Grid-Enabling Natural Language Engineering By Stealth

Baden Hughes and Steven Bird
Department of Computer Science and Software Engineering
University of Melbourne
Victoria, 3010, Australia

{badenh,

Abstract

We describe a proposal for an extensible, component-
based software architecture for natural language engi-
neering applications. Our model leverages existing lin-
guistic resource description and discovery mechanisms
based on extended Dublin Core metadata. In addition,
application design is flexible, allowing disparate com-
ponents to be combined to suit the overall application
functionality. An application specification language
provides abstraction from the programming environ-
ment and allows ease of interface with computational
grids via a broker.

1 Introduction

Computational grids are an emerging infrastruc-
ture framework for conducting research where
problems are often data or processor intensive. A
computational grid allows for large-scale analysis,
distributed resources and processing, in addition to
engendering new models for collaboration and ap-
plication development. Foster et al, (2001, 2002)
provides a physiological and an anatomical over-
view of grid computing services, and provides
foundational architectures for application devel-
opment in the grid space. Given the prevalence of
large data sources in the natural language engineer-
ing domain and the need for raw computational
power in the automated analysis of such data, the
grid computing paradigm provides efficiencies
otherwise unavailable to natural language engi-
neering.

Language engineering applications are typically
constructed out of several processing components,
each responsible for a specialized task. Typical
components include speech recognition, tagging,
entity detection, anaphora resolution, parsing, etc.
Each component is heavily parameterized and must
be trained on very large datasets (e.g. the LDC Gi-
gaword corpus (Graff, 2002)). Discovering optimal
parameterizations is both data- and computation-

sb}@cs.mu.oz.au

ally-intensive. ~ Building complex applications,
such as spoken dialogue systems, depends on iden-
tifying and integrating suitable components often
from a range of sources.

In this paper we describe a proposal for an ex-
tensible, component-based software architecture
for natural language engineering applications
which leverages linguistic resource discovery
mechanisms and allows standard interfaces with
computational grids for data analysis. An overview
of the model is displayed below in Figure 1.

Architectural Model

Components
(media conversion,
ASR, parser etc)

Data Sources
{audio, text etc)

esource Discover:
Agent

(OLAC)

Application Design
Portal
{Web or Java Based)

iyl

Grid Application
Specification
(XML)

I

Grid Services Broker
(NIMROD-G})

JL

Grid Services
(GLOBUS coordinated CPU, data storage etc)

Figure 1. Architectural Model

Recent advances in the automated exposure and
harvesting of data resource catalogues are pro-
posed to be extended for the natural language en-
gineering domain. Based on these extensions we
can programmatically and intelligently discover
data sources, components, applications and grid
nodes offering specific services.

The model advocated here is broadly based on
the concept of cloud computing (Siegele, 2001). In
this model, a series of distributed individual com-
ponents are assembled via an application frame-
work, with internal communication requirements
addressed by a common interface specification. An
application consists of one or more data sources,
together with a number of individual components,
coordinated within an overall framework. Compo-
nents are function specific implementations which
adhere to a core series of standards for inter-
component coordination which is open to exten-
sion by third parties.

Collections of components which form applica-
tions are then expressed using a grid application
specification language which is parsed by a broker
that interfaces with the computational grid infra-
structure. Any application composed within or out-
side this model can address such a broker, and
hence access the power and scalability of computa-
tional grids for processing.

This model has numerous benefits. First, exist-
ing natural language engineering applications can
benefit from grid services without being grid-
aware, simply by instructing the broker to perform
a specified task as if it were a single server. Sec-
ond, application definitions are a declarative speci-
fication of a processing task and of the relationship
between processing components, facilitating sub-
stitution of equivalent components and aggregation
of simple applications into more complex applica-
tions. Third, application definitions and result sets
can be stored, described using standard metadata,
and be discovered and re-used by other applica-
tions at a later date.

In this paper, we discuss the architectural foun-
dations of our proposal, resource discovery mecha-
nisms, component identification, multi-component
application design (including several sample
applications), the grid services interface and the
grid application specification language. Finally
some directions for future work are identified.

