mod-
ule m consists of several submodules, as does the syntax
of SDL clearly admit. This leads us to the £nal four in-
ductive de£nitions which conclude this section:

• [[m]](~s) := m(~s) iff m is a base module

• [[(m1 +m2)]](~s) :=
([[m2]] ◦ S([[m1]], [[m2]]) ◦ [[m1]])(~s)

• [[(| m1 . . . mk)]](~s) :=
(P([[m1]], . . . , [[mk]]) ◦ (×ki=1[[mi]]))(~s

k)

• [[m∗]](~s) := (F([[m]]))(~s),
whereas F([[m]]) := λ~x . [[m]]

µ([[m]])(~x)
(~x)

Recall that the execution semantics of m(~s) has not
changed after all and is still m.run(s), whereas s abbre-
viates the Java notation for the k-tuple ~s.

5 Interfaces

This section gives a short scetch of the API methods
which every module must implement and presents the de-
fault implementation of the mediator methods.

5.1 Module Interface IModule

The following seven methods must be implemented by a
module which should contribute to a new system. The
next subsection provides a default implementation for
six of them. The exception is the one-argument method
run() which is assumed to execute a module.

• clear() clears the internal state of the module it
is applied to. clear() is useful when a module
instance is reused during the execution of a sys-
tem. clear() might throw a ModuleClearError
in case something goes wrong during the clearing
phase.

• init() initializes a given module by providing
an array of init strings. init() might throw a
ModuleInitError.

• run() starts the execution of the module to which
it belongs and returns the result of this computa-
tion. An implementation of run() might throw
a ModuleRunError. Note that run() should not
store the input nor the output of the computation.
This is supposed to be done independently by using
setInput() and setOutput() (see below).

• setInput() stores the value of parameter input
and returns this value.

• getInput() returns the input originally given to
setInput().

• setOutput() stores the value of parameter
output and returns this value.

• getOutput() returns the output originally given to
setOutput().

5.2 Module Methods

Six of the seven module methods are provided by a
default implementation in class Modules which imple-
ments interface IModule (see above). New modules are
advised to inherit from Modules, so that only run()

must actually be speci£ed. Input and output of a module
is memorized by introducing the two additional private
instance £elds input and output.
public abstract class Modules implements IModule {

private Object input, output;

protected Modules() {
this.input = null;
this.output = null; }

public Object run(Object input) throws
UnsupportedOperationException {
throw new UnsupportedOperationException("..."); }

public void clear() {
this.input = null;
this.output = null; }

public void init(String[] initArgs) {
}

public Object setInput(Object input) {
return (this.input = input); }

public Object getInput() {
return this.input; }

public Object setOutput(Object output) {
return (this.output = output); }

public Object getOutput() {
return this.output; }

}

5.3 Mediator Methods

The public class Mediators provides a default imple-
mentation for the three mediator methods, speci£ed in
interface IMediator. It is worth noting that although
fix() returns the £xpoint, it relocates its computation
into an auxiliary method fixpoint() (see below), due
to the fact that mediators are not allowed to change the
internal state of a module. And thus, the input £eld still
contains the original input, whereas the output £eld refers
to the £xpoint, at last.

public class Mediators implements IMediator {

public Mediators() {
}

public Object seq(IModule module1, IModule module2) {
return module1.getOutput(); }

public Object par(IModule[] modules) {
Object[] result = new Object[modules.length];
for (int i = 0; i < modules.length; i++)

result[i] = modules[i].getOutput();
return result; }

public Object fix(IModule module) {
return fixpoint(module, module.getInput()); }

private Object fixpoint(IModule module, Object input) {
Object output = module.run(input);
if (output.equals(input))

return output;
else

return fixpoint(module, output); }

}

6 Compiler

In section 2, we have already seen how basic expressions
are compiled into a sequence of instructions, consisting
of API methods from the module and mediator interface.
Here, we like to glance at the compilation of more com-
plex SDL expressions.

First of all, we note that complex expressions are de-
composed into ¤at basic expressions which are not fur-
ther structured. Each subexpression is associated with a
new module variable and these variables are inserted into
the original system description which will also then be-
come ¤at. In case of the example from £gure 2, we have

the following subexpressions together with their vari-
ables (we pre£x every variable by the dollar sign): $1

= (| $rnd1 $rnd2 $rnd3), $2 = (* $i5ut42), $3
= ($rnd3 + $rnd2), and $4 = (* $3). As a result,
the original system description reduces to $1 + $inc1

+ $inc2 + $2 + $4 and thus is normalized as $1, . . .,
$4 are. The SDL compiler then introduces so-called local
or inner Java classes for such subexpressions and locates
them in the same package to which the newly de£ned
system belongs. Clearly, each new inner class must also
ful£ll the module interface IModule (see section 5) and
the SDL compiler produces the corresponding Java code,
similar to the default implementation in class Modules

(section 5), together with the right constructors for the
inner classes.

