
The Talent System: TEXTRACT Architecture and Data Model 

Mary S. Neff 
IBM Thomas J. Watson 

Research Center 
P.O. Box 704 

Yorktown Heights, NY 
10598 

MaryNeff@us.ibm.com 

Roy J. Byrd 
IBM Thomas J. Watson 

Research Center 
P.O. Box 704 

Yorktown Heights, NY 10598
 

byrd@watson.ibm.com 

Branimir K. Boguraev 
IBM Thomas J. Watson 

Research Center 
P.O. Box 704 

Yorktown Heights, NY 
10598 

bkb@watson.ibm.com 

 

 

Abstract 

We present the architecture and data model for 
TEXTRACT, a document analysis framework for 
text analysis components.  The framework and 
components have been deployed in research 
and industrial environments for text analysis 
and text mining tasks. 
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Introduction 

In response to a need for a common infrastructure and 
basic services for a number of different, but coordi-
nated, text analysis activities with a common set of re-
quirements, the Talent (Text Analysis and Language 
ENgineering Tools) project at IBM Research developed 
the first TEXTRACT system in 1993.  It featured a com-
mon C API and a tripartite data model, consisting of 
linked list annotations and two hash table extensible 
vectors for a lexical cache and a document vocabulary.  
The experience of productizing this system as part of 
IBM’s well-known commercial product Intelligent 
Miner for Text (IM4T1) in 1997, as well as new research 
requirements, motivated the migration of the analysis 
components to a C++ framework, a more modular archi-
tecture modeled upon IBM’s Software Solutions (SWS) 
Text Analysis Framework (TAF).  

The current version of TEXTRACT that we outline 
here is significantly different from the one in IM4T; 
however, it still retains the tripartite model of the central 
data store. 

In this paper, we first give an overview of the 
TEXTRACT architecture.  Section 3 outlines different 
operational environments in which the architecture can 
be deployed.  In Section 4, we describe the tripartite 
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1 http://www-3.ibm.com/software/data/iminer/fortext/ 

data model.  In Section 5, we illustrate some fundamen-
tals of plugin design, by focusing on Talent’s Finite 
State Transducer component and its interaction with the 
architecture and data model.  Section 6 reviews related 
work.  Finally, we conclude and chart  future directions.  
 

The TEXTRACT Architecture: Overview 

TEXTRACT is a robust document analysis framework, 
whose design has been motivated by the requirements of 
an operational system capable of efficient processing of 
thousands of documents/gigabytes of data.  It has been 
engineered for flexible configuration in implementing a 
broad range of document analysis and linguistic proc-
essing tasks.  The common architecture features it 
shares with TAF include: 

•  interchangeable document parsers allow the ‘in-
gestion’ of source documents in more than one 
format (specifically, XML, HTML, ASCII, as 
well as a range of proprietary ones);  

•  a document model provides an abstraction layer 
between the character-based document stream 
and annotation-based document components, 
both structurally derived (such as paragraphs and 
sections) and linguistically discovered (such as 
named entities, terms, or phrases); 

•  linguistic analysis functionalities are provided 
via tightly coupled individual plugin compo-
nents; these share the annotation repository, lexi-
cal cache, and vocabulary and communicate with 
each other by posting results to, and reading 
prior analyses from, them; 

•  plugins share a common interface, and are dis-
patched by a plugin manager according to de-
clared dependencies among plugins; a resource 
manager controls shared resources such as lexi-
cons, glossaries, or gazetteers; and at a higher 



level of abstraction, an engine maintains the 
document processing cycle; 

•  the system and individual plugins are softly con-
figurable,  completely from the outside;  

•  the architecture allows for processing of a stream 
of documents; furthermore, by means of collec-
tion-level plugins and applications, cross-
document analysis and statistics can be derived 
for entire document collections. 

 
 TEXTRACT is industrial strength (IBM, 1997), Unicode-
ready, and language-independent (currently, analysis 
functionalities are implemented primarily for English).  
It is a cross-platform implementation, written in C++.    