2 Basic Processing Paradigms

A range of software architectures for natural
language engineering have been developed in the
last decade, and matured to the extent that there are
a wide range of applications built on foundations
such as GATE (Cunningham et al, 1996, Cunning-
ham 2002) and ATLAS (Bird et al, 2000). How-
ever, all of these software architectures envisage a
local processing model, where data sources, entire
applications, and computational resources are co-
located. Additionally, processing is generally as-
sumed to be serialized, with little opportunity for
simultaneous processes taking advantage of analy-
ses provided by each other.

Equally, there have been numerous develop-
ments for the deployment of computational grids,
ranging from middleware, API’s, libraries and in-
frastructural management approaches. Within the
computational grid architectures currently de-
ployed, there are both processor-centric and data-
centric architectures, of which the most common is
the processor-centric grid. In this context, grid
aware applications typically adopt the approach of
transporting the data from a storage site to the site
of available CPU capacity. However in natural
language engineering this is less attractive because
the size of data sources is commonly large enough
for any network based transport to be relatively
inefficient and/or cost-prohibitive. The implica-
tions for the development of a broker architecture
for data-centric grids are of orthogonal interest but
are discussed briefly later.

The model advocated in this paper would work
equally well in either context providing a suffi-
ciently intelligent broker architecture was avail-
able. At the time of writing, it is envisaged that a
processor-centric architecture will be utilized at
least in the medium term.

3 Resource Discovery

Within any distributed natural language engi-
neering system, there clearly exists a need to dis-
cover data sources, components, applications and
processing services over the network. This need is
expressed both by the application developer, who
desires to build an application from a range of
available components, as well as by the brokering
agent, which needs to align application require-
ments with available computational resources.

There are a range of methods available to facili-
tate such discovery. Of note are the potential for
the use of a Web Services implementation (using
DAML-S or formal RDF), or embedding this task
within the wider Semantic Web implementations
(eg by W3C). Whilst the authors are appreciative
of the developments within these areas, there al-
ready exists a language resource specific frame-
work for resource description and discovery within
the Open Language Archives Community (OLAC)
which has significant benefit, and it is on this basis
we proceed.

We propose to extend the OLAC resource de-
scription and discovery mechanisms. This will be
achieved by adopting and extending standards
based on the foundational work of Hughes (2002)
for the encoding of information such as CPU and
memory requirements, and component and applica-
tion functionality. Electing to extend this standard
allows us to leverage discovery tools and tech-
niques already in existence and considered the
benchmark for such processes. The OLAC Meta-
data Set (Bird and Simons, 2002a) is an extension
of the Dublin Core Metadata Set (Dublin Core
Metadata Initiative, 2003), thus ensuring wide-
spread accessibility. The OLAC initiative has a
standardized mechanism for extending OLAC
metadata (Bird and Simons, 2002b) which we will
adopt to describe data sources, applications and
processing nodes. Having based resource descrip-
tions on OLAC standards we can then query an
OLAC aggregator to discover the existence and
status of resources of interest.

4 Component Identification

In order to explore the grid computing para-
digm through a natural language engineering
framework, a component based model has been
adopted. Within this model, we identify and de-
scribe a number of re-usable component types
which can be combined to create multi-component
applications to be executed in the grid environ-
ment. Each of these component types has as a
common functional core the ability to communi-
cate with a central management infrastructure us-
ing standard messaging interfaces. In developing
prototype implementations, we intend to wrap ex-
isting components wherever possible.

4.1 Annotation Server

A large class of language engineering tasks in-
volving time-series data can be construed as add-
ing a new layer of annotation to existing data. For
example, a process which takes speech input and
produces text output (e.g. a speech recognizer) can
be viewed as adding textual annotation to audio
data, with the result that both data types remain
accessible for further analysis. When several tasks
operate in this mode, they collectively build a rich
store of linguistic information. For example, a
prosody recognition component could identify
major phrase boundaries in spoken input, and a
parser could employ both the ASR and prosody
output in constructing parse trees.

Annotation graphs can be used to represent a
diverse range of time-series annotations, including
ASR output, POS tags, named entities, syntactic
chunks or trees, aligned translations, dialogue acts,
and so on. Importantly, the intermediate stages of
many processing tasks are well-formed as annota-
tion graphs, so certain outputs may become avail-
able shortly after the process starts, facilitating
efficient pipelining and streaming. The Annotation
Graph Toolkit (AGTK) (Linguistic Data Consor-
tium, 2001-2003) is an open source implementa-
tion of annotation graphs which works with a
mature API and a wide range of supported models
and formats. The Annotation Server is a compo-
nent that collects, collates and stores annotation
graphs which may be generated or accessed by
other components and applications and extends on
proposals previously described by Cieri and Bird
(2001), and available as a prototype in the current
AGTK distribution.