For each base module and each newly introduced inner
class, the compiler generates a private instance £eld (e.g.,
private Randomize $rnd1) and a new instance (e.g.,
this.$rnd1 = new Randomize()) to which the API
methods can be applied. Each occurence of the operators
+, |, and * corresponds to the execution of the mediator
methods seq, par, and fix (see below).

Local variables (pre£xed by the low line character) are
also introduced for the individual run() methods (15,
. . ., 23 below). These variables are introduced by the
SDL compiler to serve as handles (or anchors) to already
evaluated subexpression, helping to establish a proper
¤ow of control during the recursive compilation process.

We £nish this paper by presenting the generated code
for the run() method for system System from £gure 2.
public Object run(Object input)

throws ModuleClearError, ModuleRunError {
this.clear();
this.setInput(input);
IMediator _med = new MaxMediator();
this.$1.clear();
this.$1.setInput(input);
Object _15 = this.$1.run(input);
this.$1.setOutput(_15);
Object _16 = _med.seq(this.$1, this.$inc1);
this.$inc1.clear();
this.$inc1.setInput(_16);
Object _17 = this.$inc1.run(_16);
this.$inc1.setOutput(_17);
Object _18 = _med.seq(this.$inc1, this.$inc2);
this.$inc2.clear();
this.$inc2.setInput(_18);
Object _19 = this.$inc2.run(_18);
this.$inc2.setOutput(_19);
Object _20 = _med.seq(this.$inc2, this.$2);
this.$2.clear();
this.$2.setInput(_20);
Object _21 = this.$2.run(_20);
this.$2.setOutput(_21);
Object _22 = _med.seq(this.$2, this.$4);
this.$4.clear();
this.$4.setInput(_22);
Object _23 = this.$4.run(_22);
this.$4.setOutput(_23);
return this.setOutput(_23);
}

We always generate a new mediator object (med) for
each local class in order to make the parallel execution
of modules thread-safe. Note that in the above code, the

mediator method seq() is applied four times due to the
fact that + occurs four times in the original speci£cation.

The full code generated by the SDL compiler
for the example from £gure 2 can be found under
http://www.dfki.de/∼krieger/public/. The di-
rectory also contains the Java code of the involved mod-
ules, plus the default implementation of the mediator and
module methods. In the workshop, we hope to further
report on the combination of WHAT (Schäfer, 2003), an
XSLT-based annotation transformer, with SDL.

Acknowledgement

I am grateful to my colleagues Bernd Kiefer, Markus
Pilzecker, and Ulrich Schäfer, helping me to make things
clear. Thanks to the anonymous reviewers who have iden-
ti£ed weak points. This work was supported by the Ger-
man Federal Ministry for Education, Science, Research,
and Technology under grant no. 01 IW C02 (QUETAL)
and by an EU grant under no. IST 12179 (Airforce).

References
S. Abney. 1996. Partial parsing via £nite-state cascades. Natu-

ral Language Engineering, 2(4):337–344.

H. Barendregt. 1984. The Lambda Calculus, its Syntax and
Semantics. North-Holland.

M. Becker, W. Dro¢zd¢zyński, H.-U. Krieger, J. Piskorski, U.
Schäfer, and F. Xu. 2002. SProUT—shallow processing
with uni£cation and typed feature structures. In Proceedings
of ICON.

C. Braun. 1999. Flaches und robustes Parsen Deutscher
Satzgefüge. Master’s thesis, Universität des Saarlandes. In
German.

B. Carpenter. 1992. The Logic of Typed Feature Structures.
Cambridge University Press.

B. Crysmann, A. Frank, B. Kiefer, S. Müller, G. Neumann, J.
Piskorski, U. Schäfer, M. Siegel, H. Uszkoreit, F. Xu, M.
Becker, and H.-U. Krieger. 2002. An integrated architecture
for shallow and deep processing. In Proceedings of ACL,
pages 441–448.

B.A. Davey and H.A. Priestley. 1990. Introduction to Lattices
and Order. Cambridge University Press.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. De-
sign Patterns. Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley.

H. Hermes. 1978. Aufzählbarkeit, Entscheidbarkeit, Berechen-
barkeit: Einführung in die Theorie der rekursiven Funktio-
nen. Springer, 3rd ed. In German. Also as Enumerability,
Decidability, Computability: An Introduction to the Theory
of Recursive Functions.

U. Schäfer. 2003. WHAT: an XSLT-based infrastructure for the
integration of natural language processing components. In
Proceedings of SEALTS.