TEXTRACT is ‘populated’ by a number of plugins, 
providing functionalities for: 

•  tokenization; 
•  document structure analysis, from tags and white 

space; 
•  lexicon interface, complete with efficient look-

up and full morphology;  
•  importation of lexical and vocabulary analyses 

from a non-TEXTRACT process via XML markup; 
•  analysis of out-of-vocabulary words (Park, 

2002); 
•  abbreviation finding and expansion (Park and 

Byrd, 2001); 
•  named entity identification and classification 

(person names, organizations, places, and so 
forth) (Ravin and Wacholder, 1997); 

•  technical term identification, in technical prose 
(Justeson and Katz, 1995); 

•  vocabulary determination and glossary extrac-
tion, in specialized domains (Park et al., 2002);  

•  vocabulary aggregation, with reduction to ca-
nonical form, within and across documents; 

•  part-of-speech tagging (with different taggers) 
for determining syntactic categories in context;  

•  shallow syntactic parsing, for identifying phrasal 
and clausal constructs and semantic relations 
(Boguraev, 2000); 

•  salience calculations, both of inter- and intra-
document salience; 

•  analysis of topic shifts within a document (Bogu-
raev and Neff, 2000a); 

•  document clustering, cluster organization, and 
cluster labeling; 

•  single document summarization, configurable to 
deploy different algorithmic schemes (sentence 
extraction, topical highlights, lexical cohesion) 
(Boguraev and Neff, 2000a, 2000b); 

•  multi-document summarization, using iterative 
residual rescaling (Ando et al., 2000); 

•  pattern matching, deploying finite state technol-
ogy specially designed to operate over document 
content abstractions (as opposed to a character 
stream alone). 

 
The list above is not exhaustive, but indicative of the 

kinds of text mining TEXTRACT is being utilized for; we 
anticipate new technologies being continually added to 
the inventory of plugins.  As will become clear later in 
the paper, the architecture of this system openly caters 
for third-party plugin writers.   

 

Figure 1: TEXTRACT Architecture 



Specific TEXTRACT configurations may deploy cus-
tom subsets of available plugin components, in order to 
effect certain processing; such configurations typically 
implement an application for a specific content analysis 
/ text mining task.  From an application's point of view, 
TEXTRACT plugins deposit analysis results in the shared 
repository; the application itself ‘reads’ these via a well 
defined interface.  Document application examples to 
date include document summarization, a customer 
claims analysis system (Nasukawa and Nagano, 2001), 
and so forth. 

      

Collection applications have a document analysis 
component, which may also write to the shared reposi-
tory.  These include named relation extraction (Byrd 
and Ravin, 1999), custom dictionary building (Park, et 
al., 2001), indexing for question answering (Prager et 
al., 2000), cross-document coreference (Ravin and Kazi, 
1999), and statistical collection analysis for document 
summarization or lexical navigation (Cooper and Byrd, 
1997).  

Figure 2: TEXTRACT’s GUI 
 

For packaging in applications, Textract has, in addi-
tion to native APIs, a C API layer for exporting the con-
tents of the data store to external components in C++ or 
Java. 

 

3 Different Operational Environments 
 For the purposes of interactive (re-)configuration of 

TEXTRACT’s processing chain, rapid application proto-
typing, and incremental plugin functionality develop-
ment, the system’s underlying infrastructure capabilities 
are available to a graphical interface.  This allows cont-
trol over individual plugins; in particular, it exploits the 
configuration object to dynamically reconfigure speci-
fied plugins on demand.  By exposing access to the 
common analysis substrate and the document object, 
and by exploiting a mechanism for declaring, and inter-
preting, dependencies among individual plugins, the 
interface further offers functionality similar to that of 
GATE (Cunningham, 2002). Such functionality is facili-
tated by suitable annotation repository methods, includ-
ing a provision for ‘rolling back’ the repository to an 
earlier state, without a complete system reInit(). 

4 The TEXTRACT Data Model 

The plugins and applications communicate via the anno-
tations, vocabulary, and the lexical cache.  The collec-
tion object owns the lexical cache; the document object 
contains the other two subsystems: the annotation re-
pository, and the document vocabulary.  Shared read-
only resources are managed by the resource manager. 