4.2 Alignment

An Alignment component is used to forcibly
align digitized speech with a supplied transcript.
This can be performed at various levels of granu-
larity, and partial results can be naturally repre-
sented as an annotation graph.

4.3 Automatic Speech Recognition

An ASR component can be used to create a
time-aligned transcript, again represented directly
as an annotation graph.

4.4 Data Source Packaging

A Data Source Packaging component divides
data sources into logical units which can be dis-
tributed across the grid as individual processing
tasks. As an example, consider a digital audio file
of 500Mb in size. As this would be non-trivial to
transfer to a remote processing node, a Packager
could divide this data source into fifty 10Mb digi-
tal audio files, each of which could be compressed,
transported and processed separately.

4.5 Conversion

A Conversion component is used to convert be-
tween media formats, character encoding schemes,
and annotation types. The expected input and out-
put formats of existing natural language engineer-
ing components are often incompatible, and this
component will facilitate component integration,
simplifying the task of wrapping existing compo-
nents. In the case of media formats, this compo-
nent will be able to serve a static data source as a
stream source and vice versa. In the case of anno-
tation conversion, this component will be able to
convert between the wide variety of existing time-
series annotation formats understood by AGTK.

4.6 Text Annotation

A Text Annotation component augments exist-
ing annotated text with a new layer of annotation,
e.g. POS tags, sense tags, named entities, syntactic
chunks and so forth.

4.7 Lexicon Server

A Lexicon Server component collects, collo-
cates and stores lexical data that is generated or
accessed by other components. Examples include
the TIMIT lexicon (words and pronunciations from
the TIMIT database) and WordNet. In the absence
of a universal lexicon API there will need to be a
family of commonly supported APIs.

4.8 Semantic Mapping

A Semantic Mapping component constructs and
collates content based on theme identification.
Themes may be defined by a list of keywords of
concordance based output.

5 Multi-Component Application Design

Having wrapped such components, we propose
to combine them to create a range of multi-
component applications which can be executed
over the distributed grid infrastructure. It is envis-
aged that applications will be assembled using a
portal based approach for ease of deployment.
Based on the components described earlier, we can
build a number of different applications and appli-
cation types. Next we discuss two of these applica-
tions, namely spoken passage retrieval and
collaborative annotation.

5.1 Spoken Passage Retrieval

The Spoken Passage Retrieval application will
allow a user to identify passages of interest within
spoken document collections. This depends on the
source having been transcribed and indexed. Tran-
scription involves media conversion and ASR on
the spoken document collection, with results stored
in the annotation server. If transcripts are already
available, then the ASR process is replaced with
alignment. Next, the annotations must be indexed,
preferably with the aid of a lexical resource such as
WordNet. The resulting index will be viewed as a
kind of lexicon, which permits lookup on words to
give document regions. The above two processes
can be executed in parallel on a grid architecture.
The final application is not grid-based, but simply
accesses a new database created by the grid (the
spoken document index).

5.2 Collaborative Annotation

There are four basic types of collaborative an-
notation, and we plan to support them all. First,
peers may cooperate in the construction of a large
annotated resource, dividing up the workload and
each performing the same task on their parcel of
work. Limited coordination is necessary in order
to ensure that all items are annotated appropriately
(e.g. that 10% of items are doubly annotated for
reliability testing). In the second type of collabora-
tion, a supervisor vets the work of hired annotators,
and optionally adds further codes that depend on
their own critical analysis of the data. Third, two
specialists may annotate the same dataset accord-
ing to different theoretical models, in order to in-
vestigate the empirical differences between the
theories and the extent to which categories posited

by one theory can be derived from the other. Fi-
nally, collaboration may take place between human
and automatic agents, which monitor human deci-
sions and, over time, develop increasingly refined
models that predict those decisions and expedite
the work. The latter case is of significant interest in
the grid context where automated agents may rap-
idly annotate large datasets over the computational
grid, and hence be able to hypothesise language
models in much shorter periods of time, which in
turn can be used by human annotators.