Annotations:  Annotations contain, minimally, the 
character locations of the beginning and ending position 
of the annotated text within the base document, along 
with the type of the annotation.  Types are organized 
into families: lexical, syntactic, document structure, 
discourse, and markup.  The markup family provides 
access to the text buffer, generally only used by the to-
kenizer.  The annotation repository owns the type sys-
tem and pre-populates it at startup time.  Annotation 
features vary according to the type; for example, posi-
tion in a hierarchy of vocabulary categories (e.g. Person, 
Org) is a feature of lexical annotations.  New types and 
features (but not new families) can be added dynami-
cally by any system component.  The annotation reposi-
tory has a container of annotations ordered on start 
location (ascending), end location (descending), priority 
of type family (descending), priority within type family 
(descending), and type name (ascending).  The general 
effect of the family and type priority order is to reflect 
nesting level in cases where there are multiple annota-
tions at different levels with the same span.  With this 
priority, an annotation iterator will always return an NP 

In addition, the GUI is configurable as a development 
environment for finite state (FS) grammar writing and 
debugging, offering native grammar editing and compi-
lation, contextualized visualization of FS matching, and 
in-process inspection of the annotation repository at 
arbitrary level of granularity.  Figure 2 is broadly in-
dicative of some of the functional components exposed: 
in particular, it exemplifies a working context for a 
grammar writer, which includes an interface for setting 
operational parameters, a grammar editor/compiler, and 
multiple viewers for the results of the pattern match, 
mediated via the annotation repository, and making use 
of different presentation perspectives (e.g. a parse tree 
for structural analysis, concordance for pattern match-
ing, and so forth.) 



(noun phrase) annotation before a covered word annota-
tion, no matter how many words are in the NP. 

Iterators over annotations can move forward and 
backward with  respect to this general order.  Iterators 
can be filtered by set of annotation families, types or a 
specified text location.  A particular type of filtered it-
erator is the subiterator, an iterator that covers the span 
of a given annotation (leaving out the given annotation).  
Iterators can be specified to be “ambiguous” or “unam-
biguous.”  Ambiguous scans return all the annotations 
encountered; unambiguous scans return only a single 
annotation covering each position in the document, the 
choice being made according to the sort order above.  
Unambiguous scans within family are most useful for 
retrieving just the highest order of analysis.   All the 
different kinds of filters can be specified in any combi-
nation. 

Lexical Cache:  One of the features on a word an-
notation is a reference to an entry in the lexical cache.  
The cache contains one entry for each unique token in 
the text that contains at least one alphabetic character.  
Initially designed to improve performance of lexical 
lookup, the cache has become a central location for au-
thority information about tokens, whatever the source: 
lexicon, stop word list, gazetteer, tagger model etc.  The 
default lifetime of the lexical cache is the collection; 
however, performance can be traded for memory by a 
periodic cache refresh.    

The lexical lookup (lexalyzer) plugin populates the 
lexical cache with tokens, their lemma forms, and mor-
pho-syntactic features.  Morpho-syntactic features are 
encoded in an interchange format which mediates 
among notations of different granularities (of syntactic 
feature distinctions or morphological ambiguity), used 
by dictionaries (we use the IBM LanguageWare dic-
tionaries, available for over 30 languages), tag sets, and 
finite state grammar symbols.  In principle, different 
plugins running together can use different tag sets by 
defining appropriate tagset mapping tables via a con-
figuration file.  Similarly, a different grammar morpho-
syntactic symbol set can also be externally defined.   As 
with annotations, an arbitrary number of additional fea-
tures can be specified, on the fly, for tokens and/or 
lemma forms.  For example, an indexer for domain ter-
minology cross references different spellings, as well as 
misspellings, of the same thing.  The API to the lexical 
cache also provides an automatic pass-through to the 
dictionary API, so that any plugin can look up a string 
that is not in the text and have it placed in the cache. 

Vocabulary: Vocabulary annotations (names, do-
main terms, abbreviations) have a reference to an entry 
in the vocabulary.  The canonical forms, variants, and 
categories in the vocabulary can be plugin-discovered 
(Nominator), or plugin-recovered (matched from an 
authority resource, such as a glossary).  Collection sali-

ence statistics (e.g. tfxidf), needed, for example, by the 
summarizer application, are populated from a resource 
derived from an earlier collection run.  As with the an-
notations and lexical entries, a plugin may define new 
features on the fly. 

Resource Manager:  The Resource Manager, im-
plemented as a C++ singleton object so as to be avail-
able to any component anywhere, manages the files and 
API’s of an eclectic collection of shared read-only re-
sources: a names authority data base (gazetteer), prefix 
and suffix lists, stop word lists, the IBM LanguageWare 
dictionaries with their many functions (lemmatization, 
morphological lookup, synonyms, spelling verification, 
and spelling correction), and, for use in the research 
environment, WordNet (Fellbaum, 1998).  The API 
wrappers for the resources are deliberately not uniform, 
to allow rapid absorption and reuse of components.   For 
performance, the results of lookup in these resources are 
cached as features in the lexical cache or vocabulary.  
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5.1 

TEXTRACT Plugins 

TEXTRACT plugins and applications need only to con-
form to the API of the plugin manager, which cycles 
through the plugin vector with methods for: con-
struct(), initialize(), processDocument(), 
and endDocument(). Collection applications and 
plugins look nearly the same to the plugin manager; 
they have, additionally, startCollection() and 
endCollection() methods. The complete API also 
includes the interfaces to the annotation repository, lexi-
cal cache, and vocabulary.   