6 Interfaces to Grid Services

The core infrastructure requisite for grid ser-
vices can be provided in a number of ways. His-
torically, bootstrapping approaches such as those
exhibited by PVM (Geist et al, 1994) and MPI
(Message Passing Interface Forum, 2001) have
gained widespread adoption. For our purposes,
owing to their low level interaction with applica-
tions, the requirement that significant development
is required to integrate these, and the technical
management overhead of network resources that is
required to gain full use of such frameworks, we
have decided that there are reasonable alternatives.

Instead, we have adopted the approach provided
by Globus (Globus Project, 2003). The Globus
model allows for a distributed set of resources (the
grid), upon which applications can execute in par-
allel or parametrically. Furthermore, within the
Globus model, there is capacity for lightweight,
cross-platform implementations which signifi-
cantly appeal to the natural language engineering
context where applications are often tied to a par-
ticular platform or architecture. Coordination of
grid services is an included component within the
Globus framework, through the notion of the vir-
tual organization (VO) and accessible directly,
through a middleware layer or by broker services
which manage processes within the VO.

The model of Grid service interaction we have
selected is to use a broker architecture which com-
pletely manages all aspects of grid interaction. Al-
though this can be construed as “grid enablement
by stealth”, using a broker allows effort to be ex-
pended within the domain of interest (in this case
natural language engineering) without concern for
underlying grid infrastructure issues.

In our proposal, we adopt the broker model for
managing all grid interface tasks. This simplifies

application development as well as leveraging ex-
isting research in the area of broker architectures
for grid environments. Within the grid environ-
ment, there is an emerging consensus that the
NIMROD-G (Buyya et al, 2001) broker architec-
ture will become the de-facto standard. Significant
research, implementation and testing has been car-
ried out using NIMROD-G through the Globus
project and through World Wide Grid testbed
(World Wide Grid, 2003). As such, it represents a
hardened, real-world broker architecture on which
we elect to build, rather than building our own
broker, an area somewhat orthogonal to our pri-
mary research interests. Future collaborative work
may extend into NLE-specific broker design (see
Section 8 for some exploratory ideas).

The NIMROD-G architecture combines broker
functions with grid services, for example, auto-
mated discovery of resources, as well as negotia-
tion for services and dispatch management. In the
context of this project, we will extend the
NIMROD-G Resource Broker Architecture to al-
low for a standards-based interface by which the
broker can parse the application specification lan-
guage described earlier. This interface will be in-
dependent of application framework and hence
available to any NLE framework which required
grid based services for processing tasks.

As mentioned earlier, current grid processing
models are processor-centric, yet natural language
engineering data sources lend themselves more
favorably towards data-centric implementations.
Current implementations of NIMROD-G are also
constrained by this assumption, and as such will
need to be extended to allow data-centric process-
ing. However, the extension of an existing broker
architecture is significantly more appealing than
writing a customized natural language engineering
grid service broker from scratch.

7 Grid Application Specification

Our proposed Grid Application Specification
Language is based on the model specified in Buyya
(2003), but will be implemented in pure XML. In
our model, the NIMROD-G broker architecture
will accept parameterized input based on the natu-
ral language engineering application requirements,
and will create the independent processing tasks,
schedule them for processing on the grid, facilitate
inter-task coordination and collate the results. Our

Grid Application Specification Language will al-
low interaction with a NIMROD-G application
prototype and includes the ability to substitute
variables both statically (at commencement) and
dynamically (as the result of other tasks).

The Grid Application Specification Language
will support the description of data requirements,
processing requirements and communication re-
quirements, both for individual components and
aggregates. Data requirements include the location
of static corpora and the interfaces for "dynamic"
corpora (those accessible via a public API), and
any requirements for media format, encoding
scheme or annotation type which can be selected
from or derived from the corpora. Processing re-
quirements include the CPU, memory, storage and
any task completion deadlines. Communication
requirements include estimated bandwidth for the
channels connecting the components. Additionally,
information about the canonical ordering and de-
pendencies between tasks that interact within the
application will be documented here.

In addition to this basic functionality, we envis-
age three kinds of extended functionality: aggrega-
tion, dependency resolution, and storage.

Components can themselves be combined into
pseudo applications with an overarching Grid Ap-
plication Specification, such as may be the case
where media conversion and encoding conversion
are both required prior to other components be-
coming useful in the application context.