Plugin Example: TEXTRACT’s Finite State 
Transducer 

Numerous NLP applications today deploy finite state 
(FS) processing techniques—for, among other things, 
efficiency of processing, perspicuity of representation, 
rapid prototyping, and grammar reusability (see, for 
instance, Karttunen et al., 1996; Kornai, 1999).  TEX-
TRACT's FS transducer plugin (henceforth TFST), en-
capsulates FS matching and transduction capabilities 
and makes these available for independent development 
of grammar-based linguistic filters and processors. 

In a pipelined architecture, and in an environment 
designed to facilitate and promote reusability, there are 
some questions about the underlying data stream over 
which the FS machinery operates, as well as about the 
mechanisms for making the infrastructure compo-
nents—in particular the annotation repository and 
shared resources—available to the grammar writer.  
Given that the document character buffer logically ‘dis-
appears’ from a plugin’s point of view, FS operations 



now have to be defined over annotations and their prop-
erties.  This necessitates the design of a notation, in 
which grammars can be written with reference to 
TEXTRACT’s underlying data model, and which still 
have access to the full complement of methods for ma-
nipulating annotations. 

In the extreme, what is required is an environment 
for FS calculus over typed feature structures (see Becker 
et al., 2002), with pattern-action rules where patterns 
would be specified over type configurations, and actions 
would manipulate annotation types in the annotation 
repository.  Manipulation of annotations from FS speci-
fications is also done in other annotation-based text 
processing architectures (see, for instance, the JAPE 
system; Cunningham et al, 2000).  However, this is 
typically achieved, as JAPE does, by allowing for code 
fragments on the right-hand side of the rules. 

Both assumptions—that a grammar writer would be 
familiar with the complete type system employed by all 
‘upstream’ (and possibly third party) plugins, and that a 
grammar writer would be knowledgeable enough to 
deploy raw API's to the annotation repository and re-
source manager—go against the grain of TEXTRACT’s 
design philosophy. 

Consequently, we make use of an abstraction layer 
between an annotation representation (as it is imple-
mented) and a set of annotation property specifications 
which define individual plugin capabilities and granu-
larity of analysis.  We also have developed a notation 
for FS operations, which appeals to the system-wide set 
of annotation families, with their property attributes, as 
well as encapsulates operations over annotations—such 
as create new ones, remove existing ones, modify and/or 
add properties, and so forth—as primitive operations.  
Note that the abstraction hides from the grammar writer 
system-wide design decisions, which separate the anno-
tation repository, the lexicon, and the vocabulary (see 
Section 3 above): thus, for instance, access to lexical 
resources with morpho-syntactic information, or, in-
deed, to external repositories like gazetteers or lexical 
databases, appears to the grammar writer as querying an 
annotation with morpho-syntactic properties and attrib-
ute values; similarly, a rule can post a new vocabulary 
item using notational devices identical to those for post-
ing annotations. 

The freedom to define, and post, new annotation 
types ‘on the fly’ places certain requirements on the 
FST subsystem.  In particular, it is necessary to infer 
how new annotations and their attributes fit into an al-
ready instantiated data model.  The FST plugin there-
fore incorporates logic in its reInit() method which 
scans an FST file (itself generated by an FST compiler 
typically running in the background), and determines—
by deferring to a symbol compiler—what new annota-
tion types and attribute features need to be dynamically 
configured and incrementally added to the model. 

An annotation-based regime of FS matching needs a 
mechanism for picking a particular path through the 
input annotation lattice, over which a rule should be 
applied: thus, for instance, some grammars would in-
spect raw tokens, others would abstract over vocabulary 
items (some of which would cover multiple tokens), yet 
others might traffic in constituent phrasal units (with an 
additional constrain over phrase type) or/and document 
structure elements (such as section titles, sentences, and 
so forth).   