We have also identified the need for the broker
to evaluate applications submitted to it for unre-
solved dependencies or incompatibilities. For ex-
ample, the broker should be enabled to determine
that the output of component A will be incompati-
ble with input formats acceptable to component B,
and intervene with a proposed solution (eg encod-
ing conversion).

Furthermore, the Grid Application Specifica-
tions will be stored for later discovery. In order to
meet this requirement, the Grid Application Speci-
fication must include sufficient information so as
to comply with the discovery mechanism, namely
metadata based on that standardized by the Open
Language Archives Community. Through the use
of linguistic metadata, including language technol-
ogy extensions, we can fully describe the function-
ality of a resource such as on specified using the
Grid Application Specification language. Auto-
mated discovery will occur through the use of a

static repository harvester based on OLAC’s Viser
(Simons, 2002).

8 Future Directions

The architecture design allows for a number of
immediately identifiable extensions. The first is the
potential for a range of software architectures in
NLE to generate application definitions, and as
such interface with grid services. The second is a
portal implementation that allows the user to select
the data sources and types of analysis which are of
interest and perform these transparently over the
grid using the broker as an intermediary. The third
is that grid resource broker architectures can be
extended to encompass data-centric processing
which will significantly impact on the application
of grid services to natural language engineering.
The fourth is the implicit vision that a number of
entities will offer grid enabled natural language
engineering services which participate in a virtual
organization and can be discovered automatically
and hence allow for specific analysis types.

In addition to this infrastructure, new compo-
nents and applications within this framework will
be developed. As an example, we can identify a
‘Comparative Evaluation’ application which would
use Grid services to allow the user to build a large
number of language models based on controlled,
parameterized options and compare these.

Yet another area for future cross-disciplinary
research is in the design of grid processing models
themselves. Skillicorn (2001) identifies a number
of computational grid types, of which the most
common is the processor-centric grid as discussed
earlier. In natural language engineering this model
is less attractive because the size of data sources is
typically significant enough for any network based
transport to be relatively inefficient and cost-
prohibitive. Skillicorn advocates the concept of the
data-centric computational grid, where grid aware
applications are transported to the location of the
data source and describes a number of implications
for architectural models relevant to natural lan-
guage engineering. In this area, the requirements of
natural language engineering may provide the cata-
lyst for such an innovative broker design.

9 Conclusion

Computational grids enable the sharing and ag-
gregation of geographically distributed resources
for solving large-scale, resource and data intensive
problems such as those found in natural language
engineering. In this paper we have outlined a pro-
posal for a software architecture which allows the
ease of integration of such services with traditional
natural language engineering development envi-
ronments. The grid-enabled component-based ar-
chitecture described in this paper is novel for a
number of reasons.

Firstly, although the component based model is
not necessarily innovative, the underlying motiva-
tion for this model (namely, ease of interface with
grid services) brings a new perspective to the
model design at both a component and application
levels. Not only does it allow larger, more complex
and computationally intensive processes to be di-
vided for more efficient processing, but it also al-
lows extrapolation for a slim-line application
design which may be utilized in non-grid enabled
contexts. In turn, this may allow efficiencies to be
gained where previously computational power,
data storage or bandwidth imposed constraints.

Secondly, the use of an application specifica-
tion language is proposed, which allows our com-
ponent based model to form parameterized input
for a grid service broker, whilst allowing a wide
range of underlying frameworks to access similar
services. Applications can now potentially be
evaluated for optimality and interdependency prior
to execution, thus allowing for processing re-
sources to be utilized more efficiently. Previously
collated applications can be used as components in
later, larger applications.

Thirdly we identify the need for existing grid
service broker architectures to allow for data-
centric processing, as opposed to currently imple-
mented processor-centric approaches. The adop-
tion of a broker based architecture and the open,
accessible nature of the broker interface will allow
a large class of natural language engineering appli-
cations to utilize grid services with corresponding
gains in computational efficiency.

Finally the optional availability of previously
compiled component sets, application definitions
and output results are all made available as discov-
erable resources for future application design.

10 References

Rajkumar Buyya, David Abramson, and Jonathan
Giddy, 2001. Nimrod-G Resource Broker for Ser-
vice-Oriented Grid Computing, IEEE Distributed
Systems Online, in Volume 2 Number 7, November
2001.

Rajkumar Buyya, Kim Branson, Jon Giddy and David
Abramson, 2003. The Virtual Laboratory: a toolset to
enable distributed molecular modeling for drug de-
sign on the World-Wide Grid. Concurrency and
Computation: Practice and Experience (15) pp 1-25

Steven Bird, David Day, John Garofolo, John Hender-
son, Christophe Laprun, Mark Liberman, 2000.
ATLAS: A flexible and extensible architecture for
linguistic annotation, in ‘“Proceedings of the Second
International Conference on Language Resources and
Evaluation”, pp 1699-1706, 2000

Steven Bird and Gary Simons (eds.), 2002a. OLAC
Metadata v1.0. Open Language Archives Commu-
nity. http://www.language-archives.org/OLAC/
metadata.html

Steven Bird and Gary Simons, 2002b. OLAC Third
Party Extensions. Open Language Archives Commu-
nity. http://www.language-archives.org/NOTE/third-
party-extensions.html

Christopher Cieri and Steven Bird, 2001. Annotation
Graphs and Servers and Multi-Modal Resources:
Infrastructure for Interdisciplinary Education,
Research and Development, in “Proceedings of the
ACL Workshop on Sharing Tools and Resources for
Research and Education”, Toulouse, July 2001, pp
23-30.

Hamish Cunningham, Yorick Wilks and Robert Gai-
zauskas, 1996. GATE -- a General Architecture for
Text Engineering. In Proceedings of the 16th Confer-
ence on Computational Linguistics (COLING-96),
Copenhagen, Aug, 1996.

Hamish Cunningham, 2002. GATE, a General Architec-
ture for Text Engineering. Computers and the
Humanities, volume 36, pp 223-254, 2002.

Dublin Core Metadata Initiative, 2003. Dublin Core
Metadata Element Set Version 1.1 Reference De-
scription. http://dublincore.org/documents/dces/

Ian Foster, Carl Kesselman, Steven Tuecke, 2001. The
anatomy of the grid: Enabling scalable virtual organi-
sations. International Journal of Supercomputer Ap-
plications, 15(3), 2001.

Ian Foster, Carl Kesselman, J. Nick, Steven Tuecke,
2002. The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Inte-
gration. Open Grid Service Infrastructure WG,
Global Grid Forum, June 22, 2002.

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng
Jiang, Robert Manchek, Vaidy Sunderam, 1994. A
User’s Guide and Tutorial for Networked Parallel

Computing. http://www.netlib.org/pvm3/book/pvm-
book.html

David Graff, 2002. English Gigaword. Linguistic Data
Consortium. http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogld=L.LDC2003T05

Globus Project, 2003a. The Globus Project. University
of Chicago, http://www.globus.org/

Baden Hughes, 2002. Controlled Vocabularies and
Schemas for Language Technology Descriptions. In
Steven Bird and Gary Simons (eds), Proceedings of
the IRCS Workshop on Open Language Archives.
Institute for Research in Cognitive Science, Univer-
sity of Pennsylvania. http://www.language-
archives.org/events/olac02/proceedings.pdf

Linguistic Data Consortium, 2001-2003. Annotation
Graph Toolkit. http://agtk.sourceforge.net/

Message Passing Interface Forum, 2001. MPI-2: Exten-
sions to the Message-Passing Interface. http://www-
unix.mes.anl.gov/mpi/

David Skillicorn, 2001. The Case for Datacentric Grids.
http://www.cs.queensu.ca/TechReports/Reports/2001
-451.ps

Ludwig Siegele, 2001. Software Survey in The Econo-
mist, April 12 2001.

Gary Simons, 2002. Viser: a virtual service provider for
displaying selected OLAC metadata.
http://www.language-archives.org/viser

World Wide Grid Testbed, 2003.
http://www.cs.mu.oz.au/~raj/grids/wwg/

Credits

The research described in this paper has been par-
tially funded by the National Science Foundation
under Grant Nos. 9910603 (International Standards
in Language Engineering), 9978056, 9980009
(Talkbank) and by the Victorian Partnership in
Advanced Computing Expertise Grant
EPPNME092.2003.

The authors would like to thank Rajkumar
Buyya for comments on earlier drafts of this paper.