For grammars which examine uniform annotation 
types, it is relatively straightforward to infer, and con-
struct (for the run-time FS interpreter), an iterator over 
such a type (in this example, sentences).  However, ex-
pressive and powerful FS grammars may be written 
which inspect, at different—or even the same—point of 
the analysis annotations of different types.  In this case 
it is essential that the appropriate iterators get con-
structed, and composed, so that a felicitous annotation 
stream gets submitted to the run-time for inspection; 
TEXTRACT deploys a special dual-level iterator designed 
expressly for this purpose. 

Additional features of the TFST subsystem allow for 
seamless integration of character-based regular expres-
sion matching, morpho-syntactic abstraction from the 
underlying lexicon representation and part-of-speech 
tagset, composition of complex attribute specification 
from simple feature tests, and the ability to constrain 
rule application within the boundaries of specified anno-
tation types only.  This allows for the easy specification, 
via the grammar rules, of a variety of matching regimes 
which can transparently query upstream annotators of 
which only the externally published capabilities are 
known. 

A number of applications utilizing TFST include a 
shallow parser (Boguraev, 2000), a front end to a glos-
sary identification tool (Park et al., 2002), a parser for 
temporal expressions, a named entity recognition de-
vice, and a tool for extracting hypernym relations. 

 
 

6 Related Work 

The Talent system, and TEXTRACT in particular, belongs 
to a family of language engineering systems which in-
cludes GATE (University of Sheffield), Alembic 
(MITRE Corporation), ATLAS (University of Pennsyl-
vania), among others.  Talent is perhaps closest in spirit 
to GATE.  In Cunningham, et al. (1997), GATE is de-
scribed as “a software infrastructure on top of which 
heterogeneous NLP processing modules may be evalu-
ated and refined individually or may be combined into 
larger application systems.”  Thus, both Talent and 
GATE address the needs of researchers and developers, 



on the one hand, and of application builders, on the 
other.   

The GATE system architecture comprises three 
components: The GATE Document Manager (GDM), 
The Collection of Reusable Objects for Language Engi-
neering (CREOLE), and the GATE Graphical Interface 
(GGI).  GDM, which corresponds to TEXTRACT’s 
driver, engine, and plugin manager, is responsible for 
managing the storage and transmission (via APIs) of the 
annotations created and manipulated by the NLP proc-
essing modules in CREOLE.  In TEXTRACT’s terms, the 
GDM is responsible for the data model kept in the docu-
ment and collection objects.  Second, CREOLE is the 
GATE component model and corresponds to the set of 
TEXTRACT plugins.  Cunningham, et al. (1997) em-
phasize that CREOLE modules, which can encapsulate 
both algorithmic and data resources, are mainly created 
by wrapping preexisting code to meet the GDM APIs.  
In contrast, TEXTRACT plugins are typically written ex-
pressly in order that they may directly manipulate the 
analyses in the TEXTRACT data model.  According to 
Cunningham, et al. (2001), available CREOLE modules 
include: tokenizer, lemmatizer, gazetteer and name 
lookup, sentence splitter, POS tagger, and a grammar 
application module, called JAPE, which corresponds to 
TEXTRACT’s TFST. Finally, GATE’s third component, 
GGI, is the graphical tool which supports configuration 
and invocation of GDM and CREOLE for accomplish-
ing analysis tasks.  This component is closest to 
TEXTRACT’s graphical user interface. As discussed ear-
lier, the GUI is used primarily as a tool for grammar 
development and AR inspection during grammar writ-
ing.  Most application uses of TEXTRACT are accom-
plished with the programming APIs and configuration 
tools, rather than with the graphical tool.   

Most language engineering systems in the 
TEXTRACT family have been motivated by a particular 
set of applications: semi-automated, mixed-initiative 
annotation of linguistic material for corpus construction 
and interchange, and for NLP system creation and 
evaluation, particularly in machine-learning contexts.  
As a result, such systems generally highlight graphical 
user interfaces, for visualizing and manipulating annota-
tions, and file formats, for exporting annotations to 
other systems.  Alembic (MITRE, 1997) and ATLAS 
(Bird, et al., 2000) belong to this group.  Alembic, built 
for participation in the MUC conferences and adhering 
to the TIPSTER API (Grishman, 1996), incorporates 
automated annotators (“plugins”) for word/sentence 
tokenization, part-of-speech tagging, person/ organiza-
tion/ location/ date recognition, and coreference analy-
sis. It also provides a phrase rule interpreter similar to 
TFST.  Alembic incorporates ATLAS’s “annotation 
graphs” as its logical representation for annotations.  
Annotation graphs reside in “annotation sets,” which are 
closest in spirit to TEXTRACT’s annotation repository, 

although they don't apparently provide APIs for fine-
grained manipulation of, and filtered iterations over, the 
stored annotations.  Rather, ATLAS exports physical 
representations of annotation sets as XML files or rela-
tional data bases containing stand-off annotations, 
which may then be processed by external applications.    

Other systems in this genre are Anvil (Vintar and 
Kipp (2001), LT-XML (Brew, et al., 2000), MATE 
(McKelvie, et al., 2000), and Transcriber (Barras, et al., 
(2001).  Like ATLAS, some of these were originally 
built for processing speech corpora and have been ex-
tended for handling text.  With the exception of GATE, 
all of these systems are devoted mainly to semi-
automated corpus annotation and to evaluation of lan-
guage technology, rather than to the construction of 
industrial NLP systems, which is TEXTRACT’s focus.  
As a result, TEXTRACT uses a homogeneous implemen-
tation style for its annotation and application plugins, 
with a tight coupling to the underlying shared analysis 
data model.  This is in contrast to the more loosely-
coupled heterogeneous plugin and application model 
used by the other systems. 

 

7 Conclusion 

In this paper, we have described an industrial infra-
structure for composing and deploying natural language 
processing components that has evolved in response to 
both research and product requirements.  It has been 
widely used, in research projects and product-level ap-
plications.  

A goal of the Talent project has been to create tech-
nology that is well-suited for building robust text analy-
sis systems.  With its simple plugin interface (see 
Section 5), its rich declarative data model, and the flexi-
ble APIs to it (Section 4), TEXTRACT has achieved that 
goal by providing a flexible framework for system 
builders. The system is habitable (external processes 
can be ‘wrapped’ as plugins, thus becoming available as 
stages in the processing pipeline), and open (completely 
new plugins can be written—by anyone—to a simple 
API, as long as their interfaces to the annotation reposi-
tory, the lexical cache, and the vocabulary (Section 4), 
follow the published set of specifications. 

Openness is further enhanced by encouraging the 
use of TFST, which directly supports the development, 
and subsequent deployment, of grammar-based plugins 
in a congenial style.  Overall, TEXTRACT’s design char-
acteristics prompted the adoption of most of the archi-
tecture by a new framework for management and 
processing of unstructured information at IBM Research 
(see below).  

Performance is not generally an inherent property of 
an architecture, but rather of implementations of that 
architecture.  Also, the performance of different con-



figurations of the system would be dependent on the 
number, type, and algorithmic design and implementa-
tion of plugins deployed for any given configuration.  
Thus it is hard to quantify TEXTRACT’s performance. 
The most recent implementation of the architecture is in 
C++ and makes extensive use of algorithms, container 
classes and iterators from the C++ Standard Template 
Library for manipulating the data objects in the data 
model; its performance therefore benefits from state-of-
the-art implementations of the STL.  As an informal 
indication of achievable throughput, an earlier product 
implementation of the tokenization base services and 
annotation subsystem, in the context of an information 
retrieval indexer, was able to process documents at the 
rate of over 2 gigabytes-per-hour on a mid-range Unix 
workstation. 

Allowing TEXTRACT’s plugins to introduce — dy-
namically — new annotation types and properties is an 
important part of an open system.  However, a limita-
tion of the current design is the fixed organization of 
annotations into families (see Section 4).  This makes it 
hard to accommodate new plugins which need to appeal 
to information which is either not naturally encodable in 
the family space TEXTRACT pre-defines, or requires a 
richer substrate of (possibly mutually dependent) feature 
sets.   

In a move towards a fully declarative representation 
of linguistic information, where an annotation maxi-
mally shares an underlying set of linguistic properties, a 
rational re-design of TEXTRACT (Ferrucci and Lally, 
2003) is adopting a hierarchical system of feature-based 
annotation types; it has been demonstrated that even 
systems supporting strict single inheritance only are 
powerful enough for a variety of linguistic processing 
applications (Shieber, 1986), largely through their well-
understood mathematical properties (Carpenter, 1992). 

Some of this migration is naturally supported by the 
initial TEXTRACT data model design.  Other architec-
tural components will require re-tooling; in particular, 
the FST subsystem will need further extensions for the 
definition of FS algebra over true typed feature struc-
tures (see, for instance, Brawer, 1998; Wunsch, 2003).  
We will return to this issue in a following paper.  
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